Label |
$A$ |
$\chi$ |
$\operatorname{ord}(\chi)$ |
Dim. |
Decomp. |
AL-dims. |
6001.2.a |
$47.918$ |
\( \chi_{6001}(1, \cdot) \) |
$1$ |
$469$ |
\(113\)+\(114\)+\(121\)+\(121\) |
\(113\)+\(121\)+\(121\)+\(114\) |
6002.2.a |
$47.926$ |
\( \chi_{6002}(1, \cdot) \) |
$1$ |
$251$ |
\(47\)+\(56\)+\(69\)+\(79\) |
\(56\)+\(69\)+\(79\)+\(47\) |
6003.2.a |
$47.934$ |
\( \chi_{6003}(1, \cdot) \) |
$1$ |
$258$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(5\)+\(7\)+\(7\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\)+\(16\)+\(16\)+\(20\)+\(22\)+\(22\)+\(30\)+\(30\) |
\(22\)+\(30\)+\(30\)+\(22\)+\(39\)+\(38\)+\(35\)+\(42\) |
6004.2.a |
$47.942$ |
\( \chi_{6004}(1, \cdot) \) |
$1$ |
$118$ |
\(1\)+\(1\)+\(1\)+\(8\)+\(24\)+\(25\)+\(27\)+\(31\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(32\)+\(26\)+\(27\)+\(33\) |
6005.2.a |
$47.950$ |
\( \chi_{6005}(1, \cdot) \) |
$1$ |
$401$ |
\(1\)+\(1\)+\(4\)+\(83\)+\(88\)+\(111\)+\(113\) |
\(87\)+\(113\)+\(113\)+\(88\) |
6006.2.a |
$47.958$ |
\( \chi_{6006}(1, \cdot) \) |
$1$ |
$119$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(7\) |
\(3\)+\(4\)+\(4\)+\(4\)+\(4\)+\(4\)+\(3\)+\(4\)+\(5\)+\(1\)+\(4\)+\(5\)+\(3\)+\(6\)+\(4\)+\(2\)+\(4\)+\(4\)+\(4\)+\(3\)+\(2\)+\(5\)+\(6\)+\(2\)+\(4\)+\(5\)+\(4\)+\(2\)+\(5\)+\(1\)+\(1\)+\(7\) |
6007.2.a |
$47.966$ |
\( \chi_{6007}(1, \cdot) \) |
$1$ |
$500$ |
\(2\)+\(237\)+\(261\) |
\(237\)+\(263\) |
6008.2.a |
$47.974$ |
\( \chi_{6008}(1, \cdot) \) |
$1$ |
$188$ |
\(1\)+\(44\)+\(44\)+\(49\)+\(50\) |
\(44\)+\(50\)+\(50\)+\(44\) |
6009.2.a |
$47.982$ |
\( \chi_{6009}(1, \cdot) \) |
$1$ |
$333$ |
\(74\)+\(74\)+\(92\)+\(93\) |
\(74\)+\(93\)+\(92\)+\(74\) |
6010.2.a |
$47.990$ |
\( \chi_{6010}(1, \cdot) \) |
$1$ |
$199$ |
\(1\)+\(1\)+\(16\)+\(21\)+\(21\)+\(22\)+\(27\)+\(28\)+\(29\)+\(33\) |
\(29\)+\(21\)+\(27\)+\(23\)+\(28\)+\(22\)+\(16\)+\(33\) |
6011.2.a |
$47.998$ |
\( \chi_{6011}(1, \cdot) \) |
$1$ |
$501$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(221\)+\(275\) |
\(224\)+\(277\) |
6012.2.a |
$48.006$ |
\( \chi_{6012}(1, \cdot) \) |
$1$ |
$68$ |
\(2\)+\(3\)+\(3\)+\(5\)+\(5\)+\(5\)+\(7\)+\(9\)+\(9\)+\(10\)+\(10\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(13\)+\(21\)+\(21\) |
6012.2.h |
$48.006$ |
\( \chi_{6012}(3005, \cdot) \) |
$2$ |
$56$ |
\(56\) |
|
6013.2.a |
$48.014$ |
\( \chi_{6013}(1, \cdot) \) |
$1$ |
$429$ |
\(1\)+\(1\)+\(104\)+\(104\)+\(109\)+\(110\) |
\(104\)+\(111\)+\(110\)+\(104\) |
6014.2.a |
$48.022$ |
\( \chi_{6014}(1, \cdot) \) |
$1$ |
$239$ |
\(1\)+\(1\)+\(2\)+\(5\)+\(21\)+\(22\)+\(26\)+\(26\)+\(28\)+\(32\)+\(37\)+\(38\) |
\(26\)+\(34\)+\(38\)+\(22\)+\(33\)+\(27\)+\(21\)+\(38\) |
6015.2.a |
$48.030$ |
\( \chi_{6015}(1, \cdot) \) |
$1$ |
$267$ |
\(2\)+\(23\)+\(28\)+\(29\)+\(31\)+\(36\)+\(36\)+\(39\)+\(43\) |
\(36\)+\(31\)+\(36\)+\(29\)+\(39\)+\(28\)+\(23\)+\(45\) |
6016.2.a |
$48.038$ |
\( \chi_{6016}(1, \cdot) \) |
$1$ |
$184$ |
\(1\)+\(\cdots\)+\(1\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(\cdots\)+\(10\)+\(13\)+\(\cdots\)+\(13\)+\(14\)+\(\cdots\)+\(14\) |
\(43\)+\(51\)+\(49\)+\(41\) |
6017.2.a |
$48.046$ |
\( \chi_{6017}(1, \cdot) \) |
$1$ |
$455$ |
\(1\)+\(1\)+\(106\)+\(107\)+\(119\)+\(121\) |
\(107\)+\(122\)+\(120\)+\(106\) |
6018.2.a |
$48.054$ |
\( \chi_{6018}(1, \cdot) \) |
$1$ |
$153$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\) |
\(10\)+\(9\)+\(11\)+\(9\)+\(8\)+\(11\)+\(9\)+\(9\)+\(11\)+\(8\)+\(6\)+\(14\)+\(7\)+\(12\)+\(14\)+\(5\) |
6019.2.a |
$48.062$ |
\( \chi_{6019}(1, \cdot) \) |
$1$ |
$463$ |
\(1\)+\(101\)+\(108\)+\(123\)+\(130\) |
\(108\)+\(123\)+\(130\)+\(102\) |
6020.2.a |
$48.070$ |
\( \chi_{6020}(1, \cdot) \) |
$1$ |
$84$ |
\(1\)+\(1\)+\(1\)+\(7\)+\(7\)+\(8\)+\(9\)+\(12\)+\(12\)+\(13\)+\(13\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(7\)+\(9\)+\(13\)+\(9\)+\(13\)+\(13\)+\(7\) |
6021.2.a |
$48.078$ |
\( \chi_{6021}(1, \cdot) \) |
$1$ |
$296$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(10\)+\(30\)+\(30\)+\(30\)+\(35\)+\(\cdots\)+\(35\)+\(40\) |
\(71\)+\(77\)+\(77\)+\(71\) |
6022.2.a |
$48.086$ |
\( \chi_{6022}(1, \cdot) \) |
$1$ |
$250$ |
\(3\)+\(54\)+\(61\)+\(64\)+\(68\) |
\(64\)+\(61\)+\(71\)+\(54\) |
6023.2.a |
$48.094$ |
\( \chi_{6023}(1, \cdot) \) |
$1$ |
$475$ |
\(98\)+\(99\)+\(138\)+\(140\) |
\(99\)+\(140\)+\(138\)+\(98\) |
6024.2.a |
$48.102$ |
\( \chi_{6024}(1, \cdot) \) |
$1$ |
$124$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(8\)+\(11\)+\(11\)+\(14\)+\(14\)+\(14\)+\(18\)+\(20\) |
\(15\)+\(16\)+\(20\)+\(12\)+\(14\)+\(16\)+\(13\)+\(18\) |
6025.2.a |
$48.110$ |
\( \chi_{6025}(1, \cdot) \) |
$1$ |
$380$ |
\(2\)+\(\cdots\)+\(2\)+\(5\)+\(7\)+\(11\)+\(12\)+\(15\)+\(25\)+\(25\)+\(40\)+\(\cdots\)+\(40\)+\(46\)+\(66\) |
\(87\)+\(93\)+\(106\)+\(94\) |
6026.2.a |
$48.118$ |
\( \chi_{6026}(1, \cdot) \) |
$1$ |
$241$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(20\)+\(21\)+\(24\)+\(25\)+\(33\)+\(35\)+\(36\)+\(41\) |
\(25\)+\(36\)+\(34\)+\(25\)+\(37\)+\(23\)+\(20\)+\(41\) |
6027.2.a |
$48.126$ |
\( \chi_{6027}(1, \cdot) \) |
$1$ |
$274$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(10\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(16\)+\(16\)+\(24\)+\(24\) |
\(30\)+\(38\)+\(37\)+\(31\)+\(37\)+\(29\)+\(33\)+\(39\) |
6028.2.a |
$48.134$ |
\( \chi_{6028}(1, \cdot) \) |
$1$ |
$112$ |
\(2\)+\(2\)+\(25\)+\(27\)+\(27\)+\(29\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(27\)+\(29\)+\(25\)+\(31\) |
6029.2.a |
$48.142$ |
\( \chi_{6029}(1, \cdot) \) |
$1$ |
$502$ |
\(234\)+\(268\) |
\(234\)+\(268\) |
6030.2.a |
$48.150$ |
\( \chi_{6030}(1, \cdot) \) |
$1$ |
$110$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(4\)+\(5\)+\(5\)+\(8\)+\(8\) |
\(4\)+\(8\)+\(6\)+\(4\)+\(9\)+\(7\)+\(8\)+\(9\)+\(6\)+\(4\)+\(4\)+\(8\)+\(8\)+\(9\)+\(9\)+\(7\) |
6030.2.d |
$48.150$ |
\( \chi_{6030}(2411, \cdot) \) |
$2$ |
$96$ |
\(2\)+\(\cdots\)+\(2\)+\(16\)+\(16\)+\(24\)+\(24\) |
|
6031.2.a |
$48.158$ |
\( \chi_{6031}(1, \cdot) \) |
$1$ |
$487$ |
\(1\)+\(109\)+\(110\)+\(133\)+\(134\) |
\(110\)+\(133\)+\(135\)+\(109\) |
6032.2.a |
$48.166$ |
\( \chi_{6032}(1, \cdot) \) |
$1$ |
$168$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\) |
\(19\)+\(23\)+\(23\)+\(19\)+\(23\)+\(19\)+\(19\)+\(23\) |
6033.2.a |
$48.174$ |
\( \chi_{6033}(1, \cdot) \) |
$1$ |
$335$ |
\(1\)+\(71\)+\(82\)+\(84\)+\(97\) |
\(84\)+\(83\)+\(97\)+\(71\) |
6034.2.a |
$48.182$ |
\( \chi_{6034}(1, \cdot) \) |
$1$ |
$215$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(20\)+\(20\)+\(21\)+\(24\)+\(25\)+\(27\)+\(31\)+\(31\) |
\(28\)+\(25\)+\(27\)+\(26\)+\(32\)+\(23\)+\(21\)+\(33\) |
6035.2.a |
$48.190$ |
\( \chi_{6035}(1, \cdot) \) |
$1$ |
$375$ |
\(36\)+\(36\)+\(44\)+\(44\)+\(49\)+\(49\)+\(58\)+\(59\) |
\(44\)+\(49\)+\(49\)+\(44\)+\(59\)+\(36\)+\(36\)+\(58\) |
6036.2.a |
$48.198$ |
\( \chi_{6036}(1, \cdot) \) |
$1$ |
$84$ |
\(1\)+\(\cdots\)+\(1\)+\(14\)+\(15\)+\(24\)+\(26\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(26\)+\(16\)+\(16\)+\(26\) |
6037.2.a |
$48.206$ |
\( \chi_{6037}(1, \cdot) \) |
$1$ |
$502$ |
\(243\)+\(259\) |
\(243\)+\(259\) |
6038.2.a |
$48.214$ |
\( \chi_{6038}(1, \cdot) \) |
$1$ |
$252$ |
\(2\)+\(54\)+\(57\)+\(69\)+\(70\) |
\(57\)+\(69\)+\(72\)+\(54\) |
6039.2.a |
$48.222$ |
\( \chi_{6039}(1, \cdot) \) |
$1$ |
$250$ |
\(5\)+\(6\)+\(11\)+\(11\)+\(12\)+\(12\)+\(13\)+\(13\)+\(13\)+\(14\)+\(19\)+\(21\)+\(25\)+\(\cdots\)+\(25\) |
\(25\)+\(25\)+\(25\)+\(25\)+\(44\)+\(29\)+\(31\)+\(46\) |
6040.2.a |
$48.230$ |
\( \chi_{6040}(1, \cdot) \) |
$1$ |
$150$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(12\)+\(13\)+\(15\)+\(19\)+\(23\)+\(23\)+\(24\) |
\(24\)+\(14\)+\(16\)+\(20\)+\(23\)+\(15\)+\(12\)+\(26\) |
6041.2.a |
$48.238$ |
\( \chi_{6041}(1, \cdot) \) |
$1$ |
$431$ |
\(1\)+\(2\)+\(83\)+\(101\)+\(112\)+\(132\) |
\(103\)+\(112\)+\(133\)+\(83\) |
6042.2.a |
$48.246$ |
\( \chi_{6042}(1, \cdot) \) |
$1$ |
$157$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\) |
\(12\)+\(9\)+\(6\)+\(12\)+\(11\)+\(8\)+\(7\)+\(13\)+\(10\)+\(9\)+\(11\)+\(9\)+\(7\)+\(14\)+\(14\)+\(5\) |
6043.2.a |
$48.254$ |
\( \chi_{6043}(1, \cdot) \) |
$1$ |
$503$ |
\(1\)+\(243\)+\(259\) |
\(243\)+\(260\) |
6044.2.a |
$48.262$ |
\( \chi_{6044}(1, \cdot) \) |
$1$ |
$126$ |
\(63\)+\(63\) |
\(0\)+\(0\)+\(63\)+\(63\) |
6045.2.a |
$48.270$ |
\( \chi_{6045}(1, \cdot) \) |
$1$ |
$241$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(5\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(15\)+\(16\)+\(17\)+\(18\) |
\(13\)+\(19\)+\(16\)+\(12\)+\(14\)+\(14\)+\(15\)+\(17\)+\(15\)+\(13\)+\(16\)+\(16\)+\(14\)+\(18\)+\(17\)+\(12\) |
6046.2.a |
$48.278$ |
\( \chi_{6046}(1, \cdot) \) |
$1$ |
$251$ |
\(1\)+\(1\)+\(2\)+\(55\)+\(56\)+\(67\)+\(69\) |
\(56\)+\(70\)+\(69\)+\(56\) |
6047.2.a |
$48.286$ |
\( \chi_{6047}(1, \cdot) \) |
$1$ |
$504$ |
\(217\)+\(287\) |
\(217\)+\(287\) |
6048.2.a |
$48.294$ |
\( \chi_{6048}(1, \cdot) \) |
$1$ |
$96$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\) |
\(11\)+\(13\)+\(13\)+\(11\)+\(13\)+\(11\)+\(11\)+\(13\) |