103.1.b |
\(0.051403696301199245\) |
\( \chi_{ 103 }(102, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
104.1.h |
\(0.05190276131383225\) |
\( \chi_{ 104 }(51, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
107.1.b |
\(0.053399956351731254\) |
\( \chi_{ 107 }(106, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
108.1.c |
\(0.05389902136436426\) |
\( \chi_{ 108 }(53, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
111.1.d |
\(0.05539621640226327\) |
\( \chi_{ 111 }(110, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
111.1.h |
\(0.05539621640226327\) |
\( \chi_{ 111 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
111.1.i |
\(0.05539621640226327\) |
\( \chi_{ 111 }(26, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
112.1.l |
\(0.05589528141489627\) |
\( \chi_{ 112 }(13, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
116.1.d |
\(0.05789154146542828\) |
\( \chi_{ 116 }(115, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
116.1.j |
\(0.05789154146542828\) |
\( \chi_{ 116 }(7, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
117.1.j |
\(0.05839060647806128\) |
\( \chi_{ 117 }(73, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
119.1.d |
\(0.05938873650332729\) |
\( \chi_{ 119 }(118, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
120.1.i |
\(0.059887801515960286\) |
\( \chi_{ 120 }(29, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
124.1.i |
\(0.061884061566492295\) |
\( \chi_{ 124 }(67, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
127.1.b |
\(0.06338125660439131\) |
\( \chi_{ 127 }(126, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
128.1.d |
\(0.06388032161702431\) |
\( \chi_{ 128 }(63, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
129.1.l |
\(0.06437938662965731\) |
\( \chi_{ 129 }(11, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
131.1.b |
\(0.06537751665492332\) |
\( \chi_{ 131 }(130, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
133.1.m |
\(0.06637564668018932\) |
\( \chi_{ 133 }(83, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
133.1.r |
\(0.06637564668018932\) |
\( \chi_{ 133 }(18, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
135.1.d |
\(0.06737377670545533\) |
\( \chi_{ 135 }(134, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
136.1.e |
\(0.06787284171808833\) |
\( \chi_{ 136 }(67, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
136.1.j |
\(0.06787284171808833\) |
\( \chi_{ 136 }(115, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
136.1.p |
\(0.06787284171808833\) |
\( \chi_{ 136 }(19, \cdot) \) |
\(8\) |
\(4\) |
\(4\) |
139.1.b |
\(0.06937003675598734\) |
\( \chi_{ 139 }(138, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
140.1.h |
\(0.06986910176862034\) |
\( \chi_{ 140 }(69, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
140.1.p |
\(0.06986910176862034\) |
\( \chi_{ 140 }(39, \cdot) \) |
\(6\) |
\(4\) |
\(2\)+\(2\) |
143.1.d |
\(0.07136629680651935\) |
\( \chi_{ 143 }(142, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
144.1.g |
\(0.07186536181915235\) |
\( \chi_{ 144 }(127, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
145.1.f |
\(0.07236442683178534\) |
\( \chi_{ 145 }(99, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
145.1.h |
\(0.07236442683178534\) |
\( \chi_{ 145 }(28, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
147.1.l |
\(0.07336255685705136\) |
\( \chi_{ 147 }(8, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
148.1.f |
\(0.07386162186968435\) |
\( \chi_{ 148 }(105, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
148.1.i |
\(0.07386162186968435\) |
\( \chi_{ 148 }(47, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
148.1.p |
\(0.07386162186968435\) |
\( \chi_{ 148 }(7, \cdot) \) |
\(18\) |
\(6\) |
\(6\) |
151.1.b |
\(0.07535881690758336\) |
\( \chi_{ 151 }(150, \cdot) \) |
\(2\) |
\(3\) |
\(3\) |
152.1.g |
\(0.07585788192021636\) |
\( \chi_{ 152 }(37, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
152.1.k |
\(0.07585788192021636\) |
\( \chi_{ 152 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
152.1.u |
\(0.07585788192021636\) |
\( \chi_{ 152 }(35, \cdot) \) |
\(18\) |
\(6\) |
\(6\) |
155.1.c |
\(0.07735507695811537\) |
\( \chi_{ 155 }(154, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
156.1.o |
\(0.07785414197074837\) |
\( \chi_{ 156 }(29, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
156.1.s |
\(0.07785414197074837\) |
\( \chi_{ 156 }(17, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
159.1.d |
\(0.07935133700864738\) |
\( \chi_{ 159 }(158, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
160.1.p |
\(0.07985040202128038\) |
\( \chi_{ 160 }(33, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
161.1.l |
\(0.08034946703391338\) |
\( \chi_{ 161 }(6, \cdot) \) |
\(22\) |
\(10\) |
\(10\) |
164.1.d |
\(0.08184666207181239\) |
\( \chi_{ 164 }(163, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
164.1.j |
\(0.08184666207181239\) |
\( \chi_{ 164 }(51, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
164.1.l |
\(0.08184666207181239\) |
\( \chi_{ 164 }(23, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
165.1.l |
\(0.0823457270844454\) |
\( \chi_{ 165 }(32, \cdot) \) |
\(4\) |
\(4\) |
\(2\)+\(2\) |
167.1.b |
\(0.0833438571097114\) |
\( \chi_{ 167 }(166, \cdot) \) |
\(2\) |
\(5\) |
\(5\) |