Learn more

Note: Search results may be incomplete due to uncomputed quantities: num_forms (558562 objects)

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label $A$ $\chi$ $\operatorname{ord}(\chi)$ Dim. Decomp. AL-dims.
6001.2.a $47.918$ \( \chi_{6001}(1, \cdot) \) $1$ $469$ \(113\)+\(114\)+\(121\)+\(121\) \(113\)+\(121\)+\(121\)+\(114\)
6002.2.a $47.926$ \( \chi_{6002}(1, \cdot) \) $1$ $251$ \(47\)+\(56\)+\(69\)+\(79\) \(56\)+\(69\)+\(79\)+\(47\)
6003.2.a $47.934$ \( \chi_{6003}(1, \cdot) \) $1$ $258$ \(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(5\)+\(7\)+\(7\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\)+\(16\)+\(16\)+\(20\)+\(22\)+\(22\)+\(30\)+\(30\) \(22\)+\(30\)+\(30\)+\(22\)+\(39\)+\(38\)+\(35\)+\(42\)
6004.2.a $47.942$ \( \chi_{6004}(1, \cdot) \) $1$ $118$ \(1\)+\(1\)+\(1\)+\(8\)+\(24\)+\(25\)+\(27\)+\(31\) \(0\)+\(0\)+\(0\)+\(0\)+\(32\)+\(26\)+\(27\)+\(33\)
6005.2.a $47.950$ \( \chi_{6005}(1, \cdot) \) $1$ $401$ \(1\)+\(1\)+\(4\)+\(83\)+\(88\)+\(111\)+\(113\) \(87\)+\(113\)+\(113\)+\(88\)
6006.2.a $47.958$ \( \chi_{6006}(1, \cdot) \) $1$ $119$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(7\) \(3\)+\(4\)+\(4\)+\(4\)+\(4\)+\(4\)+\(3\)+\(4\)+\(5\)+\(1\)+\(4\)+\(5\)+\(3\)+\(6\)+\(4\)+\(2\)+\(4\)+\(4\)+\(4\)+\(3\)+\(2\)+\(5\)+\(6\)+\(2\)+\(4\)+\(5\)+\(4\)+\(2\)+\(5\)+\(1\)+\(1\)+\(7\)
6007.2.a $47.966$ \( \chi_{6007}(1, \cdot) \) $1$ $500$ \(2\)+\(237\)+\(261\) \(237\)+\(263\)
6008.2.a $47.974$ \( \chi_{6008}(1, \cdot) \) $1$ $188$ \(1\)+\(44\)+\(44\)+\(49\)+\(50\) \(44\)+\(50\)+\(50\)+\(44\)
6009.2.a $47.982$ \( \chi_{6009}(1, \cdot) \) $1$ $333$ \(74\)+\(74\)+\(92\)+\(93\) \(74\)+\(93\)+\(92\)+\(74\)
6010.2.a $47.990$ \( \chi_{6010}(1, \cdot) \) $1$ $199$ \(1\)+\(1\)+\(16\)+\(21\)+\(21\)+\(22\)+\(27\)+\(28\)+\(29\)+\(33\) \(29\)+\(21\)+\(27\)+\(23\)+\(28\)+\(22\)+\(16\)+\(33\)
6011.2.a $47.998$ \( \chi_{6011}(1, \cdot) \) $1$ $501$ \(1\)+\(1\)+\(1\)+\(2\)+\(221\)+\(275\) \(224\)+\(277\)
6012.2.a $48.006$ \( \chi_{6012}(1, \cdot) \) $1$ $68$ \(2\)+\(3\)+\(3\)+\(5\)+\(5\)+\(5\)+\(7\)+\(9\)+\(9\)+\(10\)+\(10\) \(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(13\)+\(21\)+\(21\)
6012.2.h $48.006$ \( \chi_{6012}(3005, \cdot) \) $2$ $56$ \(56\)
6013.2.a $48.014$ \( \chi_{6013}(1, \cdot) \) $1$ $429$ \(1\)+\(1\)+\(104\)+\(104\)+\(109\)+\(110\) \(104\)+\(111\)+\(110\)+\(104\)
6014.2.a $48.022$ \( \chi_{6014}(1, \cdot) \) $1$ $239$ \(1\)+\(1\)+\(2\)+\(5\)+\(21\)+\(22\)+\(26\)+\(26\)+\(28\)+\(32\)+\(37\)+\(38\) \(26\)+\(34\)+\(38\)+\(22\)+\(33\)+\(27\)+\(21\)+\(38\)
6015.2.a $48.030$ \( \chi_{6015}(1, \cdot) \) $1$ $267$ \(2\)+\(23\)+\(28\)+\(29\)+\(31\)+\(36\)+\(36\)+\(39\)+\(43\) \(36\)+\(31\)+\(36\)+\(29\)+\(39\)+\(28\)+\(23\)+\(45\)
6016.2.a $48.038$ \( \chi_{6016}(1, \cdot) \) $1$ $184$ \(1\)+\(\cdots\)+\(1\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(\cdots\)+\(10\)+\(13\)+\(\cdots\)+\(13\)+\(14\)+\(\cdots\)+\(14\) \(43\)+\(51\)+\(49\)+\(41\)
6017.2.a $48.046$ \( \chi_{6017}(1, \cdot) \) $1$ $455$ \(1\)+\(1\)+\(106\)+\(107\)+\(119\)+\(121\) \(107\)+\(122\)+\(120\)+\(106\)
6018.2.a $48.054$ \( \chi_{6018}(1, \cdot) \) $1$ $153$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\)+\(14\) \(10\)+\(9\)+\(11\)+\(9\)+\(8\)+\(11\)+\(9\)+\(9\)+\(11\)+\(8\)+\(6\)+\(14\)+\(7\)+\(12\)+\(14\)+\(5\)
6019.2.a $48.062$ \( \chi_{6019}(1, \cdot) \) $1$ $463$ \(1\)+\(101\)+\(108\)+\(123\)+\(130\) \(108\)+\(123\)+\(130\)+\(102\)
6020.2.a $48.070$ \( \chi_{6020}(1, \cdot) \) $1$ $84$ \(1\)+\(1\)+\(1\)+\(7\)+\(7\)+\(8\)+\(9\)+\(12\)+\(12\)+\(13\)+\(13\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(13\)+\(7\)+\(9\)+\(13\)+\(9\)+\(13\)+\(13\)+\(7\)
6021.2.a $48.078$ \( \chi_{6021}(1, \cdot) \) $1$ $296$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(10\)+\(30\)+\(30\)+\(30\)+\(35\)+\(\cdots\)+\(35\)+\(40\) \(71\)+\(77\)+\(77\)+\(71\)
6022.2.a $48.086$ \( \chi_{6022}(1, \cdot) \) $1$ $250$ \(3\)+\(54\)+\(61\)+\(64\)+\(68\) \(64\)+\(61\)+\(71\)+\(54\)
6023.2.a $48.094$ \( \chi_{6023}(1, \cdot) \) $1$ $475$ \(98\)+\(99\)+\(138\)+\(140\) \(99\)+\(140\)+\(138\)+\(98\)
6024.2.a $48.102$ \( \chi_{6024}(1, \cdot) \) $1$ $124$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(8\)+\(11\)+\(11\)+\(14\)+\(14\)+\(14\)+\(18\)+\(20\) \(15\)+\(16\)+\(20\)+\(12\)+\(14\)+\(16\)+\(13\)+\(18\)
6025.2.a $48.110$ \( \chi_{6025}(1, \cdot) \) $1$ $380$ \(2\)+\(\cdots\)+\(2\)+\(5\)+\(7\)+\(11\)+\(12\)+\(15\)+\(25\)+\(25\)+\(40\)+\(\cdots\)+\(40\)+\(46\)+\(66\) \(87\)+\(93\)+\(106\)+\(94\)
6026.2.a $48.118$ \( \chi_{6026}(1, \cdot) \) $1$ $241$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(20\)+\(21\)+\(24\)+\(25\)+\(33\)+\(35\)+\(36\)+\(41\) \(25\)+\(36\)+\(34\)+\(25\)+\(37\)+\(23\)+\(20\)+\(41\)
6027.2.a $48.126$ \( \chi_{6027}(1, \cdot) \) $1$ $274$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(10\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(16\)+\(16\)+\(24\)+\(24\) \(30\)+\(38\)+\(37\)+\(31\)+\(37\)+\(29\)+\(33\)+\(39\)
6028.2.a $48.134$ \( \chi_{6028}(1, \cdot) \) $1$ $112$ \(2\)+\(2\)+\(25\)+\(27\)+\(27\)+\(29\) \(0\)+\(0\)+\(0\)+\(0\)+\(27\)+\(29\)+\(25\)+\(31\)
6029.2.a $48.142$ \( \chi_{6029}(1, \cdot) \) $1$ $502$ \(234\)+\(268\) \(234\)+\(268\)
6030.2.a $48.150$ \( \chi_{6030}(1, \cdot) \) $1$ $110$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(4\)+\(5\)+\(5\)+\(8\)+\(8\) \(4\)+\(8\)+\(6\)+\(4\)+\(9\)+\(7\)+\(8\)+\(9\)+\(6\)+\(4\)+\(4\)+\(8\)+\(8\)+\(9\)+\(9\)+\(7\)
6030.2.d $48.150$ \( \chi_{6030}(2411, \cdot) \) $2$ $96$ \(2\)+\(\cdots\)+\(2\)+\(16\)+\(16\)+\(24\)+\(24\)
6031.2.a $48.158$ \( \chi_{6031}(1, \cdot) \) $1$ $487$ \(1\)+\(109\)+\(110\)+\(133\)+\(134\) \(110\)+\(133\)+\(135\)+\(109\)
6032.2.a $48.166$ \( \chi_{6032}(1, \cdot) \) $1$ $168$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(12\)+\(13\) \(19\)+\(23\)+\(23\)+\(19\)+\(23\)+\(19\)+\(19\)+\(23\)
6033.2.a $48.174$ \( \chi_{6033}(1, \cdot) \) $1$ $335$ \(1\)+\(71\)+\(82\)+\(84\)+\(97\) \(84\)+\(83\)+\(97\)+\(71\)
6034.2.a $48.182$ \( \chi_{6034}(1, \cdot) \) $1$ $215$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(20\)+\(20\)+\(21\)+\(24\)+\(25\)+\(27\)+\(31\)+\(31\) \(28\)+\(25\)+\(27\)+\(26\)+\(32\)+\(23\)+\(21\)+\(33\)
6035.2.a $48.190$ \( \chi_{6035}(1, \cdot) \) $1$ $375$ \(36\)+\(36\)+\(44\)+\(44\)+\(49\)+\(49\)+\(58\)+\(59\) \(44\)+\(49\)+\(49\)+\(44\)+\(59\)+\(36\)+\(36\)+\(58\)
6036.2.a $48.198$ \( \chi_{6036}(1, \cdot) \) $1$ $84$ \(1\)+\(\cdots\)+\(1\)+\(14\)+\(15\)+\(24\)+\(26\) \(0\)+\(0\)+\(0\)+\(0\)+\(26\)+\(16\)+\(16\)+\(26\)
6037.2.a $48.206$ \( \chi_{6037}(1, \cdot) \) $1$ $502$ \(243\)+\(259\) \(243\)+\(259\)
6038.2.a $48.214$ \( \chi_{6038}(1, \cdot) \) $1$ $252$ \(2\)+\(54\)+\(57\)+\(69\)+\(70\) \(57\)+\(69\)+\(72\)+\(54\)
6039.2.a $48.222$ \( \chi_{6039}(1, \cdot) \) $1$ $250$ \(5\)+\(6\)+\(11\)+\(11\)+\(12\)+\(12\)+\(13\)+\(13\)+\(13\)+\(14\)+\(19\)+\(21\)+\(25\)+\(\cdots\)+\(25\) \(25\)+\(25\)+\(25\)+\(25\)+\(44\)+\(29\)+\(31\)+\(46\)
6040.2.a $48.230$ \( \chi_{6040}(1, \cdot) \) $1$ $150$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(12\)+\(13\)+\(15\)+\(19\)+\(23\)+\(23\)+\(24\) \(24\)+\(14\)+\(16\)+\(20\)+\(23\)+\(15\)+\(12\)+\(26\)
6041.2.a $48.238$ \( \chi_{6041}(1, \cdot) \) $1$ $431$ \(1\)+\(2\)+\(83\)+\(101\)+\(112\)+\(132\) \(103\)+\(112\)+\(133\)+\(83\)
6042.2.a $48.246$ \( \chi_{6042}(1, \cdot) \) $1$ $157$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(9\)+\(\cdots\)+\(9\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\) \(12\)+\(9\)+\(6\)+\(12\)+\(11\)+\(8\)+\(7\)+\(13\)+\(10\)+\(9\)+\(11\)+\(9\)+\(7\)+\(14\)+\(14\)+\(5\)
6043.2.a $48.254$ \( \chi_{6043}(1, \cdot) \) $1$ $503$ \(1\)+\(243\)+\(259\) \(243\)+\(260\)
6044.2.a $48.262$ \( \chi_{6044}(1, \cdot) \) $1$ $126$ \(63\)+\(63\) \(0\)+\(0\)+\(63\)+\(63\)
6045.2.a $48.270$ \( \chi_{6045}(1, \cdot) \) $1$ $241$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(5\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(12\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(15\)+\(16\)+\(17\)+\(18\) \(13\)+\(19\)+\(16\)+\(12\)+\(14\)+\(14\)+\(15\)+\(17\)+\(15\)+\(13\)+\(16\)+\(16\)+\(14\)+\(18\)+\(17\)+\(12\)
6046.2.a $48.278$ \( \chi_{6046}(1, \cdot) \) $1$ $251$ \(1\)+\(1\)+\(2\)+\(55\)+\(56\)+\(67\)+\(69\) \(56\)+\(70\)+\(69\)+\(56\)
6047.2.a $48.286$ \( \chi_{6047}(1, \cdot) \) $1$ $504$ \(217\)+\(287\) \(217\)+\(287\)
6048.2.a $48.294$ \( \chi_{6048}(1, \cdot) \) $1$ $96$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\) \(11\)+\(13\)+\(13\)+\(11\)+\(13\)+\(11\)+\(11\)+\(13\)
Next   To download results, determine the number of results.