Label |
$A$ |
$\chi$ |
$\operatorname{ord}(\chi)$ |
Dim. |
Decomp. |
AL-dims. |
4001.2.a |
$31.948$ |
\( \chi_{4001}(1, \cdot) \) |
$1$ |
$333$ |
\(149\)+\(184\) |
\(149\)+\(184\) |
4002.2.a |
$31.956$ |
\( \chi_{4002}(1, \cdot) \) |
$1$ |
$101$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(6\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\) |
\(6\)+\(5\)+\(8\)+\(7\)+\(4\)+\(8\)+\(6\)+\(6\)+\(8\)+\(5\)+\(4\)+\(9\)+\(5\)+\(9\)+\(9\)+\(2\) |
4003.2.a |
$31.964$ |
\( \chi_{4003}(1, \cdot) \) |
$1$ |
$333$ |
\(2\)+\(152\)+\(179\) |
\(154\)+\(179\) |
4004.2.a |
$31.972$ |
\( \chi_{4004}(1, \cdot) \) |
$1$ |
$60$ |
\(1\)+\(1\)+\(1\)+\(4\)+\(4\)+\(5\)+\(6\)+\(9\)+\(9\)+\(10\)+\(10\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(10\)+\(6\)+\(4\)+\(10\)+\(6\)+\(10\)+\(10\)+\(4\) |
4004.2.e |
$31.972$ |
\( \chi_{4004}(3849, \cdot) \) |
$2$ |
$96$ |
\(48\)+\(48\) |
|
4004.2.m |
$31.972$ |
\( \chi_{4004}(2157, \cdot) \) |
$2$ |
$68$ |
\(2\)+\(30\)+\(36\) |
|
4005.2.a |
$31.980$ |
\( \chi_{4005}(1, \cdot) \) |
$1$ |
$148$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(4\)+\(4\)+\(4\)+\(6\)+\(7\)+\(8\)+\(9\)+\(10\)+\(10\)+\(10\)+\(12\)+\(12\)+\(17\)+\(17\) |
\(13\)+\(17\)+\(17\)+\(13\)+\(23\)+\(21\)+\(21\)+\(23\) |
4006.2.a |
$31.988$ |
\( \chi_{4006}(1, \cdot) \) |
$1$ |
$166$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(31\)+\(40\)+\(42\)+\(46\) |
\(40\)+\(43\)+\(47\)+\(36\) |
4007.2.a |
$31.996$ |
\( \chi_{4007}(1, \cdot) \) |
$1$ |
$334$ |
\(139\)+\(195\) |
\(139\)+\(195\) |
4008.2.a |
$32.004$ |
\( \chi_{4008}(1, \cdot) \) |
$1$ |
$82$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(5\)+\(7\)+\(8\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) |
\(10\)+\(11\)+\(14\)+\(7\)+\(8\)+\(11\)+\(9\)+\(12\) |
4009.2.a |
$32.012$ |
\( \chi_{4009}(1, \cdot) \) |
$1$ |
$315$ |
\(1\)+\(3\)+\(71\)+\(75\)+\(82\)+\(83\) |
\(75\)+\(84\)+\(82\)+\(74\) |
4010.2.a |
$32.020$ |
\( \chi_{4010}(1, \cdot) \) |
$1$ |
$135$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(9\)+\(10\)+\(12\)+\(15\)+\(17\)+\(20\)+\(22\)+\(22\) |
\(16\)+\(18\)+\(21\)+\(13\)+\(22\)+\(12\)+\(9\)+\(24\) |
4011.2.a |
$32.028$ |
\( \chi_{4011}(1, \cdot) \) |
$1$ |
$191$ |
\(1\)+\(\cdots\)+\(1\)+\(3\)+\(18\)+\(18\)+\(19\)+\(19\)+\(26\)+\(27\)+\(28\)+\(29\) |
\(19\)+\(29\)+\(29\)+\(19\)+\(29\)+\(19\)+\(19\)+\(28\) |
4012.2.a |
$32.036$ |
\( \chi_{4012}(1, \cdot) \) |
$1$ |
$76$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(2\)+\(3\)+\(12\)+\(15\)+\(18\)+\(21\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(19\)+\(17\)+\(19\)+\(21\) |
4012.2.b |
$32.036$ |
\( \chi_{4012}(237, \cdot) \) |
$2$ |
$86$ |
\(40\)+\(46\) |
|
4013.2.a |
$32.044$ |
\( \chi_{4013}(1, \cdot) \) |
$1$ |
$334$ |
\(1\)+\(157\)+\(176\) |
\(157\)+\(177\) |
4014.2.a |
$32.052$ |
\( \chi_{4014}(1, \cdot) \) |
$1$ |
$92$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\) |
\(9\)+\(9\)+\(18\)+\(10\)+\(9\)+\(9\)+\(10\)+\(18\) |
4014.2.d |
$32.052$ |
\( \chi_{4014}(4013, \cdot) \) |
$2$ |
$72$ |
\(72\) |
|
4015.2.a |
$32.060$ |
\( \chi_{4015}(1, \cdot) \) |
$1$ |
$239$ |
\(1\)+\(23\)+\(23\)+\(27\)+\(27\)+\(31\)+\(32\)+\(37\)+\(38\) |
\(32\)+\(27\)+\(27\)+\(32\)+\(38\)+\(23\)+\(23\)+\(37\) |
4016.2.a |
$32.068$ |
\( \chi_{4016}(1, \cdot) \) |
$1$ |
$125$ |
\(2\)+\(2\)+\(4\)+\(5\)+\(5\)+\(6\)+\(7\)+\(9\)+\(12\)+\(14\)+\(17\)+\(19\)+\(23\) |
\(21\)+\(42\)+\(31\)+\(31\) |
4017.2.a |
$32.076$ |
\( \chi_{4017}(1, \cdot) \) |
$1$ |
$203$ |
\(1\)+\(1\)+\(1\)+\(2\)+\(16\)+\(19\)+\(24\)+\(25\)+\(25\)+\(25\)+\(32\)+\(32\) |
\(26\)+\(24\)+\(25\)+\(27\)+\(32\)+\(18\)+\(19\)+\(32\) |
4018.2.a |
$32.084$ |
\( \chi_{4018}(1, \cdot) \) |
$1$ |
$138$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(6\)+\(\cdots\)+\(6\)+\(10\)+\(\cdots\)+\(10\) |
\(18\)+\(16\)+\(16\)+\(19\)+\(20\)+\(14\)+\(13\)+\(22\) |
4019.2.a |
$32.092$ |
\( \chi_{4019}(1, \cdot) \) |
$1$ |
$335$ |
\(149\)+\(186\) |
\(149\)+\(186\) |
4020.2.a |
$32.100$ |
\( \chi_{4020}(1, \cdot) \) |
$1$ |
$44$ |
\(1\)+\(4\)+\(4\)+\(4\)+\(5\)+\(6\)+\(6\)+\(7\)+\(7\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(7\)+\(4\)+\(5\)+\(6\)+\(5\)+\(6\)+\(7\)+\(4\) |
4020.2.f |
$32.100$ |
\( \chi_{4020}(401, \cdot) \) |
$2$ |
$92$ |
\(46\)+\(46\) |
|
4020.2.g |
$32.100$ |
\( \chi_{4020}(1609, \cdot) \) |
$2$ |
$64$ |
\(2\)+\(24\)+\(38\) |
|
4020.2.q |
$32.100$ |
\( \chi_{4020}(841, \cdot) \) |
$3$ |
$92$ |
\(2\)+\(\cdots\)+\(2\)+\(4\)+\(12\)+\(14\)+\(22\)+\(24\) |
|
4021.2.a |
$32.108$ |
\( \chi_{4021}(1, \cdot) \) |
$1$ |
$334$ |
\(1\)+\(151\)+\(182\) |
\(152\)+\(182\) |
4022.2.a |
$32.116$ |
\( \chi_{4022}(1, \cdot) \) |
$1$ |
$168$ |
\(1\)+\(3\)+\(31\)+\(37\)+\(46\)+\(50\) |
\(37\)+\(47\)+\(50\)+\(34\) |
4023.2.a |
$32.124$ |
\( \chi_{4023}(1, \cdot) \) |
$1$ |
$198$ |
\(18\)+\(18\)+\(24\)+\(24\)+\(25\)+\(25\)+\(32\)+\(32\) |
\(43\)+\(57\)+\(56\)+\(42\) |
4024.2.a |
$32.132$ |
\( \chi_{4024}(1, \cdot) \) |
$1$ |
$126$ |
\(1\)+\(1\)+\(1\)+\(28\)+\(29\)+\(33\)+\(33\) |
\(29\)+\(34\)+\(34\)+\(29\) |
4025.2.a |
$32.140$ |
\( \chi_{4025}(1, \cdot) \) |
$1$ |
$210$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(\cdots\)+\(8\)+\(12\)+\(12\)+\(14\)+\(\cdots\)+\(14\)+\(21\)+\(21\) |
\(27\)+\(22\)+\(31\)+\(18\)+\(29\)+\(27\)+\(21\)+\(35\) |
4026.2.a |
$32.148$ |
\( \chi_{4026}(1, \cdot) \) |
$1$ |
$101$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(\cdots\)+\(4\)+\(5\)+\(5\)+\(6\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(9\) |
\(7\)+\(5\)+\(7\)+\(6\)+\(8\)+\(5\)+\(3\)+\(9\)+\(6\)+\(6\)+\(5\)+\(8\)+\(4\)+\(9\)+\(10\)+\(3\) |
4027.2.a |
$32.156$ |
\( \chi_{4027}(1, \cdot) \) |
$1$ |
$335$ |
\(2\)+\(159\)+\(174\) |
\(159\)+\(176\) |
4028.2.a |
$32.164$ |
\( \chi_{4028}(1, \cdot) \) |
$1$ |
$78$ |
\(1\)+\(1\)+\(19\)+\(\cdots\)+\(19\) |
\(0\)+\(0\)+\(0\)+\(0\)+\(19\)+\(19\)+\(20\)+\(20\) |
4028.2.c |
$32.164$ |
\( \chi_{4028}(3497, \cdot) \) |
$2$ |
$82$ |
\(82\) |
|
4029.2.a |
$32.172$ |
\( \chi_{4029}(1, \cdot) \) |
$1$ |
$207$ |
\(1\)+\(1\)+\(2\)+\(3\)+\(18\)+\(22\)+\(22\)+\(25\)+\(25\)+\(25\)+\(31\)+\(32\) |
\(22\)+\(32\)+\(25\)+\(25\)+\(25\)+\(25\)+\(22\)+\(31\) |
4030.2.a |
$32.180$ |
\( \chi_{4030}(1, \cdot) \) |
$1$ |
$121$ |
\(1\)+\(2\)+\(6\)+\(\cdots\)+\(6\)+\(7\)+\(7\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(9\)+\(9\) |
\(7\)+\(9\)+\(10\)+\(6\)+\(8\)+\(7\)+\(6\)+\(9\)+\(8\)+\(7\)+\(6\)+\(9\)+\(6\)+\(8\)+\(9\)+\(6\) |
4031.2.a |
$32.188$ |
\( \chi_{4031}(1, \cdot) \) |
$1$ |
$323$ |
\(2\)+\(59\)+\(61\)+\(98\)+\(103\) |
\(61\)+\(103\)+\(100\)+\(59\) |
4032.2.a |
$32.196$ |
\( \chi_{4032}(1, \cdot) \) |
$1$ |
$60$ |
\(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\) |
\(6\)+\(8\)+\(9\)+\(8\)+\(6\)+\(4\)+\(9\)+\(10\) |
4032.2.b |
$32.196$ |
\( \chi_{4032}(3583, \cdot) \) |
$2$ |
$78$ |
\(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(8\)+\(16\) |
|
4032.2.c |
$32.196$ |
\( \chi_{4032}(2017, \cdot) \) |
$2$ |
$60$ |
\(2\)+\(\cdots\)+\(2\)+\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\) |
|
4032.2.h |
$32.196$ |
\( \chi_{4032}(575, \cdot) \) |
$2$ |
$48$ |
\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(12\) |
|
4032.2.i |
$32.196$ |
\( \chi_{4032}(1889, \cdot) \) |
$2$ |
$64$ |
\(8\)+\(8\)+\(48\) |
|
4032.2.j |
$32.196$ |
\( \chi_{4032}(2591, \cdot) \) |
$2$ |
$48$ |
\(4\)+\(\cdots\)+\(4\)+\(16\)+\(16\) |
|
4032.2.k |
$32.196$ |
\( \chi_{4032}(3905, \cdot) \) |
$2$ |
$64$ |
\(4\)+\(\cdots\)+\(4\)+\(8\)+\(8\)+\(16\)+\(16\) |
|
4032.2.p |
$32.196$ |
\( \chi_{4032}(1567, \cdot) \) |
$2$ |
$80$ |
\(4\)+\(\cdots\)+\(4\)+\(8\)+\(\cdots\)+\(8\)+\(12\)+\(12\) |
|
4032.2.v |
$32.196$ |
\( \chi_{4032}(1583, \cdot) \) |
$4$ |
$96$ |
\(4\)+\(4\)+\(12\)+\(36\)+\(40\) |
|
4033.2.a |
$32.204$ |
\( \chi_{4033}(1, \cdot) \) |
$1$ |
$325$ |
\(1\)+\(1\)+\(77\)+\(79\)+\(82\)+\(85\) |
\(80\)+\(83\)+\(85\)+\(77\) |
4034.2.a |
$32.212$ |
\( \chi_{4034}(1, \cdot) \) |
$1$ |
$169$ |
\(33\)+\(35\)+\(49\)+\(52\) |
\(35\)+\(49\)+\(52\)+\(33\) |