Learn more

Note: Search results may be incomplete due to uncomputed quantities: num_forms (558562 objects)

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label $A$ $\chi$ $\operatorname{ord}(\chi)$ Dim. Orbits Decomposition AL-decomposition.
5001.2.a $39.933$ \( \chi_{5001}(1, \cdot) \) $1$ $277$ $5$ \(3\)+\(57\)+\(60\)+\(78\)+\(79\) $60$+$79$+$78$+$60$
5002.2.a $39.941$ \( \chi_{5002}(1, \cdot) \) $1$ $199$ $17$ \(1\)+\(1\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(17\)+\(20\)+\(20\)+\(21\)+\(24\)+\(24\)+\(26\)+\(30\) $27$+$24$+$23$+$26$+$30$+$19$+$20$+$30$
5003.2.a $39.949$ \( \chi_{5003}(1, \cdot) \) $1$ $417$ $3$ \(3\)+\(194\)+\(220\) $194$+$223$
5004.2.a $39.957$ \( \chi_{5004}(1, \cdot) \) $1$ $57$ $15$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(6\)+\(6\)+\(7\)+\(7\)+\(14\) $0$+$0$+$0$+$0$+$14$+$8$+$16$+$19$
5004.2.e $39.957$ \( \chi_{5004}(2501, \cdot) \) $2$ $48$ $2$ \(24\)+\(24\)
5004.2.bc $39.957$ \( \chi_{5004}(2321, \cdot) \) $6$ $92$ $1$ \(92\)
5005.2.a $39.965$ \( \chi_{5005}(1, \cdot) \) $1$ $241$ $22$ \(1\)+\(\cdots\)+\(1\)+\(11\)+\(11\)+\(11\)+\(12\)+\(12\)+\(13\)+\(13\)+\(15\)+\(15\)+\(16\)+\(17\)+\(\cdots\)+\(17\)+\(18\)+\(20\) $18$+$13$+$17$+$12$+$14$+$15$+$11$+$20$+$12$+$17$+$13$+$18$+$16$+$15$+$19$+$11$
5006.2.a $39.973$ \( \chi_{5006}(1, \cdot) \) $1$ $209$ $5$ \(1\)+\(41\)+\(42\)+\(62\)+\(63\) $42$+$63$+$62$+$42$
5007.2.a $39.981$ \( \chi_{5007}(1, \cdot) \) $1$ $279$ $4$ \(55\)+\(67\)+\(72\)+\(85\) $67$+$72$+$85$+$55$
5008.2.a $39.989$ \( \chi_{5008}(1, \cdot) \) $1$ $156$ $17$ \(1\)+\(1\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(9\)+\(9\)+\(11\)+\(12\)+\(12\)+\(14\)+\(15\)+\(16\)+\(23\)+\(24\) $37$+$41$+$41$+$37$
5009.2.a $39.997$ \( \chi_{5009}(1, \cdot) \) $1$ $417$ $2$ \(194\)+\(223\) $194$+$223$
5010.2.a $40.005$ \( \chi_{5010}(1, \cdot) \) $1$ $109$ $29$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(7\)+\(7\)+\(9\)+\(10\)+\(10\) $7$+$7$+$9$+$5$+$5$+$8$+$6$+$7$+$8$+$6$+$4$+$10$+$4$+$9$+$11$+$3$
5011.2.a $40.013$ \( \chi_{5011}(1, \cdot) \) $1$ $417$ $2$ \(188\)+\(229\) $188$+$229$
5012.2.a $40.021$ \( \chi_{5012}(1, \cdot) \) $1$ $90$ $5$ \(2\)+\(16\)+\(21\)+\(22\)+\(29\) $0$+$0$+$0$+$0$+$24$+$21$+$16$+$29$
5013.2.a $40.029$ \( \chi_{5013}(1, \cdot) \) $1$ $231$ $13$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(11\)+\(14\)+\(18\)+\(26\)+\(31\)+\(33\)+\(46\)+\(46\) $46$+$46$+$74$+$65$
5014.2.a $40.037$ \( \chi_{5014}(1, \cdot) \) $1$ $197$ $11$ \(1\)+\(1\)+\(4\)+\(17\)+\(21\)+\(24\)+\(24\)+\(24\)+\(25\)+\(27\)+\(29\) $24$+$25$+$25$+$24$+$29$+$21$+$21$+$28$
5015.2.a $40.045$ \( \chi_{5015}(1, \cdot) \) $1$ $311$ $12$ \(1\)+\(1\)+\(2\)+\(2\)+\(22\)+\(27\)+\(27\)+\(30\)+\(45\)+\(49\)+\(50\)+\(55\) $31$+$45$+$50$+$28$+$49$+$27$+$26$+$55$
5016.2.a $40.053$ \( \chi_{5016}(1, \cdot) \) $1$ $92$ $21$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(8\) $7$+$5$+$5$+$5$+$5$+$5$+$5$+$7$+$6$+$5$+$5$+$8$+$5$+$8$+$8$+$3$
5017.2.a $40.061$ \( \chi_{5017}(1, \cdot) \) $1$ $401$ $6$ \(1\)+\(2\)+\(96\)+\(97\)+\(102\)+\(103\) $96$+$104$+$104$+$97$
5018.2.a $40.069$ \( \chi_{5018}(1, \cdot) \) $1$ $191$ $9$ \(1\)+\(17\)+\(18\)+\(21\)+\(21\)+\(26\)+\(27\)+\(29\)+\(31\) $21$+$28$+$26$+$21$+$29$+$17$+$18$+$31$
5019.2.a $40.077$ \( \chi_{5019}(1, \cdot) \) $1$ $239$ $10$ \(1\)+\(2\)+\(23\)+\(25\)+\(25\)+\(25\)+\(34\)+\(34\)+\(35\)+\(35\) $25$+$35$+$35$+$25$+$35$+$25$+$25$+$34$
5020.2.a $40.085$ \( \chi_{5020}(1, \cdot) \) $1$ $82$ $9$ \(1\)+\(1\)+\(1\)+\(2\)+\(4\)+\(16\)+\(17\)+\(20\)+\(20\) $0$+$0$+$0$+$0$+$20$+$20$+$21$+$21$
5021.2.a $40.093$ \( \chi_{5021}(1, \cdot) \) $1$ $418$ $4$ \(1\)+\(2\)+\(190\)+\(225\) $190$+$228$
5022.2.a $40.101$ \( \chi_{5022}(1, \cdot) \) $1$ $120$ $34$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(\cdots\)+\(8\)+\(10\)+\(10\) $13$+$17$+$17$+$13$+$16$+$12$+$14$+$18$
5023.2.a $40.109$ \( \chi_{5023}(1, \cdot) \) $1$ $418$ $2$ \(197\)+\(221\) $197$+$221$
5024.2.a $40.117$ \( \chi_{5024}(1, \cdot) \) $1$ $156$ $10$ \(1\)+\(1\)+\(12\)+\(14\)+\(18\)+\(18\)+\(21\)+\(21\)+\(22\)+\(28\) $33$+$46$+$45$+$32$
5025.2.a $40.125$ \( \chi_{5025}(1, \cdot) \) $1$ $210$ $39$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(8\)+\(10\)+\(\cdots\)+\(10\)+\(14\)+\(14\)+\(17\)+\(17\) $26$+$23$+$29$+$27$+$29$+$20$+$23$+$33$
5026.2.a $40.133$ \( \chi_{5026}(1, \cdot) \) $1$ $179$ $16$ \(1\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(5\)+\(7\)+\(8\)+\(10\)+\(17\)+\(21\)+\(23\)+\(24\)+\(26\)+\(28\) $23$+$21$+$24$+$20$+$26$+$20$+$17$+$28$
5027.2.a $40.141$ \( \chi_{5027}(1, \cdot) \) $1$ $381$ $5$ \(1\)+\(88\)+\(88\)+\(101\)+\(103\) $89$+$103$+$101$+$88$
5028.2.a $40.149$ \( \chi_{5028}(1, \cdot) \) $1$ $70$ $8$ \(1\)+\(1\)+\(1\)+\(4\)+\(10\)+\(14\)+\(19\)+\(20\) $0$+$0$+$0$+$0$+$20$+$15$+$15$+$20$
5029.2.a $40.157$ \( \chi_{5029}(1, \cdot) \) $1$ $405$ $4$ \(93\)+\(97\)+\(105\)+\(110\) $97$+$110$+$105$+$93$
5030.2.a $40.165$ \( \chi_{5030}(1, \cdot) \) $1$ $169$ $20$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(13\)+\(15\)+\(15\)+\(18\)+\(19\)+\(24\)+\(24\)+\(25\) $18$+$24$+$24$+$18$+$26$+$17$+$17$+$25$
5031.2.a $40.173$ \( \chi_{5031}(1, \cdot) \) $1$ $210$ $21$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(8\)+\(12\)+\(12\)+\(14\)+\(14\)+\(14\)+\(15\)+\(15\)+\(15\)+\(28\)+\(28\) $14$+$30$+$28$+$12$+$35$+$27$+$28$+$36$
5032.2.a $40.181$ \( \chi_{5032}(1, \cdot) \) $1$ $144$ $11$ \(2\)+\(4\)+\(4\)+\(9\)+\(11\)+\(16\)+\(17\)+\(18\)+\(20\)+\(21\)+\(22\) $17$+$20$+$22$+$13$+$16$+$21$+$18$+$17$
5033.2.a $40.189$ \( \chi_{5033}(1, \cdot) \) $1$ $359$ $4$ \(81\)+\(81\)+\(98\)+\(99\) $81$+$99$+$98$+$81$
5034.2.a $40.197$ \( \chi_{5034}(1, \cdot) \) $1$ $141$ $19$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(4\)+\(5\)+\(6\)+\(11\)+\(15\)+\(18\)+\(21\)+\(22\)+\(26\) $17$+$18$+$23$+$12$+$21$+$14$+$10$+$26$
5035.2.a $40.205$ \( \chi_{5035}(1, \cdot) \) $1$ $311$ $8$ \(29\)+\(29\)+\(34\)+\(34\)+\(43\)+\(43\)+\(49\)+\(50\) $43$+$34$+$34$+$43$+$50$+$29$+$29$+$49$
5036.2.a $40.213$ \( \chi_{5036}(1, \cdot) \) $1$ $105$ $3$ \(1\)+\(45\)+\(59\) $0$+$0$+$60$+$45$
5037.2.a $40.221$ \( \chi_{5037}(1, \cdot) \) $1$ $263$ $16$ \(1\)+\(\cdots\)+\(1\)+\(27\)+\(28\)+\(29\)+\(31\)+\(34\)+\(34\)+\(35\)+\(37\) $32$+$34$+$36$+$30$+$32$+$34$+$28$+$37$
5038.2.a $40.229$ \( \chi_{5038}(1, \cdot) \) $1$ $189$ $9$ \(9\)+\(12\)+\(21\)+\(23\)+\(23\)+\(24\)+\(24\)+\(26\)+\(27\) $21$+$27$+$24$+$23$+$24$+$23$+$21$+$26$
5039.2.a $40.237$ \( \chi_{5039}(1, \cdot) \) $1$ $420$ $2$ \(169\)+\(251\) $169$+$251$
5040.2.a $40.245$ \( \chi_{5040}(1, \cdot) \) $1$ $60$ $51$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\) $3$+$3$+$3$+$3$+$6$+$3$+$3$+$6$+$2$+$4$+$2$+$4$+$5$+$4$+$5$+$4$
5040.2.d $40.245$ \( \chi_{5040}(4591, \cdot) \) $2$ $80$ $8$ \(4\)+\(4\)+\(8\)+\(8\)+\(8\)+\(12\)+\(12\)+\(24\)
5040.2.f $40.245$ \( \chi_{5040}(881, \cdot) \) $2$ $64$ $10$ \(4\)+\(\cdots\)+\(4\)+\(8\)+\(\cdots\)+\(8\)
5040.2.k $40.245$ \( \chi_{5040}(1889, \cdot) \) $2$ $96$ $9$ \(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(16\)+\(24\)+\(24\)
5040.2.t $40.245$ \( \chi_{5040}(1009, \cdot) \) $2$ $90$ $28$ \(2\)+\(\cdots\)+\(2\)+\(4\)+\(4\)+\(6\)+\(\cdots\)+\(6\)+\(8\)
5040.2.v $40.245$ \( \chi_{5040}(3599, \cdot) \) $2$ $72$ $4$ \(12\)+\(12\)+\(24\)+\(24\)
5040.2.ba $40.245$ \( \chi_{5040}(2591, \cdot) \) $2$ $48$ $4$ \(8\)+\(8\)+\(16\)+\(16\)
5041.2.a $40.253$ \( \chi_{5041}(1, \cdot) \) $1$ $379$ $20$ \(3\)+\(3\)+\(4\)+\(6\)+\(6\)+\(7\)+\(7\)+\(7\)+\(10\)+\(10\)+\(14\)+\(15\)+\(15\)+\(18\)+\(18\)+\(20\)+\(36\)+\(60\)+\(60\)+\(60\) $181$+$198$
5042.2.a $40.261$ \( \chi_{5042}(1, \cdot) \) $1$ $211$ $8$ \(1\)+\(1\)+\(1\)+\(2\)+\(45\)+\(49\)+\(52\)+\(60\) $52$+$53$+$61$+$45$
Next   To download results, determine the number of results.