Learn more

Note: Search results may be incomplete due to uncomputed quantities: num_forms (558562 objects)

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label $A$ $\chi$ $\operatorname{ord}(\chi)$ Dim. Decomp. AL-dims.
4001.2.a $31.948$ \( \chi_{4001}(1, \cdot) \) $1$ $333$ \(149\)+\(184\) \(149\)+\(184\)
4002.2.a $31.956$ \( \chi_{4002}(1, \cdot) \) $1$ $101$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(6\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\) \(6\)+\(5\)+\(8\)+\(7\)+\(4\)+\(8\)+\(6\)+\(6\)+\(8\)+\(5\)+\(4\)+\(9\)+\(5\)+\(9\)+\(9\)+\(2\)
4003.2.a $31.964$ \( \chi_{4003}(1, \cdot) \) $1$ $333$ \(2\)+\(152\)+\(179\) \(154\)+\(179\)
4004.2.a $31.972$ \( \chi_{4004}(1, \cdot) \) $1$ $60$ \(1\)+\(1\)+\(1\)+\(4\)+\(4\)+\(5\)+\(6\)+\(9\)+\(9\)+\(10\)+\(10\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(10\)+\(6\)+\(4\)+\(10\)+\(6\)+\(10\)+\(10\)+\(4\)
4004.2.e $31.972$ \( \chi_{4004}(3849, \cdot) \) $2$ $96$ \(48\)+\(48\)
4004.2.m $31.972$ \( \chi_{4004}(2157, \cdot) \) $2$ $68$ \(2\)+\(30\)+\(36\)
4005.2.a $31.980$ \( \chi_{4005}(1, \cdot) \) $1$ $148$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(4\)+\(4\)+\(6\)+\(7\)+\(8\)+\(9\)+\(10\)+\(10\)+\(10\)+\(12\)+\(12\)+\(17\)+\(17\) \(13\)+\(17\)+\(17\)+\(13\)+\(23\)+\(21\)+\(21\)+\(23\)
4006.2.a $31.988$ \( \chi_{4006}(1, \cdot) \) $1$ $166$ \(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(31\)+\(40\)+\(42\)+\(46\) \(40\)+\(43\)+\(47\)+\(36\)
4007.2.a $31.996$ \( \chi_{4007}(1, \cdot) \) $1$ $334$ \(139\)+\(195\) \(139\)+\(195\)
4008.2.a $32.004$ \( \chi_{4008}(1, \cdot) \) $1$ $82$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(5\)+\(7\)+\(8\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) \(10\)+\(11\)+\(14\)+\(7\)+\(8\)+\(11\)+\(9\)+\(12\)
4009.2.a $32.012$ \( \chi_{4009}(1, \cdot) \) $1$ $315$ \(1\)+\(3\)+\(71\)+\(75\)+\(82\)+\(83\) \(75\)+\(84\)+\(82\)+\(74\)
4010.2.a $32.020$ \( \chi_{4010}(1, \cdot) \) $1$ $135$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(10\)+\(12\)+\(15\)+\(17\)+\(20\)+\(22\)+\(22\) \(16\)+\(18\)+\(21\)+\(13\)+\(22\)+\(12\)+\(9\)+\(24\)
4011.2.a $32.028$ \( \chi_{4011}(1, \cdot) \) $1$ $191$ \(1\)+\(\cdots\)+\(1\)+\(3\)+\(18\)+\(18\)+\(19\)+\(19\)+\(26\)+\(27\)+\(28\)+\(29\) \(19\)+\(29\)+\(29\)+\(19\)+\(29\)+\(19\)+\(19\)+\(28\)
4012.2.a $32.036$ \( \chi_{4012}(1, \cdot) \) $1$ $76$ \(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(3\)+\(12\)+\(15\)+\(18\)+\(21\) \(0\)+\(0\)+\(0\)+\(0\)+\(19\)+\(17\)+\(19\)+\(21\)
4012.2.b $32.036$ \( \chi_{4012}(237, \cdot) \) $2$ $86$ \(40\)+\(46\)
4013.2.a $32.044$ \( \chi_{4013}(1, \cdot) \) $1$ $334$ \(1\)+\(157\)+\(176\) \(157\)+\(177\)
4014.2.a $32.052$ \( \chi_{4014}(1, \cdot) \) $1$ $92$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\) \(9\)+\(9\)+\(18\)+\(10\)+\(9\)+\(9\)+\(10\)+\(18\)
4014.2.d $32.052$ \( \chi_{4014}(4013, \cdot) \) $2$ $72$ \(72\)
4015.2.a $32.060$ \( \chi_{4015}(1, \cdot) \) $1$ $239$ \(1\)+\(23\)+\(23\)+\(27\)+\(27\)+\(31\)+\(32\)+\(37\)+\(38\) \(32\)+\(27\)+\(27\)+\(32\)+\(38\)+\(23\)+\(23\)+\(37\)
4016.2.a $32.068$ \( \chi_{4016}(1, \cdot) \) $1$ $125$ \(2\)+\(2\)+\(4\)+\(5\)+\(5\)+\(6\)+\(7\)+\(9\)+\(12\)+\(14\)+\(17\)+\(19\)+\(23\) \(21\)+\(42\)+\(31\)+\(31\)
4017.2.a $32.076$ \( \chi_{4017}(1, \cdot) \) $1$ $203$ \(1\)+\(1\)+\(1\)+\(2\)+\(16\)+\(19\)+\(24\)+\(25\)+\(25\)+\(25\)+\(32\)+\(32\) \(26\)+\(24\)+\(25\)+\(27\)+\(32\)+\(18\)+\(19\)+\(32\)
4018.2.a $32.084$ \( \chi_{4018}(1, \cdot) \) $1$ $138$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(\cdots\)+\(6\)+\(10\)+\(\cdots\)+\(10\) \(18\)+\(16\)+\(16\)+\(19\)+\(20\)+\(14\)+\(13\)+\(22\)
4019.2.a $32.092$ \( \chi_{4019}(1, \cdot) \) $1$ $335$ \(149\)+\(186\) \(149\)+\(186\)
4020.2.a $32.100$ \( \chi_{4020}(1, \cdot) \) $1$ $44$ \(1\)+\(4\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(7\)+\(7\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(7\)+\(4\)+\(5\)+\(6\)+\(5\)+\(6\)+\(7\)+\(4\)
4020.2.f $32.100$ \( \chi_{4020}(401, \cdot) \) $2$ $92$ \(46\)+\(46\)
4020.2.g $32.100$ \( \chi_{4020}(1609, \cdot) \) $2$ $64$ \(2\)+\(24\)+\(38\)
4020.2.q $32.100$ \( \chi_{4020}(841, \cdot) \) $3$ $92$ \(2\)+\(\cdots\)+\(2\)+\(4\)+\(12\)+\(14\)+\(22\)+\(24\)
4021.2.a $32.108$ \( \chi_{4021}(1, \cdot) \) $1$ $334$ \(1\)+\(151\)+\(182\) \(152\)+\(182\)
4022.2.a $32.116$ \( \chi_{4022}(1, \cdot) \) $1$ $168$ \(1\)+\(3\)+\(31\)+\(37\)+\(46\)+\(50\) \(37\)+\(47\)+\(50\)+\(34\)
4023.2.a $32.124$ \( \chi_{4023}(1, \cdot) \) $1$ $198$ \(18\)+\(18\)+\(24\)+\(24\)+\(25\)+\(25\)+\(32\)+\(32\) \(43\)+\(57\)+\(56\)+\(42\)
4024.2.a $32.132$ \( \chi_{4024}(1, \cdot) \) $1$ $126$ \(1\)+\(1\)+\(1\)+\(28\)+\(29\)+\(33\)+\(33\) \(29\)+\(34\)+\(34\)+\(29\)
4025.2.a $32.140$ \( \chi_{4025}(1, \cdot) \) $1$ $210$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(\cdots\)+\(8\)+\(12\)+\(12\)+\(14\)+\(\cdots\)+\(14\)+\(21\)+\(21\) \(27\)+\(22\)+\(31\)+\(18\)+\(29\)+\(27\)+\(21\)+\(35\)
4026.2.a $32.148$ \( \chi_{4026}(1, \cdot) \) $1$ $101$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(6\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(9\) \(7\)+\(5\)+\(7\)+\(6\)+\(8\)+\(5\)+\(3\)+\(9\)+\(6\)+\(6\)+\(5\)+\(8\)+\(4\)+\(9\)+\(10\)+\(3\)
4027.2.a $32.156$ \( \chi_{4027}(1, \cdot) \) $1$ $335$ \(2\)+\(159\)+\(174\) \(159\)+\(176\)
4028.2.a $32.164$ \( \chi_{4028}(1, \cdot) \) $1$ $78$ \(1\)+\(1\)+\(19\)+\(\cdots\)+\(19\) \(0\)+\(0\)+\(0\)+\(0\)+\(19\)+\(19\)+\(20\)+\(20\)
4028.2.c $32.164$ \( \chi_{4028}(3497, \cdot) \) $2$ $82$ \(82\)
4029.2.a $32.172$ \( \chi_{4029}(1, \cdot) \) $1$ $207$ \(1\)+\(1\)+\(2\)+\(3\)+\(18\)+\(22\)+\(22\)+\(25\)+\(25\)+\(25\)+\(31\)+\(32\) \(22\)+\(32\)+\(25\)+\(25\)+\(25\)+\(25\)+\(22\)+\(31\)
4030.2.a $32.180$ \( \chi_{4030}(1, \cdot) \) $1$ $121$ \(1\)+\(2\)+\(6\)+\(\cdots\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(9\)+\(9\) \(7\)+\(9\)+\(10\)+\(6\)+\(8\)+\(7\)+\(6\)+\(9\)+\(8\)+\(7\)+\(6\)+\(9\)+\(6\)+\(8\)+\(9\)+\(6\)
4031.2.a $32.188$ \( \chi_{4031}(1, \cdot) \) $1$ $323$ \(2\)+\(59\)+\(61\)+\(98\)+\(103\) \(61\)+\(103\)+\(100\)+\(59\)
4032.2.a $32.196$ \( \chi_{4032}(1, \cdot) \) $1$ $60$ \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\) \(6\)+\(8\)+\(9\)+\(8\)+\(6\)+\(4\)+\(9\)+\(10\)
4032.2.b $32.196$ \( \chi_{4032}(3583, \cdot) \) $2$ $78$ \(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(8\)+\(16\)
4032.2.c $32.196$ \( \chi_{4032}(2017, \cdot) \) $2$ $60$ \(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)
4032.2.h $32.196$ \( \chi_{4032}(575, \cdot) \) $2$ $48$ \(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(12\)
4032.2.i $32.196$ \( \chi_{4032}(1889, \cdot) \) $2$ $64$ \(8\)+\(8\)+\(48\)
4032.2.j $32.196$ \( \chi_{4032}(2591, \cdot) \) $2$ $48$ \(4\)+\(\cdots\)+\(4\)+\(16\)+\(16\)
4032.2.k $32.196$ \( \chi_{4032}(3905, \cdot) \) $2$ $64$ \(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(16\)+\(16\)
4032.2.p $32.196$ \( \chi_{4032}(1567, \cdot) \) $2$ $80$ \(4\)+\(\cdots\)+\(4\)+\(8\)+\(\cdots\)+\(8\)+\(12\)+\(12\)
4032.2.v $32.196$ \( \chi_{4032}(1583, \cdot) \) $4$ $96$ \(4\)+\(4\)+\(12\)+\(36\)+\(40\)
4033.2.a $32.204$ \( \chi_{4033}(1, \cdot) \) $1$ $325$ \(1\)+\(1\)+\(77\)+\(79\)+\(82\)+\(85\) \(80\)+\(83\)+\(85\)+\(77\)
4034.2.a $32.212$ \( \chi_{4034}(1, \cdot) \) $1$ $169$ \(33\)+\(35\)+\(49\)+\(52\) \(35\)+\(49\)+\(52\)+\(33\)
Next   To download results, determine the number of results.