| 103.1.b |
\(0.0514036963012\) |
\( \chi_{ 103 }(102, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 104.1.h |
\(0.0519027613138\) |
\( \chi_{ 104 }(51, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 107.1.b |
\(0.0533999563517\) |
\( \chi_{ 107 }(106, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 108.1.c |
\(0.0538990213644\) |
\( \chi_{ 108 }(53, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 111.1.d |
\(0.0553962164023\) |
\( \chi_{ 111 }(110, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
| 111.1.h |
\(0.0553962164023\) |
\( \chi_{ 111 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 111.1.i |
\(0.0553962164023\) |
\( \chi_{ 111 }(26, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 112.1.l |
\(0.0558952814149\) |
\( \chi_{ 112 }(13, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 116.1.d |
\(0.0578915414654\) |
\( \chi_{ 116 }(115, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 116.1.j |
\(0.0578915414654\) |
\( \chi_{ 116 }(7, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
| 117.1.j |
\(0.0583906064781\) |
\( \chi_{ 117 }(73, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 119.1.d |
\(0.0593887365033\) |
\( \chi_{ 119 }(118, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
| 120.1.i |
\(0.059887801516\) |
\( \chi_{ 120 }(29, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 124.1.i |
\(0.0618840615665\) |
\( \chi_{ 124 }(67, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 127.1.b |
\(0.0633812566044\) |
\( \chi_{ 127 }(126, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 128.1.d |
\(0.063880321617\) |
\( \chi_{ 128 }(63, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 129.1.l |
\(0.0643793866297\) |
\( \chi_{ 129 }(11, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
| 131.1.b |
\(0.0653775166549\) |
\( \chi_{ 131 }(130, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 133.1.m |
\(0.0663756466802\) |
\( \chi_{ 133 }(83, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 133.1.r |
\(0.0663756466802\) |
\( \chi_{ 133 }(18, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 135.1.d |
\(0.0673737767055\) |
\( \chi_{ 135 }(134, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 136.1.e |
\(0.0678728417181\) |
\( \chi_{ 136 }(67, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 136.1.j |
\(0.0678728417181\) |
\( \chi_{ 136 }(115, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 136.1.p |
\(0.0678728417181\) |
\( \chi_{ 136 }(19, \cdot) \) |
\(8\) |
\(4\) |
\(4\) |
| 139.1.b |
\(0.069370036756\) |
\( \chi_{ 139 }(138, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 140.1.h |
\(0.0698691017686\) |
\( \chi_{ 140 }(69, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 140.1.p |
\(0.0698691017686\) |
\( \chi_{ 140 }(39, \cdot) \) |
\(6\) |
\(4\) |
\(2\)+\(2\) |
| 143.1.d |
\(0.0713662968065\) |
\( \chi_{ 143 }(142, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
| 144.1.g |
\(0.0718653618192\) |
\( \chi_{ 144 }(127, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 145.1.f |
\(0.0723644268318\) |
\( \chi_{ 145 }(99, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 145.1.h |
\(0.0723644268318\) |
\( \chi_{ 145 }(28, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 147.1.l |
\(0.0733625568571\) |
\( \chi_{ 147 }(8, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
| 148.1.f |
\(0.0738616218697\) |
\( \chi_{ 148 }(105, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 148.1.i |
\(0.0738616218697\) |
\( \chi_{ 148 }(47, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 148.1.p |
\(0.0738616218697\) |
\( \chi_{ 148 }(7, \cdot) \) |
\(18\) |
\(6\) |
\(6\) |
| 151.1.b |
\(0.0753588169076\) |
\( \chi_{ 151 }(150, \cdot) \) |
\(2\) |
\(3\) |
\(3\) |
| 152.1.g |
\(0.0758578819202\) |
\( \chi_{ 152 }(37, \cdot) \) |
\(2\) |
\(2\) |
\(1\)+\(1\) |
| 152.1.k |
\(0.0758578819202\) |
\( \chi_{ 152 }(11, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 152.1.u |
\(0.0758578819202\) |
\( \chi_{ 152 }(35, \cdot) \) |
\(18\) |
\(6\) |
\(6\) |
| 155.1.c |
\(0.0773550769581\) |
\( \chi_{ 155 }(154, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
| 156.1.o |
\(0.0778541419707\) |
\( \chi_{ 156 }(29, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 156.1.s |
\(0.0778541419707\) |
\( \chi_{ 156 }(17, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 159.1.d |
\(0.0793513370086\) |
\( \chi_{ 159 }(158, \cdot) \) |
\(2\) |
\(4\) |
\(2\)+\(2\) |
| 160.1.p |
\(0.0798504020213\) |
\( \chi_{ 160 }(33, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 161.1.l |
\(0.0803494670339\) |
\( \chi_{ 161 }(6, \cdot) \) |
\(22\) |
\(10\) |
\(10\) |
| 164.1.d |
\(0.0818466620718\) |
\( \chi_{ 164 }(163, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
| 164.1.j |
\(0.0818466620718\) |
\( \chi_{ 164 }(51, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
| 164.1.l |
\(0.0818466620718\) |
\( \chi_{ 164 }(23, \cdot) \) |
\(10\) |
\(4\) |
\(4\) |
| 165.1.l |
\(0.0823457270844\) |
\( \chi_{ 165 }(32, \cdot) \) |
\(4\) |
\(4\) |
\(2\)+\(2\) |
| 167.1.b |
\(0.0833438571097\) |
\( \chi_{ 167 }(166, \cdot) \) |
\(2\) |
\(5\) |
\(5\) |