Label |
$A$ |
$\chi$ |
$\operatorname{ord}(\chi)$ |
Dim. |
Orbits |
Decomposition |
AL-decomposition. |
5001.2.a |
$39.933$ |
\( \chi_{5001}(1, \cdot) \) |
$1$ |
$277$ |
$5$ |
\(3\)+\(57\)+\(60\)+\(78\)+\(79\) |
$60$+$79$+$78$+$60$ |
5002.2.a |
$39.941$ |
\( \chi_{5002}(1, \cdot) \) |
$1$ |
$199$ |
$17$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(17\)+\(20\)+\(20\)+\(21\)+\(24\)+\(24\)+\(26\)+\(30\) |
$27$+$24$+$23$+$26$+$30$+$19$+$20$+$30$ |
5003.2.a |
$39.949$ |
\( \chi_{5003}(1, \cdot) \) |
$1$ |
$417$ |
$3$ |
\(3\)+\(194\)+\(220\) |
$194$+$223$ |
5004.2.a |
$39.957$ |
\( \chi_{5004}(1, \cdot) \) |
$1$ |
$57$ |
$15$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(6\)+\(6\)+\(7\)+\(7\)+\(14\) |
$0$+$0$+$0$+$0$+$14$+$8$+$16$+$19$ |
5004.2.e |
$39.957$ |
\( \chi_{5004}(2501, \cdot) \) |
$2$ |
$48$ |
$2$ |
\(24\)+\(24\) |
|
5004.2.bc |
$39.957$ |
\( \chi_{5004}(2321, \cdot) \) |
$6$ |
$92$ |
$1$ |
\(92\) |
|
5005.2.a |
$39.965$ |
\( \chi_{5005}(1, \cdot) \) |
$1$ |
$241$ |
$22$ |
\(1\)+\(\cdots\)+\(1\)+\(11\)+\(11\)+\(11\)+\(12\)+\(12\)+\(13\)+\(13\)+\(15\)+\(15\)+\(16\)+\(17\)+\(\cdots\)+\(17\)+\(18\)+\(20\) |
$18$+$13$+$17$+$12$+$14$+$15$+$11$+$20$+$12$+$17$+$13$+$18$+$16$+$15$+$19$+$11$ |
5006.2.a |
$39.973$ |
\( \chi_{5006}(1, \cdot) \) |
$1$ |
$209$ |
$5$ |
\(1\)+\(41\)+\(42\)+\(62\)+\(63\) |
$42$+$63$+$62$+$42$ |
5007.2.a |
$39.981$ |
\( \chi_{5007}(1, \cdot) \) |
$1$ |
$279$ |
$4$ |
\(55\)+\(67\)+\(72\)+\(85\) |
$67$+$72$+$85$+$55$ |
5008.2.a |
$39.989$ |
\( \chi_{5008}(1, \cdot) \) |
$1$ |
$156$ |
$17$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(9\)+\(9\)+\(11\)+\(12\)+\(12\)+\(14\)+\(15\)+\(16\)+\(23\)+\(24\) |
$37$+$41$+$41$+$37$ |
5009.2.a |
$39.997$ |
\( \chi_{5009}(1, \cdot) \) |
$1$ |
$417$ |
$2$ |
\(194\)+\(223\) |
$194$+$223$ |
5010.2.a |
$40.005$ |
\( \chi_{5010}(1, \cdot) \) |
$1$ |
$109$ |
$29$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(7\)+\(7\)+\(9\)+\(10\)+\(10\) |
$7$+$7$+$9$+$5$+$5$+$8$+$6$+$7$+$8$+$6$+$4$+$10$+$4$+$9$+$11$+$3$ |
5011.2.a |
$40.013$ |
\( \chi_{5011}(1, \cdot) \) |
$1$ |
$417$ |
$2$ |
\(188\)+\(229\) |
$188$+$229$ |
5012.2.a |
$40.021$ |
\( \chi_{5012}(1, \cdot) \) |
$1$ |
$90$ |
$5$ |
\(2\)+\(16\)+\(21\)+\(22\)+\(29\) |
$0$+$0$+$0$+$0$+$24$+$21$+$16$+$29$ |
5013.2.a |
$40.029$ |
\( \chi_{5013}(1, \cdot) \) |
$1$ |
$231$ |
$13$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(11\)+\(14\)+\(18\)+\(26\)+\(31\)+\(33\)+\(46\)+\(46\) |
$46$+$46$+$74$+$65$ |
5014.2.a |
$40.037$ |
\( \chi_{5014}(1, \cdot) \) |
$1$ |
$197$ |
$11$ |
\(1\)+\(1\)+\(4\)+\(17\)+\(21\)+\(24\)+\(24\)+\(24\)+\(25\)+\(27\)+\(29\) |
$24$+$25$+$25$+$24$+$29$+$21$+$21$+$28$ |
5015.2.a |
$40.045$ |
\( \chi_{5015}(1, \cdot) \) |
$1$ |
$311$ |
$12$ |
\(1\)+\(1\)+\(2\)+\(2\)+\(22\)+\(27\)+\(27\)+\(30\)+\(45\)+\(49\)+\(50\)+\(55\) |
$31$+$45$+$50$+$28$+$49$+$27$+$26$+$55$ |
5016.2.a |
$40.053$ |
\( \chi_{5016}(1, \cdot) \) |
$1$ |
$92$ |
$21$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(8\) |
$7$+$5$+$5$+$5$+$5$+$5$+$5$+$7$+$6$+$5$+$5$+$8$+$5$+$8$+$8$+$3$ |
5017.2.a |
$40.061$ |
\( \chi_{5017}(1, \cdot) \) |
$1$ |
$401$ |
$6$ |
\(1\)+\(2\)+\(96\)+\(97\)+\(102\)+\(103\) |
$96$+$104$+$104$+$97$ |
5018.2.a |
$40.069$ |
\( \chi_{5018}(1, \cdot) \) |
$1$ |
$191$ |
$9$ |
\(1\)+\(17\)+\(18\)+\(21\)+\(21\)+\(26\)+\(27\)+\(29\)+\(31\) |
$21$+$28$+$26$+$21$+$29$+$17$+$18$+$31$ |
5019.2.a |
$40.077$ |
\( \chi_{5019}(1, \cdot) \) |
$1$ |
$239$ |
$10$ |
\(1\)+\(2\)+\(23\)+\(25\)+\(25\)+\(25\)+\(34\)+\(34\)+\(35\)+\(35\) |
$25$+$35$+$35$+$25$+$35$+$25$+$25$+$34$ |
5020.2.a |
$40.085$ |
\( \chi_{5020}(1, \cdot) \) |
$1$ |
$82$ |
$9$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(4\)+\(16\)+\(17\)+\(20\)+\(20\) |
$0$+$0$+$0$+$0$+$20$+$20$+$21$+$21$ |
5021.2.a |
$40.093$ |
\( \chi_{5021}(1, \cdot) \) |
$1$ |
$418$ |
$4$ |
\(1\)+\(2\)+\(190\)+\(225\) |
$190$+$228$ |
5022.2.a |
$40.101$ |
\( \chi_{5022}(1, \cdot) \) |
$1$ |
$120$ |
$34$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(10\) |
$13$+$17$+$17$+$13$+$16$+$12$+$14$+$18$ |
5023.2.a |
$40.109$ |
\( \chi_{5023}(1, \cdot) \) |
$1$ |
$418$ |
$2$ |
\(197\)+\(221\) |
$197$+$221$ |
5024.2.a |
$40.117$ |
\( \chi_{5024}(1, \cdot) \) |
$1$ |
$156$ |
$10$ |
\(1\)+\(1\)+\(12\)+\(14\)+\(18\)+\(18\)+\(21\)+\(21\)+\(22\)+\(28\) |
$33$+$46$+$45$+$32$ |
5025.2.a |
$40.125$ |
\( \chi_{5025}(1, \cdot) \) |
$1$ |
$210$ |
$39$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(8\)+\(10\)+\(\cdots\)+\(10\)+\(14\)+\(14\)+\(17\)+\(17\) |
$26$+$23$+$29$+$27$+$29$+$20$+$23$+$33$ |
5026.2.a |
$40.133$ |
\( \chi_{5026}(1, \cdot) \) |
$1$ |
$179$ |
$16$ |
\(1\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(5\)+\(7\)+\(8\)+\(10\)+\(17\)+\(21\)+\(23\)+\(24\)+\(26\)+\(28\) |
$23$+$21$+$24$+$20$+$26$+$20$+$17$+$28$ |
5027.2.a |
$40.141$ |
\( \chi_{5027}(1, \cdot) \) |
$1$ |
$381$ |
$5$ |
\(1\)+\(88\)+\(88\)+\(101\)+\(103\) |
$89$+$103$+$101$+$88$ |
5028.2.a |
$40.149$ |
\( \chi_{5028}(1, \cdot) \) |
$1$ |
$70$ |
$8$ |
\(1\)+\(1\)+\(1\)+\(4\)+\(10\)+\(14\)+\(19\)+\(20\) |
$0$+$0$+$0$+$0$+$20$+$15$+$15$+$20$ |
5029.2.a |
$40.157$ |
\( \chi_{5029}(1, \cdot) \) |
$1$ |
$405$ |
$4$ |
\(93\)+\(97\)+\(105\)+\(110\) |
$97$+$110$+$105$+$93$ |
5030.2.a |
$40.165$ |
\( \chi_{5030}(1, \cdot) \) |
$1$ |
$169$ |
$20$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(13\)+\(15\)+\(15\)+\(18\)+\(19\)+\(24\)+\(24\)+\(25\) |
$18$+$24$+$24$+$18$+$26$+$17$+$17$+$25$ |
5031.2.a |
$40.173$ |
\( \chi_{5031}(1, \cdot) \) |
$1$ |
$210$ |
$21$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(8\)+\(12\)+\(12\)+\(14\)+\(14\)+\(14\)+\(15\)+\(15\)+\(15\)+\(28\)+\(28\) |
$14$+$30$+$28$+$12$+$35$+$27$+$28$+$36$ |
5032.2.a |
$40.181$ |
\( \chi_{5032}(1, \cdot) \) |
$1$ |
$144$ |
$11$ |
\(2\)+\(4\)+\(4\)+\(9\)+\(11\)+\(16\)+\(17\)+\(18\)+\(20\)+\(21\)+\(22\) |
$17$+$20$+$22$+$13$+$16$+$21$+$18$+$17$ |
5033.2.a |
$40.189$ |
\( \chi_{5033}(1, \cdot) \) |
$1$ |
$359$ |
$4$ |
\(81\)+\(81\)+\(98\)+\(99\) |
$81$+$99$+$98$+$81$ |
5034.2.a |
$40.197$ |
\( \chi_{5034}(1, \cdot) \) |
$1$ |
$141$ |
$19$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(5\)+\(6\)+\(11\)+\(15\)+\(18\)+\(21\)+\(22\)+\(26\) |
$17$+$18$+$23$+$12$+$21$+$14$+$10$+$26$ |
5035.2.a |
$40.205$ |
\( \chi_{5035}(1, \cdot) \) |
$1$ |
$311$ |
$8$ |
\(29\)+\(29\)+\(34\)+\(34\)+\(43\)+\(43\)+\(49\)+\(50\) |
$43$+$34$+$34$+$43$+$50$+$29$+$29$+$49$ |
5036.2.a |
$40.213$ |
\( \chi_{5036}(1, \cdot) \) |
$1$ |
$105$ |
$3$ |
\(1\)+\(45\)+\(59\) |
$0$+$0$+$60$+$45$ |
5037.2.a |
$40.221$ |
\( \chi_{5037}(1, \cdot) \) |
$1$ |
$263$ |
$16$ |
\(1\)+\(\cdots\)+\(1\)+\(27\)+\(28\)+\(29\)+\(31\)+\(34\)+\(34\)+\(35\)+\(37\) |
$32$+$34$+$36$+$30$+$32$+$34$+$28$+$37$ |
5038.2.a |
$40.229$ |
\( \chi_{5038}(1, \cdot) \) |
$1$ |
$189$ |
$9$ |
\(9\)+\(12\)+\(21\)+\(23\)+\(23\)+\(24\)+\(24\)+\(26\)+\(27\) |
$21$+$27$+$24$+$23$+$24$+$23$+$21$+$26$ |
5039.2.a |
$40.237$ |
\( \chi_{5039}(1, \cdot) \) |
$1$ |
$420$ |
$2$ |
\(169\)+\(251\) |
$169$+$251$ |
5040.2.a |
$40.245$ |
\( \chi_{5040}(1, \cdot) \) |
$1$ |
$60$ |
$51$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\) |
$3$+$3$+$3$+$3$+$6$+$3$+$3$+$6$+$2$+$4$+$2$+$4$+$5$+$4$+$5$+$4$ |
5040.2.d |
$40.245$ |
\( \chi_{5040}(4591, \cdot) \) |
$2$ |
$80$ |
$8$ |
\(4\)+\(4\)+\(8\)+\(8\)+\(8\)+\(12\)+\(12\)+\(24\) |
|
5040.2.f |
$40.245$ |
\( \chi_{5040}(881, \cdot) \) |
$2$ |
$64$ |
$10$ |
\(4\)+\(\cdots\)+\(4\)+\(8\)+\(\cdots\)+\(8\) |
|
5040.2.k |
$40.245$ |
\( \chi_{5040}(1889, \cdot) \) |
$2$ |
$96$ |
$9$ |
\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(16\)+\(24\)+\(24\) |
|
5040.2.t |
$40.245$ |
\( \chi_{5040}(1009, \cdot) \) |
$2$ |
$90$ |
$28$ |
\(2\)+\(\cdots\)+\(2\)+\(4\)+\(4\)+\(6\)+\(\cdots\)+\(6\)+\(8\) |
|
5040.2.v |
$40.245$ |
\( \chi_{5040}(3599, \cdot) \) |
$2$ |
$72$ |
$4$ |
\(12\)+\(12\)+\(24\)+\(24\) |
|
5040.2.ba |
$40.245$ |
\( \chi_{5040}(2591, \cdot) \) |
$2$ |
$48$ |
$4$ |
\(8\)+\(8\)+\(16\)+\(16\) |
|
5041.2.a |
$40.253$ |
\( \chi_{5041}(1, \cdot) \) |
$1$ |
$379$ |
$20$ |
\(3\)+\(3\)+\(4\)+\(6\)+\(6\)+\(7\)+\(7\)+\(7\)+\(10\)+\(10\)+\(14\)+\(15\)+\(15\)+\(18\)+\(18\)+\(20\)+\(36\)+\(60\)+\(60\)+\(60\) |
$181$+$198$ |
5042.2.a |
$40.261$ |
\( \chi_{5042}(1, \cdot) \) |
$1$ |
$211$ |
$8$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(45\)+\(49\)+\(52\)+\(60\) |
$52$+$53$+$61$+$45$ |