Learn more about

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label \(A\) \(\chi\) \(\operatorname{ord}(\chi)\) Dim. Decomp. AL-dims.
6001.2.a \(47.918226252970356\) \( \chi_{ 6001 }(1, \cdot) \) \(1\) \(469\) \(113\)+\(114\)+\(121\)+\(121\) \(113\)+\(121\)+\(121\)+\(114\)
6002.2.a \(47.926211293172486\) \( \chi_{ 6002 }(1, \cdot) \) \(1\) \(251\) \(47\)+\(56\)+\(69\)+\(79\) \(56\)+\(69\)+\(79\)+\(47\)
6003.2.a \(47.934196333374615\) \( \chi_{ 6003 }(1, \cdot) \) \(1\) \(258\) \(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(5\)+\(7\)+\(7\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\)+\(16\)+\(16\)+\(20\)+\(22\)+\(22\)+\(30\)+\(30\) \(22\)+\(30\)+\(30\)+\(22\)+\(39\)+\(38\)+\(35\)+\(42\)
6004.2.a \(47.942181373576744\) \( \chi_{ 6004 }(1, \cdot) \) \(1\) \(118\) \(1\)+\(1\)+\(1\)+\(8\)+\(24\)+\(25\)+\(27\)+\(31\) \(0\)+\(0\)+\(0\)+\(0\)+\(32\)+\(26\)+\(27\)+\(33\)
6005.2.a \(47.950166413778874\) \( \chi_{ 6005 }(1, \cdot) \) \(1\) \(401\) \(1\)+\(1\)+\(4\)+\(83\)+\(88\)+\(111\)+\(113\) \(87\)+\(113\)+\(113\)+\(88\)
6006.2.a \(47.958151453980996\) \( \chi_{ 6006 }(1, \cdot) \) \(1\) \(119\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(7\) \(3\)+\(4\)+\(4\)+\(4\)+\(4\)+\(4\)+\(3\)+\(4\)+\(5\)+\(1\)+\(4\)+\(5\)+\(3\)+\(6\)+\(4\)+\(2\)+\(4\)+\(4\)+\(4\)+\(3\)+\(2\)+\(5\)+\(6\)+\(2\)+\(4\)+\(5\)+\(4\)+\(2\)+\(5\)+\(1\)+\(1\)+\(7\)
6007.2.a \(47.966136494183125\) \( \chi_{ 6007 }(1, \cdot) \) \(1\) \(500\) \(2\)+\(237\)+\(261\) \(237\)+\(263\)
6008.2.a \(47.974121534385255\) \( \chi_{ 6008 }(1, \cdot) \) \(1\) \(188\) \(1\)+\(44\)+\(44\)+\(49\)+\(50\) \(44\)+\(50\)+\(50\)+\(44\)
6009.2.a \(47.982106574587384\) \( \chi_{ 6009 }(1, \cdot) \) \(1\) \(333\) \(74\)+\(74\)+\(92\)+\(93\) \(74\)+\(93\)+\(92\)+\(74\)
6010.2.a \(47.99009161478951\) \( \chi_{ 6010 }(1, \cdot) \) \(1\) \(199\) \(1\)+\(1\)+\(16\)+\(21\)+\(21\)+\(22\)+\(27\)+\(28\)+\(29\)+\(33\) \(29\)+\(21\)+\(27\)+\(23\)+\(28\)+\(22\)+\(16\)+\(33\)
6011.2.a \(47.998076654991635\) \( \chi_{ 6011 }(1, \cdot) \) \(1\) \(501\) \(1\)+\(1\)+\(1\)+\(2\)+\(221\)+\(275\) \(224\)+\(277\)
6012.2.a \(48.006061695193765\) \( \chi_{ 6012 }(1, \cdot) \) \(1\) \(68\) \(2\)+\(3\)+\(3\)+\(5\)+\(5\)+\(5\)+\(7\)+\(9\)+\(9\)+\(10\)+\(10\) \(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(13\)+\(21\)+\(21\)
6012.2.h \(48.006061695193765\) \( \chi_{ 6012 }(3005, \cdot) \) \(2\) \(56\) \(56\)
6013.2.a \(48.014046735395894\) \( \chi_{ 6013 }(1, \cdot) \) \(1\) \(429\) \(1\)+\(1\)+\(104\)+\(104\)+\(109\)+\(110\) \(104\)+\(111\)+\(110\)+\(104\)
6014.2.a \(48.02203177559802\) \( \chi_{ 6014 }(1, \cdot) \) \(1\) \(239\) \(1\)+\(1\)+\(2\)+\(5\)+\(21\)+\(22\)+\(26\)+\(26\)+\(28\)+\(32\)+\(37\)+\(38\) \(26\)+\(34\)+\(38\)+\(22\)+\(33\)+\(27\)+\(21\)+\(38\)
6015.2.a \(48.03001681580015\) \( \chi_{ 6015 }(1, \cdot) \) \(1\) \(267\) \(2\)+\(23\)+\(28\)+\(29\)+\(31\)+\(36\)+\(36\)+\(39\)+\(43\) \(36\)+\(31\)+\(36\)+\(29\)+\(39\)+\(28\)+\(23\)+\(45\)
6016.2.a \(48.03800185600228\) \( \chi_{ 6016 }(1, \cdot) \) \(1\) \(184\) \(1\)+\(\cdots\)+\(1\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(\cdots\)+\(10\)+\(13\)+\(\cdots\)+\(13\)+\(14\)+\(\cdots\)+\(14\) \(43\)+\(51\)+\(49\)+\(41\)
6017.2.a \(48.045986896204404\) \( \chi_{ 6017 }(1, \cdot) \) \(1\) \(455\) \(1\)+\(1\)+\(106\)+\(107\)+\(119\)+\(121\) \(107\)+\(122\)+\(120\)+\(106\)
6018.2.a \(48.05397193640653\) \( \chi_{ 6018 }(1, \cdot) \) \(1\) \(153\) \(1\)+\(\cdots\)+\(1\)+\(3\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\) \(10\)+\(9\)+\(11\)+\(9\)+\(8\)+\(11\)+\(9\)+\(9\)+\(11\)+\(8\)+\(6\)+\(14\)+\(7\)+\(12\)+\(14\)+\(5\)
6019.2.a \(48.06195697660866\) \( \chi_{ 6019 }(1, \cdot) \) \(1\) \(463\) \(1\)+\(101\)+\(108\)+\(123\)+\(130\) \(108\)+\(123\)+\(130\)+\(102\)
6020.2.a \(48.06994201681079\) \( \chi_{ 6020 }(1, \cdot) \) \(1\) \(84\) \(1\)+\(1\)+\(1\)+\(7\)+\(7\)+\(8\)+\(9\)+\(12\)+\(12\)+\(13\)+\(13\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(7\)+\(9\)+\(13\)+\(9\)+\(13\)+\(13\)+\(7\)
6021.2.a \(48.07792705701292\) \( \chi_{ 6021 }(1, \cdot) \) \(1\) \(296\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(10\)+\(30\)+\(30\)+\(30\)+\(35\)+\(\cdots\)+\(35\)+\(40\) \(71\)+\(77\)+\(77\)+\(71\)
6022.2.a \(48.08591209721505\) \( \chi_{ 6022 }(1, \cdot) \) \(1\) \(250\) \(3\)+\(54\)+\(61\)+\(64\)+\(68\) \(64\)+\(61\)+\(71\)+\(54\)
6023.2.a \(48.09389713741717\) \( \chi_{ 6023 }(1, \cdot) \) \(1\) \(475\) \(98\)+\(99\)+\(138\)+\(140\) \(99\)+\(140\)+\(138\)+\(98\)
6024.2.a \(48.1018821776193\) \( \chi_{ 6024 }(1, \cdot) \) \(1\) \(124\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(8\)+\(11\)+\(11\)+\(14\)+\(14\)+\(14\)+\(18\)+\(20\) \(15\)+\(16\)+\(20\)+\(12\)+\(14\)+\(16\)+\(13\)+\(18\)
6025.2.a \(48.10986721782143\) \( \chi_{ 6025 }(1, \cdot) \) \(1\) \(380\) \(2\)+\(\cdots\)+\(2\)+\(5\)+\(7\)+\(11\)+\(12\)+\(15\)+\(25\)+\(25\)+\(40\)+\(\cdots\)+\(40\)+\(46\)+\(66\) \(87\)+\(93\)+\(106\)+\(94\)
6026.2.a \(48.11785225802356\) \( \chi_{ 6026 }(1, \cdot) \) \(1\) \(241\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(20\)+\(21\)+\(24\)+\(25\)+\(33\)+\(35\)+\(36\)+\(41\) \(25\)+\(36\)+\(34\)+\(25\)+\(37\)+\(23\)+\(20\)+\(41\)
6027.2.a \(48.12583729822569\) \( \chi_{ 6027 }(1, \cdot) \) \(1\) \(274\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(10\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(16\)+\(16\)+\(24\)+\(24\) \(30\)+\(38\)+\(37\)+\(31\)+\(37\)+\(29\)+\(33\)+\(39\)
6028.2.a \(48.13382233842781\) \( \chi_{ 6028 }(1, \cdot) \) \(1\) \(112\) \(2\)+\(2\)+\(25\)+\(27\)+\(27\)+\(29\) \(0\)+\(0\)+\(0\)+\(0\)+\(27\)+\(29\)+\(25\)+\(31\)
6029.2.a \(48.14180737862994\) \( \chi_{ 6029 }(1, \cdot) \) \(1\) \(502\) \(234\)+\(268\) \(234\)+\(268\)
6030.2.a \(48.14979241883207\) \( \chi_{ 6030 }(1, \cdot) \) \(1\) \(110\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(4\)+\(5\)+\(5\)+\(8\)+\(8\) \(4\)+\(8\)+\(6\)+\(4\)+\(9\)+\(7\)+\(8\)+\(9\)+\(6\)+\(4\)+\(4\)+\(8\)+\(8\)+\(9\)+\(9\)+\(7\)
6030.2.d \(48.14979241883207\) \( \chi_{ 6030 }(2411, \cdot) \) \(2\) \(96\) \(2\)+\(\cdots\)+\(2\)+\(16\)+\(16\)+\(24\)+\(24\)
6031.2.a \(48.1577774590342\) \( \chi_{ 6031 }(1, \cdot) \) \(1\) \(487\) \(1\)+\(109\)+\(110\)+\(133\)+\(134\) \(110\)+\(133\)+\(135\)+\(109\)
6032.2.a \(48.16576249923633\) \( \chi_{ 6032 }(1, \cdot) \) \(1\) \(168\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\) \(19\)+\(23\)+\(23\)+\(19\)+\(23\)+\(19\)+\(19\)+\(23\)
6033.2.a \(48.17374753943846\) \( \chi_{ 6033 }(1, \cdot) \) \(1\) \(335\) \(1\)+\(71\)+\(82\)+\(84\)+\(97\) \(84\)+\(83\)+\(97\)+\(71\)
6034.2.a \(48.18173257964058\) \( \chi_{ 6034 }(1, \cdot) \) \(1\) \(215\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(20\)+\(20\)+\(21\)+\(24\)+\(25\)+\(27\)+\(31\)+\(31\) \(28\)+\(25\)+\(27\)+\(26\)+\(32\)+\(23\)+\(21\)+\(33\)
6035.2.a \(48.18971761984271\) \( \chi_{ 6035 }(1, \cdot) \) \(1\) \(375\) \(36\)+\(36\)+\(44\)+\(44\)+\(49\)+\(49\)+\(58\)+\(59\) \(44\)+\(49\)+\(49\)+\(44\)+\(59\)+\(36\)+\(36\)+\(58\)
6036.2.a \(48.19770266004484\) \( \chi_{ 6036 }(1, \cdot) \) \(1\) \(84\) \(1\)+\(\cdots\)+\(1\)+\(14\)+\(15\)+\(24\)+\(26\) \(0\)+\(0\)+\(0\)+\(0\)+\(26\)+\(16\)+\(16\)+\(26\)
6037.2.a \(48.20568770024697\) \( \chi_{ 6037 }(1, \cdot) \) \(1\) \(502\) \(243\)+\(259\) \(243\)+\(259\)
6038.2.a \(48.2136727404491\) \( \chi_{ 6038 }(1, \cdot) \) \(1\) \(252\) \(2\)+\(54\)+\(57\)+\(69\)+\(70\) \(57\)+\(69\)+\(72\)+\(54\)
6039.2.a \(48.22165778065122\) \( \chi_{ 6039 }(1, \cdot) \) \(1\) \(250\) \(5\)+\(6\)+\(11\)+\(11\)+\(12\)+\(12\)+\(13\)+\(13\)+\(13\)+\(14\)+\(19\)+\(21\)+\(25\)+\(\cdots\)+\(25\) \(25\)+\(25\)+\(25\)+\(25\)+\(44\)+\(29\)+\(31\)+\(46\)
6040.2.a \(48.22964282085335\) \( \chi_{ 6040 }(1, \cdot) \) \(1\) \(150\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(12\)+\(13\)+\(15\)+\(19\)+\(23\)+\(23\)+\(24\) \(24\)+\(14\)+\(16\)+\(20\)+\(23\)+\(15\)+\(12\)+\(26\)
6041.2.a \(48.23762786105548\) \( \chi_{ 6041 }(1, \cdot) \) \(1\) \(431\) \(1\)+\(2\)+\(83\)+\(101\)+\(112\)+\(132\) \(103\)+\(112\)+\(133\)+\(83\)
6042.2.a \(48.24561290125761\) \( \chi_{ 6042 }(1, \cdot) \) \(1\) \(157\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\) \(12\)+\(9\)+\(6\)+\(12\)+\(11\)+\(8\)+\(7\)+\(13\)+\(10\)+\(9\)+\(11\)+\(9\)+\(7\)+\(14\)+\(14\)+\(5\)
6043.2.a \(48.25359794145974\) \( \chi_{ 6043 }(1, \cdot) \) \(1\) \(503\) \(1\)+\(243\)+\(259\) \(243\)+\(260\)
6044.2.a \(48.26158298166187\) \( \chi_{ 6044 }(1, \cdot) \) \(1\) \(126\) \(63\)+\(63\) \(0\)+\(0\)+\(63\)+\(63\)
6045.2.a \(48.26956802186399\) \( \chi_{ 6045 }(1, \cdot) \) \(1\) \(241\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(5\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(15\)+\(16\)+\(17\)+\(18\) \(13\)+\(19\)+\(16\)+\(12\)+\(14\)+\(14\)+\(15\)+\(17\)+\(15\)+\(13\)+\(16\)+\(16\)+\(14\)+\(18\)+\(17\)+\(12\)
6046.2.a \(48.27755306206612\) \( \chi_{ 6046 }(1, \cdot) \) \(1\) \(251\) \(1\)+\(1\)+\(2\)+\(55\)+\(56\)+\(67\)+\(69\) \(56\)+\(70\)+\(69\)+\(56\)
6047.2.a \(48.28553810226825\) \( \chi_{ 6047 }(1, \cdot) \) \(1\) \(504\) \(217\)+\(287\) \(217\)+\(287\)
6048.2.a \(48.29352314247038\) \( \chi_{ 6048 }(1, \cdot) \) \(1\) \(96\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\) \(11\)+\(13\)+\(13\)+\(11\)+\(13\)+\(11\)+\(11\)+\(13\)
Next   To download results, determine the number of results.