6001.2.a |
\(47.918226252970356\) |
\( \chi_{ 6001 }(1, \cdot) \) |
\(1\) |
\(469\) |
\(113\)+\(114\)+\(121\)+\(121\) |
\(113\)+\(121\)+\(121\)+\(114\) |
6002.2.a |
\(47.926211293172486\) |
\( \chi_{ 6002 }(1, \cdot) \) |
\(1\) |
\(251\) |
\(47\)+\(56\)+\(69\)+\(79\) |
\(56\)+\(69\)+\(79\)+\(47\) |
6003.2.a |
\(47.934196333374615\) |
\( \chi_{ 6003 }(1, \cdot) \) |
\(1\) |
\(258\) |
\(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(5\)+\(7\)+\(7\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\)+\(16\)+\(16\)+\(20\)+\(22\)+\(22\)+\(30\)+\(30\) |
\(22\)+\(30\)+\(30\)+\(22\)+\(39\)+\(38\)+\(35\)+\(42\) |
6004.2.a |
\(47.942181373576744\) |
\( \chi_{ 6004 }(1, \cdot) \) |
\(1\) |
\(118\) |
\(1\)+\(1\)+\(1\)+\(8\)+\(24\)+\(25\)+\(27\)+\(31\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(32\)+\(26\)+\(27\)+\(33\) |
6005.2.a |
\(47.950166413778874\) |
\( \chi_{ 6005 }(1, \cdot) \) |
\(1\) |
\(401\) |
\(1\)+\(1\)+\(4\)+\(83\)+\(88\)+\(111\)+\(113\) |
\(87\)+\(113\)+\(113\)+\(88\) |
6006.2.a |
\(47.958151453980996\) |
\( \chi_{ 6006 }(1, \cdot) \) |
\(1\) |
\(119\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(7\) |
\(3\)+\(4\)+\(4\)+\(4\)+\(4\)+\(4\)+\(3\)+\(4\)+\(5\)+\(1\)+\(4\)+\(5\)+\(3\)+\(6\)+\(4\)+\(2\)+\(4\)+\(4\)+\(4\)+\(3\)+\(2\)+\(5\)+\(6\)+\(2\)+\(4\)+\(5\)+\(4\)+\(2\)+\(5\)+\(1\)+\(1\)+\(7\) |
6007.2.a |
\(47.966136494183125\) |
\( \chi_{ 6007 }(1, \cdot) \) |
\(1\) |
\(500\) |
\(2\)+\(237\)+\(261\) |
\(237\)+\(263\) |
6008.2.a |
\(47.974121534385255\) |
\( \chi_{ 6008 }(1, \cdot) \) |
\(1\) |
\(188\) |
\(1\)+\(44\)+\(44\)+\(49\)+\(50\) |
\(44\)+\(50\)+\(50\)+\(44\) |
6009.2.a |
\(47.982106574587384\) |
\( \chi_{ 6009 }(1, \cdot) \) |
\(1\) |
\(333\) |
\(74\)+\(74\)+\(92\)+\(93\) |
\(74\)+\(93\)+\(92\)+\(74\) |
6010.2.a |
\(47.99009161478951\) |
\( \chi_{ 6010 }(1, \cdot) \) |
\(1\) |
\(199\) |
\(1\)+\(1\)+\(16\)+\(21\)+\(21\)+\(22\)+\(27\)+\(28\)+\(29\)+\(33\) |
\(29\)+\(21\)+\(27\)+\(23\)+\(28\)+\(22\)+\(16\)+\(33\) |
6011.2.a |
\(47.998076654991635\) |
\( \chi_{ 6011 }(1, \cdot) \) |
\(1\) |
\(501\) |
\(1\)+\(1\)+\(1\)+\(2\)+\(221\)+\(275\) |
\(224\)+\(277\) |
6012.2.a |
\(48.006061695193765\) |
\( \chi_{ 6012 }(1, \cdot) \) |
\(1\) |
\(68\) |
\(2\)+\(3\)+\(3\)+\(5\)+\(5\)+\(5\)+\(7\)+\(9\)+\(9\)+\(10\)+\(10\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(13\)+\(21\)+\(21\) |
6012.2.h |
\(48.006061695193765\) |
\( \chi_{ 6012 }(3005, \cdot) \) |
\(2\) |
\(56\) |
\(56\) |
|
6013.2.a |
\(48.014046735395894\) |
\( \chi_{ 6013 }(1, \cdot) \) |
\(1\) |
\(429\) |
\(1\)+\(1\)+\(104\)+\(104\)+\(109\)+\(110\) |
\(104\)+\(111\)+\(110\)+\(104\) |
6014.2.a |
\(48.02203177559802\) |
\( \chi_{ 6014 }(1, \cdot) \) |
\(1\) |
\(239\) |
\(1\)+\(1\)+\(2\)+\(5\)+\(21\)+\(22\)+\(26\)+\(26\)+\(28\)+\(32\)+\(37\)+\(38\) |
\(26\)+\(34\)+\(38\)+\(22\)+\(33\)+\(27\)+\(21\)+\(38\) |
6015.2.a |
\(48.03001681580015\) |
\( \chi_{ 6015 }(1, \cdot) \) |
\(1\) |
\(267\) |
\(2\)+\(23\)+\(28\)+\(29\)+\(31\)+\(36\)+\(36\)+\(39\)+\(43\) |
\(36\)+\(31\)+\(36\)+\(29\)+\(39\)+\(28\)+\(23\)+\(45\) |
6016.2.a |
\(48.03800185600228\) |
\( \chi_{ 6016 }(1, \cdot) \) |
\(1\) |
\(184\) |
\(1\)+\(\cdots\)+\(1\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(\cdots\)+\(10\)+\(13\)+\(\cdots\)+\(13\)+\(14\)+\(\cdots\)+\(14\) |
\(43\)+\(51\)+\(49\)+\(41\) |
6017.2.a |
\(48.045986896204404\) |
\( \chi_{ 6017 }(1, \cdot) \) |
\(1\) |
\(455\) |
\(1\)+\(1\)+\(106\)+\(107\)+\(119\)+\(121\) |
\(107\)+\(122\)+\(120\)+\(106\) |
6018.2.a |
\(48.05397193640653\) |
\( \chi_{ 6018 }(1, \cdot) \) |
\(1\) |
\(153\) |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\) |
\(10\)+\(9\)+\(11\)+\(9\)+\(8\)+\(11\)+\(9\)+\(9\)+\(11\)+\(8\)+\(6\)+\(14\)+\(7\)+\(12\)+\(14\)+\(5\) |
6019.2.a |
\(48.06195697660866\) |
\( \chi_{ 6019 }(1, \cdot) \) |
\(1\) |
\(463\) |
\(1\)+\(101\)+\(108\)+\(123\)+\(130\) |
\(108\)+\(123\)+\(130\)+\(102\) |
6020.2.a |
\(48.06994201681079\) |
\( \chi_{ 6020 }(1, \cdot) \) |
\(1\) |
\(84\) |
\(1\)+\(1\)+\(1\)+\(7\)+\(7\)+\(8\)+\(9\)+\(12\)+\(12\)+\(13\)+\(13\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(7\)+\(9\)+\(13\)+\(9\)+\(13\)+\(13\)+\(7\) |
6021.2.a |
\(48.07792705701292\) |
\( \chi_{ 6021 }(1, \cdot) \) |
\(1\) |
\(296\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(10\)+\(30\)+\(30\)+\(30\)+\(35\)+\(\cdots\)+\(35\)+\(40\) |
\(71\)+\(77\)+\(77\)+\(71\) |
6022.2.a |
\(48.08591209721505\) |
\( \chi_{ 6022 }(1, \cdot) \) |
\(1\) |
\(250\) |
\(3\)+\(54\)+\(61\)+\(64\)+\(68\) |
\(64\)+\(61\)+\(71\)+\(54\) |
6023.2.a |
\(48.09389713741717\) |
\( \chi_{ 6023 }(1, \cdot) \) |
\(1\) |
\(475\) |
\(98\)+\(99\)+\(138\)+\(140\) |
\(99\)+\(140\)+\(138\)+\(98\) |
6024.2.a |
\(48.1018821776193\) |
\( \chi_{ 6024 }(1, \cdot) \) |
\(1\) |
\(124\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(8\)+\(11\)+\(11\)+\(14\)+\(14\)+\(14\)+\(18\)+\(20\) |
\(15\)+\(16\)+\(20\)+\(12\)+\(14\)+\(16\)+\(13\)+\(18\) |
6025.2.a |
\(48.10986721782143\) |
\( \chi_{ 6025 }(1, \cdot) \) |
\(1\) |
\(380\) |
\(2\)+\(\cdots\)+\(2\)+\(5\)+\(7\)+\(11\)+\(12\)+\(15\)+\(25\)+\(25\)+\(40\)+\(\cdots\)+\(40\)+\(46\)+\(66\) |
\(87\)+\(93\)+\(106\)+\(94\) |
6026.2.a |
\(48.11785225802356\) |
\( \chi_{ 6026 }(1, \cdot) \) |
\(1\) |
\(241\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(20\)+\(21\)+\(24\)+\(25\)+\(33\)+\(35\)+\(36\)+\(41\) |
\(25\)+\(36\)+\(34\)+\(25\)+\(37\)+\(23\)+\(20\)+\(41\) |
6027.2.a |
\(48.12583729822569\) |
\( \chi_{ 6027 }(1, \cdot) \) |
\(1\) |
\(274\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(10\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(16\)+\(16\)+\(24\)+\(24\) |
\(30\)+\(38\)+\(37\)+\(31\)+\(37\)+\(29\)+\(33\)+\(39\) |
6028.2.a |
\(48.13382233842781\) |
\( \chi_{ 6028 }(1, \cdot) \) |
\(1\) |
\(112\) |
\(2\)+\(2\)+\(25\)+\(27\)+\(27\)+\(29\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(27\)+\(29\)+\(25\)+\(31\) |
6029.2.a |
\(48.14180737862994\) |
\( \chi_{ 6029 }(1, \cdot) \) |
\(1\) |
\(502\) |
\(234\)+\(268\) |
\(234\)+\(268\) |
6030.2.a |
\(48.14979241883207\) |
\( \chi_{ 6030 }(1, \cdot) \) |
\(1\) |
\(110\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(4\)+\(5\)+\(5\)+\(8\)+\(8\) |
\(4\)+\(8\)+\(6\)+\(4\)+\(9\)+\(7\)+\(8\)+\(9\)+\(6\)+\(4\)+\(4\)+\(8\)+\(8\)+\(9\)+\(9\)+\(7\) |
6030.2.d |
\(48.14979241883207\) |
\( \chi_{ 6030 }(2411, \cdot) \) |
\(2\) |
\(96\) |
\(2\)+\(\cdots\)+\(2\)+\(16\)+\(16\)+\(24\)+\(24\) |
|
6031.2.a |
\(48.1577774590342\) |
\( \chi_{ 6031 }(1, \cdot) \) |
\(1\) |
\(487\) |
\(1\)+\(109\)+\(110\)+\(133\)+\(134\) |
\(110\)+\(133\)+\(135\)+\(109\) |
6032.2.a |
\(48.16576249923633\) |
\( \chi_{ 6032 }(1, \cdot) \) |
\(1\) |
\(168\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\) |
\(19\)+\(23\)+\(23\)+\(19\)+\(23\)+\(19\)+\(19\)+\(23\) |
6033.2.a |
\(48.17374753943846\) |
\( \chi_{ 6033 }(1, \cdot) \) |
\(1\) |
\(335\) |
\(1\)+\(71\)+\(82\)+\(84\)+\(97\) |
\(84\)+\(83\)+\(97\)+\(71\) |
6034.2.a |
\(48.18173257964058\) |
\( \chi_{ 6034 }(1, \cdot) \) |
\(1\) |
\(215\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(20\)+\(20\)+\(21\)+\(24\)+\(25\)+\(27\)+\(31\)+\(31\) |
\(28\)+\(25\)+\(27\)+\(26\)+\(32\)+\(23\)+\(21\)+\(33\) |
6035.2.a |
\(48.18971761984271\) |
\( \chi_{ 6035 }(1, \cdot) \) |
\(1\) |
\(375\) |
\(36\)+\(36\)+\(44\)+\(44\)+\(49\)+\(49\)+\(58\)+\(59\) |
\(44\)+\(49\)+\(49\)+\(44\)+\(59\)+\(36\)+\(36\)+\(58\) |
6036.2.a |
\(48.19770266004484\) |
\( \chi_{ 6036 }(1, \cdot) \) |
\(1\) |
\(84\) |
\(1\)+\(\cdots\)+\(1\)+\(14\)+\(15\)+\(24\)+\(26\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(26\)+\(16\)+\(16\)+\(26\) |
6037.2.a |
\(48.20568770024697\) |
\( \chi_{ 6037 }(1, \cdot) \) |
\(1\) |
\(502\) |
\(243\)+\(259\) |
\(243\)+\(259\) |
6038.2.a |
\(48.2136727404491\) |
\( \chi_{ 6038 }(1, \cdot) \) |
\(1\) |
\(252\) |
\(2\)+\(54\)+\(57\)+\(69\)+\(70\) |
\(57\)+\(69\)+\(72\)+\(54\) |
6039.2.a |
\(48.22165778065122\) |
\( \chi_{ 6039 }(1, \cdot) \) |
\(1\) |
\(250\) |
\(5\)+\(6\)+\(11\)+\(11\)+\(12\)+\(12\)+\(13\)+\(13\)+\(13\)+\(14\)+\(19\)+\(21\)+\(25\)+\(\cdots\)+\(25\) |
\(25\)+\(25\)+\(25\)+\(25\)+\(44\)+\(29\)+\(31\)+\(46\) |
6040.2.a |
\(48.22964282085335\) |
\( \chi_{ 6040 }(1, \cdot) \) |
\(1\) |
\(150\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(12\)+\(13\)+\(15\)+\(19\)+\(23\)+\(23\)+\(24\) |
\(24\)+\(14\)+\(16\)+\(20\)+\(23\)+\(15\)+\(12\)+\(26\) |
6041.2.a |
\(48.23762786105548\) |
\( \chi_{ 6041 }(1, \cdot) \) |
\(1\) |
\(431\) |
\(1\)+\(2\)+\(83\)+\(101\)+\(112\)+\(132\) |
\(103\)+\(112\)+\(133\)+\(83\) |
6042.2.a |
\(48.24561290125761\) |
\( \chi_{ 6042 }(1, \cdot) \) |
\(1\) |
\(157\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\) |
\(12\)+\(9\)+\(6\)+\(12\)+\(11\)+\(8\)+\(7\)+\(13\)+\(10\)+\(9\)+\(11\)+\(9\)+\(7\)+\(14\)+\(14\)+\(5\) |
6043.2.a |
\(48.25359794145974\) |
\( \chi_{ 6043 }(1, \cdot) \) |
\(1\) |
\(503\) |
\(1\)+\(243\)+\(259\) |
\(243\)+\(260\) |
6044.2.a |
\(48.26158298166187\) |
\( \chi_{ 6044 }(1, \cdot) \) |
\(1\) |
\(126\) |
\(63\)+\(63\) |
\(0\)+\(0\)+\(63\)+\(63\) |
6045.2.a |
\(48.26956802186399\) |
\( \chi_{ 6045 }(1, \cdot) \) |
\(1\) |
\(241\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(5\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(15\)+\(16\)+\(17\)+\(18\) |
\(13\)+\(19\)+\(16\)+\(12\)+\(14\)+\(14\)+\(15\)+\(17\)+\(15\)+\(13\)+\(16\)+\(16\)+\(14\)+\(18\)+\(17\)+\(12\) |
6046.2.a |
\(48.27755306206612\) |
\( \chi_{ 6046 }(1, \cdot) \) |
\(1\) |
\(251\) |
\(1\)+\(1\)+\(2\)+\(55\)+\(56\)+\(67\)+\(69\) |
\(56\)+\(70\)+\(69\)+\(56\) |
6047.2.a |
\(48.28553810226825\) |
\( \chi_{ 6047 }(1, \cdot) \) |
\(1\) |
\(504\) |
\(217\)+\(287\) |
\(217\)+\(287\) |
6048.2.a |
\(48.29352314247038\) |
\( \chi_{ 6048 }(1, \cdot) \) |
\(1\) |
\(96\) |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\) |
\(11\)+\(13\)+\(13\)+\(11\)+\(13\)+\(11\)+\(11\)+\(13\) |