| 6001.2.a |
\(47.918226253\) |
\( \chi_{ 6001 }(1, \cdot) \) |
\(1\) |
\(469\) |
\(113\)+\(114\)+\(121\)+\(121\) |
\(113\)+\(121\)+\(121\)+\(114\) |
| 6002.2.a |
\(47.9262112932\) |
\( \chi_{ 6002 }(1, \cdot) \) |
\(1\) |
\(251\) |
\(47\)+\(56\)+\(69\)+\(79\) |
\(56\)+\(69\)+\(79\)+\(47\) |
| 6003.2.a |
\(47.9341963334\) |
\( \chi_{ 6003 }(1, \cdot) \) |
\(1\) |
\(258\) |
\(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(5\)+\(7\)+\(7\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\)+\(16\)+\(16\)+\(20\)+\(22\)+\(22\)+\(30\)+\(30\) |
\(22\)+\(30\)+\(30\)+\(22\)+\(39\)+\(38\)+\(35\)+\(42\) |
| 6004.2.a |
\(47.9421813736\) |
\( \chi_{ 6004 }(1, \cdot) \) |
\(1\) |
\(118\) |
\(1\)+\(1\)+\(1\)+\(8\)+\(24\)+\(25\)+\(27\)+\(31\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(32\)+\(26\)+\(27\)+\(33\) |
| 6005.2.a |
\(47.9501664138\) |
\( \chi_{ 6005 }(1, \cdot) \) |
\(1\) |
\(401\) |
\(1\)+\(1\)+\(4\)+\(83\)+\(88\)+\(111\)+\(113\) |
\(87\)+\(113\)+\(113\)+\(88\) |
| 6006.2.a |
\(47.958151454\) |
\( \chi_{ 6006 }(1, \cdot) \) |
\(1\) |
\(119\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(7\) |
\(3\)+\(4\)+\(4\)+\(4\)+\(4\)+\(4\)+\(3\)+\(4\)+\(5\)+\(1\)+\(4\)+\(5\)+\(3\)+\(6\)+\(4\)+\(2\)+\(4\)+\(4\)+\(4\)+\(3\)+\(2\)+\(5\)+\(6\)+\(2\)+\(4\)+\(5\)+\(4\)+\(2\)+\(5\)+\(1\)+\(1\)+\(7\) |
| 6007.2.a |
\(47.9661364942\) |
\( \chi_{ 6007 }(1, \cdot) \) |
\(1\) |
\(500\) |
\(2\)+\(237\)+\(261\) |
\(237\)+\(263\) |
| 6008.2.a |
\(47.9741215344\) |
\( \chi_{ 6008 }(1, \cdot) \) |
\(1\) |
\(188\) |
\(1\)+\(44\)+\(44\)+\(49\)+\(50\) |
\(44\)+\(50\)+\(50\)+\(44\) |
| 6009.2.a |
\(47.9821065746\) |
\( \chi_{ 6009 }(1, \cdot) \) |
\(1\) |
\(333\) |
\(74\)+\(74\)+\(92\)+\(93\) |
\(74\)+\(93\)+\(92\)+\(74\) |
| 6010.2.a |
\(47.9900916148\) |
\( \chi_{ 6010 }(1, \cdot) \) |
\(1\) |
\(199\) |
\(1\)+\(1\)+\(16\)+\(21\)+\(21\)+\(22\)+\(27\)+\(28\)+\(29\)+\(33\) |
\(29\)+\(21\)+\(27\)+\(23\)+\(28\)+\(22\)+\(16\)+\(33\) |
| 6011.2.a |
\(47.998076655\) |
\( \chi_{ 6011 }(1, \cdot) \) |
\(1\) |
\(501\) |
\(1\)+\(1\)+\(1\)+\(2\)+\(221\)+\(275\) |
\(224\)+\(277\) |
| 6012.2.a |
\(48.0060616952\) |
\( \chi_{ 6012 }(1, \cdot) \) |
\(1\) |
\(68\) |
\(2\)+\(3\)+\(3\)+\(5\)+\(5\)+\(5\)+\(7\)+\(9\)+\(9\)+\(10\)+\(10\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(13\)+\(21\)+\(21\) |
| 6012.2.h |
\(48.0060616952\) |
\( \chi_{ 6012 }(3005, \cdot) \) |
\(2\) |
\(56\) |
\(56\) |
|
| 6013.2.a |
\(48.0140467354\) |
\( \chi_{ 6013 }(1, \cdot) \) |
\(1\) |
\(429\) |
\(1\)+\(1\)+\(104\)+\(104\)+\(109\)+\(110\) |
\(104\)+\(111\)+\(110\)+\(104\) |
| 6014.2.a |
\(48.0220317756\) |
\( \chi_{ 6014 }(1, \cdot) \) |
\(1\) |
\(239\) |
\(1\)+\(1\)+\(2\)+\(5\)+\(21\)+\(22\)+\(26\)+\(26\)+\(28\)+\(32\)+\(37\)+\(38\) |
\(26\)+\(34\)+\(38\)+\(22\)+\(33\)+\(27\)+\(21\)+\(38\) |
| 6015.2.a |
\(48.0300168158\) |
\( \chi_{ 6015 }(1, \cdot) \) |
\(1\) |
\(267\) |
\(2\)+\(23\)+\(28\)+\(29\)+\(31\)+\(36\)+\(36\)+\(39\)+\(43\) |
\(36\)+\(31\)+\(36\)+\(29\)+\(39\)+\(28\)+\(23\)+\(45\) |
| 6016.2.a |
\(48.038001856\) |
\( \chi_{ 6016 }(1, \cdot) \) |
\(1\) |
\(184\) |
\(1\)+\(\cdots\)+\(1\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(\cdots\)+\(10\)+\(13\)+\(\cdots\)+\(13\)+\(14\)+\(\cdots\)+\(14\) |
\(43\)+\(51\)+\(49\)+\(41\) |
| 6017.2.a |
\(48.0459868962\) |
\( \chi_{ 6017 }(1, \cdot) \) |
\(1\) |
\(455\) |
\(1\)+\(1\)+\(106\)+\(107\)+\(119\)+\(121\) |
\(107\)+\(122\)+\(120\)+\(106\) |
| 6018.2.a |
\(48.0539719364\) |
\( \chi_{ 6018 }(1, \cdot) \) |
\(1\) |
\(153\) |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\) |
\(10\)+\(9\)+\(11\)+\(9\)+\(8\)+\(11\)+\(9\)+\(9\)+\(11\)+\(8\)+\(6\)+\(14\)+\(7\)+\(12\)+\(14\)+\(5\) |
| 6019.2.a |
\(48.0619569766\) |
\( \chi_{ 6019 }(1, \cdot) \) |
\(1\) |
\(463\) |
\(1\)+\(101\)+\(108\)+\(123\)+\(130\) |
\(108\)+\(123\)+\(130\)+\(102\) |
| 6020.2.a |
\(48.0699420168\) |
\( \chi_{ 6020 }(1, \cdot) \) |
\(1\) |
\(84\) |
\(1\)+\(1\)+\(1\)+\(7\)+\(7\)+\(8\)+\(9\)+\(12\)+\(12\)+\(13\)+\(13\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(7\)+\(9\)+\(13\)+\(9\)+\(13\)+\(13\)+\(7\) |
| 6021.2.a |
\(48.077927057\) |
\( \chi_{ 6021 }(1, \cdot) \) |
\(1\) |
\(296\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(10\)+\(30\)+\(30\)+\(30\)+\(35\)+\(\cdots\)+\(35\)+\(40\) |
\(71\)+\(77\)+\(77\)+\(71\) |
| 6022.2.a |
\(48.0859120972\) |
\( \chi_{ 6022 }(1, \cdot) \) |
\(1\) |
\(250\) |
\(3\)+\(54\)+\(61\)+\(64\)+\(68\) |
\(64\)+\(61\)+\(71\)+\(54\) |
| 6023.2.a |
\(48.0938971374\) |
\( \chi_{ 6023 }(1, \cdot) \) |
\(1\) |
\(475\) |
\(98\)+\(99\)+\(138\)+\(140\) |
\(99\)+\(140\)+\(138\)+\(98\) |
| 6024.2.a |
\(48.1018821776\) |
\( \chi_{ 6024 }(1, \cdot) \) |
\(1\) |
\(124\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(8\)+\(11\)+\(11\)+\(14\)+\(14\)+\(14\)+\(18\)+\(20\) |
\(15\)+\(16\)+\(20\)+\(12\)+\(14\)+\(16\)+\(13\)+\(18\) |
| 6025.2.a |
\(48.1098672178\) |
\( \chi_{ 6025 }(1, \cdot) \) |
\(1\) |
\(380\) |
\(2\)+\(\cdots\)+\(2\)+\(5\)+\(7\)+\(11\)+\(12\)+\(15\)+\(25\)+\(25\)+\(40\)+\(\cdots\)+\(40\)+\(46\)+\(66\) |
\(87\)+\(93\)+\(106\)+\(94\) |
| 6026.2.a |
\(48.117852258\) |
\( \chi_{ 6026 }(1, \cdot) \) |
\(1\) |
\(241\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(20\)+\(21\)+\(24\)+\(25\)+\(33\)+\(35\)+\(36\)+\(41\) |
\(25\)+\(36\)+\(34\)+\(25\)+\(37\)+\(23\)+\(20\)+\(41\) |
| 6027.2.a |
\(48.1258372982\) |
\( \chi_{ 6027 }(1, \cdot) \) |
\(1\) |
\(274\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(10\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(16\)+\(16\)+\(24\)+\(24\) |
\(30\)+\(38\)+\(37\)+\(31\)+\(37\)+\(29\)+\(33\)+\(39\) |
| 6028.2.a |
\(48.1338223384\) |
\( \chi_{ 6028 }(1, \cdot) \) |
\(1\) |
\(112\) |
\(2\)+\(2\)+\(25\)+\(27\)+\(27\)+\(29\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(27\)+\(29\)+\(25\)+\(31\) |
| 6029.2.a |
\(48.1418073786\) |
\( \chi_{ 6029 }(1, \cdot) \) |
\(1\) |
\(502\) |
\(234\)+\(268\) |
\(234\)+\(268\) |
| 6030.2.a |
\(48.1497924188\) |
\( \chi_{ 6030 }(1, \cdot) \) |
\(1\) |
\(110\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(4\)+\(5\)+\(5\)+\(8\)+\(8\) |
\(4\)+\(8\)+\(6\)+\(4\)+\(9\)+\(7\)+\(8\)+\(9\)+\(6\)+\(4\)+\(4\)+\(8\)+\(8\)+\(9\)+\(9\)+\(7\) |
| 6030.2.d |
\(48.1497924188\) |
\( \chi_{ 6030 }(2411, \cdot) \) |
\(2\) |
\(96\) |
\(2\)+\(\cdots\)+\(2\)+\(16\)+\(16\)+\(24\)+\(24\) |
|
| 6031.2.a |
\(48.157777459\) |
\( \chi_{ 6031 }(1, \cdot) \) |
\(1\) |
\(487\) |
\(1\)+\(109\)+\(110\)+\(133\)+\(134\) |
\(110\)+\(133\)+\(135\)+\(109\) |
| 6032.2.a |
\(48.1657624992\) |
\( \chi_{ 6032 }(1, \cdot) \) |
\(1\) |
\(168\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\) |
\(19\)+\(23\)+\(23\)+\(19\)+\(23\)+\(19\)+\(19\)+\(23\) |
| 6033.2.a |
\(48.1737475394\) |
\( \chi_{ 6033 }(1, \cdot) \) |
\(1\) |
\(335\) |
\(1\)+\(71\)+\(82\)+\(84\)+\(97\) |
\(84\)+\(83\)+\(97\)+\(71\) |
| 6034.2.a |
\(48.1817325796\) |
\( \chi_{ 6034 }(1, \cdot) \) |
\(1\) |
\(215\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(20\)+\(20\)+\(21\)+\(24\)+\(25\)+\(27\)+\(31\)+\(31\) |
\(28\)+\(25\)+\(27\)+\(26\)+\(32\)+\(23\)+\(21\)+\(33\) |
| 6035.2.a |
\(48.1897176198\) |
\( \chi_{ 6035 }(1, \cdot) \) |
\(1\) |
\(375\) |
\(36\)+\(36\)+\(44\)+\(44\)+\(49\)+\(49\)+\(58\)+\(59\) |
\(44\)+\(49\)+\(49\)+\(44\)+\(59\)+\(36\)+\(36\)+\(58\) |
| 6036.2.a |
\(48.19770266\) |
\( \chi_{ 6036 }(1, \cdot) \) |
\(1\) |
\(84\) |
\(1\)+\(\cdots\)+\(1\)+\(14\)+\(15\)+\(24\)+\(26\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(26\)+\(16\)+\(16\)+\(26\) |
| 6037.2.a |
\(48.2056877002\) |
\( \chi_{ 6037 }(1, \cdot) \) |
\(1\) |
\(502\) |
\(243\)+\(259\) |
\(243\)+\(259\) |
| 6038.2.a |
\(48.2136727404\) |
\( \chi_{ 6038 }(1, \cdot) \) |
\(1\) |
\(252\) |
\(2\)+\(54\)+\(57\)+\(69\)+\(70\) |
\(57\)+\(69\)+\(72\)+\(54\) |
| 6039.2.a |
\(48.2216577807\) |
\( \chi_{ 6039 }(1, \cdot) \) |
\(1\) |
\(250\) |
\(5\)+\(6\)+\(11\)+\(11\)+\(12\)+\(12\)+\(13\)+\(13\)+\(13\)+\(14\)+\(19\)+\(21\)+\(25\)+\(\cdots\)+\(25\) |
\(25\)+\(25\)+\(25\)+\(25\)+\(44\)+\(29\)+\(31\)+\(46\) |
| 6040.2.a |
\(48.2296428209\) |
\( \chi_{ 6040 }(1, \cdot) \) |
\(1\) |
\(150\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(12\)+\(13\)+\(15\)+\(19\)+\(23\)+\(23\)+\(24\) |
\(24\)+\(14\)+\(16\)+\(20\)+\(23\)+\(15\)+\(12\)+\(26\) |
| 6041.2.a |
\(48.2376278611\) |
\( \chi_{ 6041 }(1, \cdot) \) |
\(1\) |
\(431\) |
\(1\)+\(2\)+\(83\)+\(101\)+\(112\)+\(132\) |
\(103\)+\(112\)+\(133\)+\(83\) |
| 6042.2.a |
\(48.2456129013\) |
\( \chi_{ 6042 }(1, \cdot) \) |
\(1\) |
\(157\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\) |
\(12\)+\(9\)+\(6\)+\(12\)+\(11\)+\(8\)+\(7\)+\(13\)+\(10\)+\(9\)+\(11\)+\(9\)+\(7\)+\(14\)+\(14\)+\(5\) |
| 6043.2.a |
\(48.2535979415\) |
\( \chi_{ 6043 }(1, \cdot) \) |
\(1\) |
\(503\) |
\(1\)+\(243\)+\(259\) |
\(243\)+\(260\) |
| 6044.2.a |
\(48.2615829817\) |
\( \chi_{ 6044 }(1, \cdot) \) |
\(1\) |
\(126\) |
\(63\)+\(63\) |
\(0\)+\(0\)+\(63\)+\(63\) |
| 6045.2.a |
\(48.2695680219\) |
\( \chi_{ 6045 }(1, \cdot) \) |
\(1\) |
\(241\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(5\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(15\)+\(16\)+\(17\)+\(18\) |
\(13\)+\(19\)+\(16\)+\(12\)+\(14\)+\(14\)+\(15\)+\(17\)+\(15\)+\(13\)+\(16\)+\(16\)+\(14\)+\(18\)+\(17\)+\(12\) |
| 6046.2.a |
\(48.2775530621\) |
\( \chi_{ 6046 }(1, \cdot) \) |
\(1\) |
\(251\) |
\(1\)+\(1\)+\(2\)+\(55\)+\(56\)+\(67\)+\(69\) |
\(56\)+\(70\)+\(69\)+\(56\) |
| 6047.2.a |
\(48.2855381023\) |
\( \chi_{ 6047 }(1, \cdot) \) |
\(1\) |
\(504\) |
\(217\)+\(287\) |
\(217\)+\(287\) |
| 6048.2.a |
\(48.2935231425\) |
\( \chi_{ 6048 }(1, \cdot) \) |
\(1\) |
\(96\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\) |
\(11\)+\(13\)+\(13\)+\(11\)+\(13\)+\(11\)+\(11\)+\(13\) |