Learn more

Note: Search results may be incomplete due to uncomputed quantities: fricke_eigenval (110727 objects)

Refine search


Results (8 matches)

  Download to        
Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 13
507.4.a.c 507.a 1.a $1$ $29.914$ \(\Q\) None \(0\) \(-3\) \(12\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-8q^{4}+12q^{5}-2q^{7}+9q^{9}+\cdots\)
507.4.a.f 507.a 1.a $2$ $29.914$ \(\Q(\sqrt{14}) \) None \(-2\) \(-6\) \(-24\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}-3q^{3}+(7-2\beta )q^{4}+\cdots\)
507.4.a.i 507.a 1.a $4$ $29.914$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(-2\) \(-12\) \(6\) \(14\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\)
507.4.a.l 507.a 1.a $4$ $29.914$ 4.4.1362828.1 None \(0\) \(12\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(4+\beta _{3})q^{4}+(2\beta _{1}+\cdots)q^{5}+\cdots\)
507.4.a.m 507.a 1.a $4$ $29.914$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(2\) \(-12\) \(-6\) \(-14\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-3q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\)
507.4.a.p 507.a 1.a $9$ $29.914$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(6\) \(27\) \(33\) \(83\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{3})q^{2}+3q^{3}+(5+\beta _{3}+\beta _{5}+\cdots)q^{4}+\cdots\)
507.4.a.q 507.a 1.a $9$ $29.914$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(8\) \(-27\) \(41\) \(1\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-3q^{3}+(3-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
507.4.a.r 507.a 1.a $10$ $29.914$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(30\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(6+\beta _{4})q^{4}+(\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
  Download to