| 1001.1.r |
\(0.499564077646\) |
\( \chi_{ 1001 }(802, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 1001.1.y |
\(0.499564077646\) |
\( \chi_{ 1001 }(142, \cdot) \) |
\(6\) |
\(20\) |
\(2\)+\(2\)+\(8\)+\(8\) |
| 1001.1.bo |
\(0.499564077646\) |
\( \chi_{ 1001 }(263, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 1003.1.b |
\(0.500562207671\) |
\( \chi_{ 1003 }(1002, \cdot) \) |
\(2\) |
\(3\) |
\(1\)+\(2\) |
| 1003.1.f |
\(0.500562207671\) |
\( \chi_{ 1003 }(353, \cdot) \) |
\(4\) |
\(6\) |
\(2\)+\(4\) |
| 1003.1.h |
\(0.500562207671\) |
\( \chi_{ 1003 }(117, \cdot) \) |
\(8\) |
\(12\) |
\(4\)+\(8\) |
| 1004.1.d |
\(0.501061272684\) |
\( \chi_{ 1004 }(501, \cdot) \) |
\(2\) |
\(7\) |
\(1\)+\(6\) |
| 1005.1.p |
\(0.501560337696\) |
\( \chi_{ 1005 }(29, \cdot) \) |
\(6\) |
\(8\) |
\(4\)+\(4\) |
| 1007.1.d |
\(0.502558467721\) |
\( \chi_{ 1007 }(1006, \cdot) \) |
\(2\) |
\(14\) |
\(1\)+\(1\)+\(2\)+\(2\)+\(4\)+\(4\) |
| 1008.1.f |
\(0.503057532734\) |
\( \chi_{ 1008 }(433, \cdot) \) |
\(2\) |
\(1\) |
\(1\) |
| 1008.1.u |
\(0.503057532734\) |
\( \chi_{ 1008 }(181, \cdot) \) |
\(4\) |
\(6\) |
\(2\)+\(2\)+\(2\) |
| 1008.1.y |
\(0.503057532734\) |
\( \chi_{ 1008 }(251, \cdot) \) |
\(4\) |
\(8\) |
\(4\)+\(4\) |
| 1008.1.bw |
\(0.503057532734\) |
\( \chi_{ 1008 }(655, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 1008.1.cd |
\(0.503057532734\) |
\( \chi_{ 1008 }(415, \cdot) \) |
\(6\) |
\(4\) |
\(2\)+\(2\) |
| 1008.1.cg |
\(0.503057532734\) |
\( \chi_{ 1008 }(145, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 1008.1.dc |
\(0.503057532734\) |
\( \chi_{ 1008 }(305, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 1008.1.dd |
\(0.503057532734\) |
\( \chi_{ 1008 }(79, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 1008.1.dt |
\(0.503057532734\) |
\( \chi_{ 1008 }(163, \cdot) \) |
\(12\) |
\(8\) |
\(8\) |
| 1008.1.ed |
\(0.503057532734\) |
\( \chi_{ 1008 }(53, \cdot) \) |
\(12\) |
\(8\) |
\(8\) |
| 1011.1.c |
\(0.504554727772\) |
\( \chi_{ 1011 }(1010, \cdot) \) |
\(2\) |
\(5\) |
\(1\)+\(1\)+\(1\)+\(2\) |
| 1011.1.f |
\(0.504554727772\) |
\( \chi_{ 1011 }(485, \cdot) \) |
\(4\) |
\(6\) |
\(2\)+\(4\) |
| 1011.1.l |
\(0.504554727772\) |
\( \chi_{ 1011 }(422, \cdot) \) |
\(8\) |
\(4\) |
\(4\) |
| 1011.1.q |
\(0.504554727772\) |
\( \chi_{ 1011 }(329, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
| 1011.1.r |
\(0.504554727772\) |
\( \chi_{ 1011 }(8, \cdot) \) |
\(14\) |
\(6\) |
\(6\) |
| 1011.1.y |
\(0.504554727772\) |
\( \chi_{ 1011 }(164, \cdot) \) |
\(28\) |
\(12\) |
\(12\) |
| 1011.1.bf |
\(0.504554727772\) |
\( \chi_{ 1011 }(47, \cdot) \) |
\(56\) |
\(24\) |
\(24\) |
| 1012.1.r |
\(0.505053792785\) |
\( \chi_{ 1012 }(197, \cdot) \) |
\(22\) |
\(20\) |
\(20\) |
| 1015.1.f |
\(0.506550987822\) |
\( \chi_{ 1015 }(1014, \cdot) \) |
\(2\) |
\(6\) |
\(1\)+\(1\)+\(2\)+\(2\) |
| 1015.1.br |
\(0.506550987822\) |
\( \chi_{ 1015 }(34, \cdot) \) |
\(14\) |
\(12\) |
\(6\)+\(6\) |
| 1015.1.bs |
\(0.506550987822\) |
\( \chi_{ 1015 }(139, \cdot) \) |
\(14\) |
\(12\) |
\(6\)+\(6\) |
| 1016.1.h |
\(0.507050052835\) |
\( \chi_{ 1016 }(253, \cdot) \) |
\(2\) |
\(11\) |
\(1\)+\(2\)+\(4\)+\(4\) |
| 1016.1.k |
\(0.507050052835\) |
\( \chi_{ 1016 }(19, \cdot) \) |
\(6\) |
\(4\) |
\(4\) |
| 1017.1.f |
\(0.507549117848\) |
\( \chi_{ 1017 }(98, \cdot) \) |
\(4\) |
\(4\) |
\(4\) |
| 1019.1.b |
\(0.508547247873\) |
\( \chi_{ 1019 }(1018, \cdot) \) |
\(2\) |
\(6\) |
\(6\) |
| 1020.1.o |
\(0.509046312886\) |
\( \chi_{ 1020 }(509, \cdot) \) |
\(2\) |
\(4\) |
\(4\) |
| 1020.1.cl |
\(0.509046312886\) |
\( \chi_{ 1020 }(299, \cdot) \) |
\(16\) |
\(32\) |
\(16\)+\(16\) |
| 1023.1.g |
\(0.510543507924\) |
\( \chi_{ 1023 }(1022, \cdot) \) |
\(2\) |
\(6\) |
\(1\)+\(1\)+\(2\)+\(2\) |
| 1023.1.u |
\(0.510543507924\) |
\( \chi_{ 1023 }(626, \cdot) \) |
\(6\) |
\(4\) |
\(2\)+\(2\) |
| 1023.1.ba |
\(0.510543507924\) |
\( \chi_{ 1023 }(263, \cdot) \) |
\(10\) |
\(8\) |
\(4\)+\(4\) |
| 1023.1.dk |
\(0.510543507924\) |
\( \chi_{ 1023 }(65, \cdot) \) |
\(30\) |
\(16\) |
\(8\)+\(8\) |
| 1024.1.c |
\(0.511042572936\) |
\( \chi_{ 1024 }(1023, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 1024.1.d |
\(0.511042572936\) |
\( \chi_{ 1024 }(511, \cdot) \) |
\(2\) |
\(2\) |
\(2\) |
| 1024.1.f |
\(0.511042572936\) |
\( \chi_{ 1024 }(255, \cdot) \) |
\(4\) |
\(6\) |
\(2\)+\(2\)+\(2\) |
| 1025.1.f |
\(0.511541637949\) |
\( \chi_{ 1025 }(32, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 1025.1.i |
\(0.511541637949\) |
\( \chi_{ 1025 }(132, \cdot) \) |
\(4\) |
\(2\) |
\(2\) |
| 1027.1.b |
\(0.512539767974\) |
\( \chi_{ 1027 }(1026, \cdot) \) |
\(2\) |
\(5\) |
\(1\)+\(4\) |
| 1027.1.o |
\(0.512539767974\) |
\( \chi_{ 1027 }(315, \cdot) \) |
\(6\) |
\(10\) |
\(2\)+\(8\) |
| 1027.1.s |
\(0.512539767974\) |
\( \chi_{ 1027 }(394, \cdot) \) |
\(6\) |
\(10\) |
\(2\)+\(8\) |
| 1027.1.u |
\(0.512539767974\) |
\( \chi_{ 1027 }(103, \cdot) \) |
\(6\) |
\(2\) |
\(2\) |
| 1027.1.x |
\(0.512539767974\) |
\( \chi_{ 1027 }(213, \cdot) \) |
\(12\) |
\(4\) |
\(4\) |