# Properties

 Label 9920.2.a.d.1.1 Level $9920$ Weight $2$ Character 9920.1 Self dual yes Analytic conductor $79.212$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [9920,2,Mod(1,9920)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(9920, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("9920.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$9920 = 2^{6} \cdot 5 \cdot 31$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9920.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$79.2115988051$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 310) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 9920.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} +O(q^{10})$$ $$q-2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} -2.00000 q^{11} -2.00000 q^{15} +2.00000 q^{17} +4.00000 q^{19} -4.00000 q^{23} +1.00000 q^{25} +4.00000 q^{27} +4.00000 q^{29} -1.00000 q^{31} +4.00000 q^{33} +8.00000 q^{37} +6.00000 q^{41} -2.00000 q^{43} +1.00000 q^{45} -7.00000 q^{49} -4.00000 q^{51} -8.00000 q^{53} -2.00000 q^{55} -8.00000 q^{57} -8.00000 q^{59} -4.00000 q^{67} +8.00000 q^{69} +6.00000 q^{73} -2.00000 q^{75} -4.00000 q^{79} -11.0000 q^{81} -6.00000 q^{83} +2.00000 q^{85} -8.00000 q^{87} -6.00000 q^{89} +2.00000 q^{93} +4.00000 q^{95} -2.00000 q^{97} -2.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −2.00000 −1.15470 −0.577350 0.816497i $$-0.695913\pi$$
−0.577350 + 0.816497i $$0.695913\pi$$
$$4$$ 0 0
$$5$$ 1.00000 0.447214
$$6$$ 0 0
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ −2.00000 −0.603023 −0.301511 0.953463i $$-0.597491\pi$$
−0.301511 + 0.953463i $$0.597491\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$14$$ 0 0
$$15$$ −2.00000 −0.516398
$$16$$ 0 0
$$17$$ 2.00000 0.485071 0.242536 0.970143i $$-0.422021\pi$$
0.242536 + 0.970143i $$0.422021\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −4.00000 −0.834058 −0.417029 0.908893i $$-0.636929\pi$$
−0.417029 + 0.908893i $$0.636929\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 4.00000 0.769800
$$28$$ 0 0
$$29$$ 4.00000 0.742781 0.371391 0.928477i $$-0.378881\pi$$
0.371391 + 0.928477i $$0.378881\pi$$
$$30$$ 0 0
$$31$$ −1.00000 −0.179605
$$32$$ 0 0
$$33$$ 4.00000 0.696311
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 8.00000 1.31519 0.657596 0.753371i $$-0.271573\pi$$
0.657596 + 0.753371i $$0.271573\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ −2.00000 −0.304997 −0.152499 0.988304i $$-0.548732\pi$$
−0.152499 + 0.988304i $$0.548732\pi$$
$$44$$ 0 0
$$45$$ 1.00000 0.149071
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ 0 0
$$49$$ −7.00000 −1.00000
$$50$$ 0 0
$$51$$ −4.00000 −0.560112
$$52$$ 0 0
$$53$$ −8.00000 −1.09888 −0.549442 0.835532i $$-0.685160\pi$$
−0.549442 + 0.835532i $$0.685160\pi$$
$$54$$ 0 0
$$55$$ −2.00000 −0.269680
$$56$$ 0 0
$$57$$ −8.00000 −1.05963
$$58$$ 0 0
$$59$$ −8.00000 −1.04151 −0.520756 0.853706i $$-0.674350\pi$$
−0.520756 + 0.853706i $$0.674350\pi$$
$$60$$ 0 0
$$61$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −4.00000 −0.488678 −0.244339 0.969690i $$-0.578571\pi$$
−0.244339 + 0.969690i $$0.578571\pi$$
$$68$$ 0 0
$$69$$ 8.00000 0.963087
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 6.00000 0.702247 0.351123 0.936329i $$-0.385800\pi$$
0.351123 + 0.936329i $$0.385800\pi$$
$$74$$ 0 0
$$75$$ −2.00000 −0.230940
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −4.00000 −0.450035 −0.225018 0.974355i $$-0.572244\pi$$
−0.225018 + 0.974355i $$0.572244\pi$$
$$80$$ 0 0
$$81$$ −11.0000 −1.22222
$$82$$ 0 0
$$83$$ −6.00000 −0.658586 −0.329293 0.944228i $$-0.606810\pi$$
−0.329293 + 0.944228i $$0.606810\pi$$
$$84$$ 0 0
$$85$$ 2.00000 0.216930
$$86$$ 0 0
$$87$$ −8.00000 −0.857690
$$88$$ 0 0
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 2.00000 0.207390
$$94$$ 0 0
$$95$$ 4.00000 0.410391
$$96$$ 0 0
$$97$$ −2.00000 −0.203069 −0.101535 0.994832i $$-0.532375\pi$$
−0.101535 + 0.994832i $$0.532375\pi$$
$$98$$ 0 0
$$99$$ −2.00000 −0.201008
$$100$$ 0 0
$$101$$ −2.00000 −0.199007 −0.0995037 0.995037i $$-0.531726\pi$$
−0.0995037 + 0.995037i $$0.531726\pi$$
$$102$$ 0 0
$$103$$ 8.00000 0.788263 0.394132 0.919054i $$-0.371045\pi$$
0.394132 + 0.919054i $$0.371045\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 8.00000 0.773389 0.386695 0.922208i $$-0.373617\pi$$
0.386695 + 0.922208i $$0.373617\pi$$
$$108$$ 0 0
$$109$$ 18.0000 1.72409 0.862044 0.506834i $$-0.169184\pi$$
0.862044 + 0.506834i $$0.169184\pi$$
$$110$$ 0 0
$$111$$ −16.0000 −1.51865
$$112$$ 0 0
$$113$$ 14.0000 1.31701 0.658505 0.752577i $$-0.271189\pi$$
0.658505 + 0.752577i $$0.271189\pi$$
$$114$$ 0 0
$$115$$ −4.00000 −0.373002
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −7.00000 −0.636364
$$122$$ 0 0
$$123$$ −12.0000 −1.08200
$$124$$ 0 0
$$125$$ 1.00000 0.0894427
$$126$$ 0 0
$$127$$ 16.0000 1.41977 0.709885 0.704317i $$-0.248747\pi$$
0.709885 + 0.704317i $$0.248747\pi$$
$$128$$ 0 0
$$129$$ 4.00000 0.352180
$$130$$ 0 0
$$131$$ −20.0000 −1.74741 −0.873704 0.486458i $$-0.838289\pi$$
−0.873704 + 0.486458i $$0.838289\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 4.00000 0.344265
$$136$$ 0 0
$$137$$ 18.0000 1.53784 0.768922 0.639343i $$-0.220793\pi$$
0.768922 + 0.639343i $$0.220793\pi$$
$$138$$ 0 0
$$139$$ −2.00000 −0.169638 −0.0848189 0.996396i $$-0.527031\pi$$
−0.0848189 + 0.996396i $$0.527031\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 4.00000 0.332182
$$146$$ 0 0
$$147$$ 14.0000 1.15470
$$148$$ 0 0
$$149$$ 14.0000 1.14692 0.573462 0.819232i $$-0.305600\pi$$
0.573462 + 0.819232i $$0.305600\pi$$
$$150$$ 0 0
$$151$$ 4.00000 0.325515 0.162758 0.986666i $$-0.447961\pi$$
0.162758 + 0.986666i $$0.447961\pi$$
$$152$$ 0 0
$$153$$ 2.00000 0.161690
$$154$$ 0 0
$$155$$ −1.00000 −0.0803219
$$156$$ 0 0
$$157$$ −6.00000 −0.478852 −0.239426 0.970915i $$-0.576959\pi$$
−0.239426 + 0.970915i $$0.576959\pi$$
$$158$$ 0 0
$$159$$ 16.0000 1.26888
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −24.0000 −1.87983 −0.939913 0.341415i $$-0.889094\pi$$
−0.939913 + 0.341415i $$0.889094\pi$$
$$164$$ 0 0
$$165$$ 4.00000 0.311400
$$166$$ 0 0
$$167$$ 12.0000 0.928588 0.464294 0.885681i $$-0.346308\pi$$
0.464294 + 0.885681i $$0.346308\pi$$
$$168$$ 0 0
$$169$$ −13.0000 −1.00000
$$170$$ 0 0
$$171$$ 4.00000 0.305888
$$172$$ 0 0
$$173$$ 2.00000 0.152057 0.0760286 0.997106i $$-0.475776\pi$$
0.0760286 + 0.997106i $$0.475776\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 16.0000 1.20263
$$178$$ 0 0
$$179$$ −14.0000 −1.04641 −0.523205 0.852207i $$-0.675264\pi$$
−0.523205 + 0.852207i $$0.675264\pi$$
$$180$$ 0 0
$$181$$ 24.0000 1.78391 0.891953 0.452128i $$-0.149335\pi$$
0.891953 + 0.452128i $$0.149335\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 8.00000 0.588172
$$186$$ 0 0
$$187$$ −4.00000 −0.292509
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −8.00000 −0.578860 −0.289430 0.957199i $$-0.593466\pi$$
−0.289430 + 0.957199i $$0.593466\pi$$
$$192$$ 0 0
$$193$$ 2.00000 0.143963 0.0719816 0.997406i $$-0.477068\pi$$
0.0719816 + 0.997406i $$0.477068\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −8.00000 −0.569976 −0.284988 0.958531i $$-0.591990\pi$$
−0.284988 + 0.958531i $$0.591990\pi$$
$$198$$ 0 0
$$199$$ 16.0000 1.13421 0.567105 0.823646i $$-0.308063\pi$$
0.567105 + 0.823646i $$0.308063\pi$$
$$200$$ 0 0
$$201$$ 8.00000 0.564276
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 6.00000 0.419058
$$206$$ 0 0
$$207$$ −4.00000 −0.278019
$$208$$ 0 0
$$209$$ −8.00000 −0.553372
$$210$$ 0 0
$$211$$ 16.0000 1.10149 0.550743 0.834675i $$-0.314345\pi$$
0.550743 + 0.834675i $$0.314345\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −2.00000 −0.136399
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −12.0000 −0.810885
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ −8.00000 −0.535720 −0.267860 0.963458i $$-0.586316\pi$$
−0.267860 + 0.963458i $$0.586316\pi$$
$$224$$ 0 0
$$225$$ 1.00000 0.0666667
$$226$$ 0 0
$$227$$ −8.00000 −0.530979 −0.265489 0.964114i $$-0.585534\pi$$
−0.265489 + 0.964114i $$0.585534\pi$$
$$228$$ 0 0
$$229$$ −4.00000 −0.264327 −0.132164 0.991228i $$-0.542192\pi$$
−0.132164 + 0.991228i $$0.542192\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −26.0000 −1.70332 −0.851658 0.524097i $$-0.824403\pi$$
−0.851658 + 0.524097i $$0.824403\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 8.00000 0.519656
$$238$$ 0 0
$$239$$ 12.0000 0.776215 0.388108 0.921614i $$-0.373129\pi$$
0.388108 + 0.921614i $$0.373129\pi$$
$$240$$ 0 0
$$241$$ −2.00000 −0.128831 −0.0644157 0.997923i $$-0.520518\pi$$
−0.0644157 + 0.997923i $$0.520518\pi$$
$$242$$ 0 0
$$243$$ 10.0000 0.641500
$$244$$ 0 0
$$245$$ −7.00000 −0.447214
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 12.0000 0.760469
$$250$$ 0 0
$$251$$ −14.0000 −0.883672 −0.441836 0.897096i $$-0.645673\pi$$
−0.441836 + 0.897096i $$0.645673\pi$$
$$252$$ 0 0
$$253$$ 8.00000 0.502956
$$254$$ 0 0
$$255$$ −4.00000 −0.250490
$$256$$ 0 0
$$257$$ 10.0000 0.623783 0.311891 0.950118i $$-0.399037\pi$$
0.311891 + 0.950118i $$0.399037\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 4.00000 0.247594
$$262$$ 0 0
$$263$$ −24.0000 −1.47990 −0.739952 0.672660i $$-0.765152\pi$$
−0.739952 + 0.672660i $$0.765152\pi$$
$$264$$ 0 0
$$265$$ −8.00000 −0.491436
$$266$$ 0 0
$$267$$ 12.0000 0.734388
$$268$$ 0 0
$$269$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$270$$ 0 0
$$271$$ −20.0000 −1.21491 −0.607457 0.794353i $$-0.707810\pi$$
−0.607457 + 0.794353i $$0.707810\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −2.00000 −0.120605
$$276$$ 0 0
$$277$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$278$$ 0 0
$$279$$ −1.00000 −0.0598684
$$280$$ 0 0
$$281$$ 10.0000 0.596550 0.298275 0.954480i $$-0.403589\pi$$
0.298275 + 0.954480i $$0.403589\pi$$
$$282$$ 0 0
$$283$$ 24.0000 1.42665 0.713326 0.700832i $$-0.247188\pi$$
0.713326 + 0.700832i $$0.247188\pi$$
$$284$$ 0 0
$$285$$ −8.00000 −0.473879
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −13.0000 −0.764706
$$290$$ 0 0
$$291$$ 4.00000 0.234484
$$292$$ 0 0
$$293$$ 18.0000 1.05157 0.525786 0.850617i $$-0.323771\pi$$
0.525786 + 0.850617i $$0.323771\pi$$
$$294$$ 0 0
$$295$$ −8.00000 −0.465778
$$296$$ 0 0
$$297$$ −8.00000 −0.464207
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 4.00000 0.229794
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 16.0000 0.913168 0.456584 0.889680i $$-0.349073\pi$$
0.456584 + 0.889680i $$0.349073\pi$$
$$308$$ 0 0
$$309$$ −16.0000 −0.910208
$$310$$ 0 0
$$311$$ 8.00000 0.453638 0.226819 0.973937i $$-0.427167\pi$$
0.226819 + 0.973937i $$0.427167\pi$$
$$312$$ 0 0
$$313$$ −22.0000 −1.24351 −0.621757 0.783210i $$-0.713581\pi$$
−0.621757 + 0.783210i $$0.713581\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −2.00000 −0.112331 −0.0561656 0.998421i $$-0.517887\pi$$
−0.0561656 + 0.998421i $$0.517887\pi$$
$$318$$ 0 0
$$319$$ −8.00000 −0.447914
$$320$$ 0 0
$$321$$ −16.0000 −0.893033
$$322$$ 0 0
$$323$$ 8.00000 0.445132
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −36.0000 −1.99080
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 30.0000 1.64895 0.824475 0.565899i $$-0.191471\pi$$
0.824475 + 0.565899i $$0.191471\pi$$
$$332$$ 0 0
$$333$$ 8.00000 0.438397
$$334$$ 0 0
$$335$$ −4.00000 −0.218543
$$336$$ 0 0
$$337$$ 14.0000 0.762629 0.381314 0.924445i $$-0.375472\pi$$
0.381314 + 0.924445i $$0.375472\pi$$
$$338$$ 0 0
$$339$$ −28.0000 −1.52075
$$340$$ 0 0
$$341$$ 2.00000 0.108306
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 8.00000 0.430706
$$346$$ 0 0
$$347$$ 22.0000 1.18102 0.590511 0.807030i $$-0.298926\pi$$
0.590511 + 0.807030i $$0.298926\pi$$
$$348$$ 0 0
$$349$$ −10.0000 −0.535288 −0.267644 0.963518i $$-0.586245\pi$$
−0.267644 + 0.963518i $$0.586245\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 30.0000 1.59674 0.798369 0.602168i $$-0.205696\pi$$
0.798369 + 0.602168i $$0.205696\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −8.00000 −0.422224 −0.211112 0.977462i $$-0.567708\pi$$
−0.211112 + 0.977462i $$0.567708\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 14.0000 0.734809
$$364$$ 0 0
$$365$$ 6.00000 0.314054
$$366$$ 0 0
$$367$$ 4.00000 0.208798 0.104399 0.994535i $$-0.466708\pi$$
0.104399 + 0.994535i $$0.466708\pi$$
$$368$$ 0 0
$$369$$ 6.00000 0.312348
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 26.0000 1.34623 0.673114 0.739538i $$-0.264956\pi$$
0.673114 + 0.739538i $$0.264956\pi$$
$$374$$ 0 0
$$375$$ −2.00000 −0.103280
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −16.0000 −0.821865 −0.410932 0.911666i $$-0.634797\pi$$
−0.410932 + 0.911666i $$0.634797\pi$$
$$380$$ 0 0
$$381$$ −32.0000 −1.63941
$$382$$ 0 0
$$383$$ 16.0000 0.817562 0.408781 0.912633i $$-0.365954\pi$$
0.408781 + 0.912633i $$0.365954\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −2.00000 −0.101666
$$388$$ 0 0
$$389$$ 36.0000 1.82527 0.912636 0.408773i $$-0.134043\pi$$
0.912636 + 0.408773i $$0.134043\pi$$
$$390$$ 0 0
$$391$$ −8.00000 −0.404577
$$392$$ 0 0
$$393$$ 40.0000 2.01773
$$394$$ 0 0
$$395$$ −4.00000 −0.201262
$$396$$ 0 0
$$397$$ 14.0000 0.702640 0.351320 0.936255i $$-0.385733\pi$$
0.351320 + 0.936255i $$0.385733\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 38.0000 1.89763 0.948815 0.315833i $$-0.102284\pi$$
0.948815 + 0.315833i $$0.102284\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ −11.0000 −0.546594
$$406$$ 0 0
$$407$$ −16.0000 −0.793091
$$408$$ 0 0
$$409$$ 6.00000 0.296681 0.148340 0.988936i $$-0.452607\pi$$
0.148340 + 0.988936i $$0.452607\pi$$
$$410$$ 0 0
$$411$$ −36.0000 −1.77575
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −6.00000 −0.294528
$$416$$ 0 0
$$417$$ 4.00000 0.195881
$$418$$ 0 0
$$419$$ 24.0000 1.17248 0.586238 0.810139i $$-0.300608\pi$$
0.586238 + 0.810139i $$0.300608\pi$$
$$420$$ 0 0
$$421$$ 22.0000 1.07221 0.536107 0.844150i $$-0.319894\pi$$
0.536107 + 0.844150i $$0.319894\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 2.00000 0.0970143
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −24.0000 −1.15604 −0.578020 0.816023i $$-0.696174\pi$$
−0.578020 + 0.816023i $$0.696174\pi$$
$$432$$ 0 0
$$433$$ 26.0000 1.24948 0.624740 0.780833i $$-0.285205\pi$$
0.624740 + 0.780833i $$0.285205\pi$$
$$434$$ 0 0
$$435$$ −8.00000 −0.383571
$$436$$ 0 0
$$437$$ −16.0000 −0.765384
$$438$$ 0 0
$$439$$ 40.0000 1.90910 0.954548 0.298057i $$-0.0963387\pi$$
0.954548 + 0.298057i $$0.0963387\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ 0 0
$$443$$ 28.0000 1.33032 0.665160 0.746701i $$-0.268363\pi$$
0.665160 + 0.746701i $$0.268363\pi$$
$$444$$ 0 0
$$445$$ −6.00000 −0.284427
$$446$$ 0 0
$$447$$ −28.0000 −1.32435
$$448$$ 0 0
$$449$$ 6.00000 0.283158 0.141579 0.989927i $$-0.454782\pi$$
0.141579 + 0.989927i $$0.454782\pi$$
$$450$$ 0 0
$$451$$ −12.0000 −0.565058
$$452$$ 0 0
$$453$$ −8.00000 −0.375873
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 2.00000 0.0935561 0.0467780 0.998905i $$-0.485105\pi$$
0.0467780 + 0.998905i $$0.485105\pi$$
$$458$$ 0 0
$$459$$ 8.00000 0.373408
$$460$$ 0 0
$$461$$ 8.00000 0.372597 0.186299 0.982493i $$-0.440351\pi$$
0.186299 + 0.982493i $$0.440351\pi$$
$$462$$ 0 0
$$463$$ 36.0000 1.67306 0.836531 0.547920i $$-0.184580\pi$$
0.836531 + 0.547920i $$0.184580\pi$$
$$464$$ 0 0
$$465$$ 2.00000 0.0927478
$$466$$ 0 0
$$467$$ −8.00000 −0.370196 −0.185098 0.982720i $$-0.559260\pi$$
−0.185098 + 0.982720i $$0.559260\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 12.0000 0.552931
$$472$$ 0 0
$$473$$ 4.00000 0.183920
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ −8.00000 −0.366295
$$478$$ 0 0
$$479$$ 24.0000 1.09659 0.548294 0.836286i $$-0.315277\pi$$
0.548294 + 0.836286i $$0.315277\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −2.00000 −0.0908153
$$486$$ 0 0
$$487$$ 32.0000 1.45006 0.725029 0.688718i $$-0.241826\pi$$
0.725029 + 0.688718i $$0.241826\pi$$
$$488$$ 0 0
$$489$$ 48.0000 2.17064
$$490$$ 0 0
$$491$$ −2.00000 −0.0902587 −0.0451294 0.998981i $$-0.514370\pi$$
−0.0451294 + 0.998981i $$0.514370\pi$$
$$492$$ 0 0
$$493$$ 8.00000 0.360302
$$494$$ 0 0
$$495$$ −2.00000 −0.0898933
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −10.0000 −0.447661 −0.223831 0.974628i $$-0.571856\pi$$
−0.223831 + 0.974628i $$0.571856\pi$$
$$500$$ 0 0
$$501$$ −24.0000 −1.07224
$$502$$ 0 0
$$503$$ −16.0000 −0.713405 −0.356702 0.934218i $$-0.616099\pi$$
−0.356702 + 0.934218i $$0.616099\pi$$
$$504$$ 0 0
$$505$$ −2.00000 −0.0889988
$$506$$ 0 0
$$507$$ 26.0000 1.15470
$$508$$ 0 0
$$509$$ −24.0000 −1.06378 −0.531891 0.846813i $$-0.678518\pi$$
−0.531891 + 0.846813i $$0.678518\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 16.0000 0.706417
$$514$$ 0 0
$$515$$ 8.00000 0.352522
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −4.00000 −0.175581
$$520$$ 0 0
$$521$$ −38.0000 −1.66481 −0.832405 0.554168i $$-0.813037\pi$$
−0.832405 + 0.554168i $$0.813037\pi$$
$$522$$ 0 0
$$523$$ −38.0000 −1.66162 −0.830812 0.556553i $$-0.812124\pi$$
−0.830812 + 0.556553i $$0.812124\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −2.00000 −0.0871214
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 0 0
$$531$$ −8.00000 −0.347170
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 8.00000 0.345870
$$536$$ 0 0
$$537$$ 28.0000 1.20829
$$538$$ 0 0
$$539$$ 14.0000 0.603023
$$540$$ 0 0
$$541$$ −38.0000 −1.63375 −0.816874 0.576816i $$-0.804295\pi$$
−0.816874 + 0.576816i $$0.804295\pi$$
$$542$$ 0 0
$$543$$ −48.0000 −2.05988
$$544$$ 0 0
$$545$$ 18.0000 0.771035
$$546$$ 0 0
$$547$$ 32.0000 1.36822 0.684111 0.729378i $$-0.260191\pi$$
0.684111 + 0.729378i $$0.260191\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 16.0000 0.681623
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ −16.0000 −0.679162
$$556$$ 0 0
$$557$$ −24.0000 −1.01691 −0.508456 0.861088i $$-0.669784\pi$$
−0.508456 + 0.861088i $$0.669784\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 8.00000 0.337760
$$562$$ 0 0
$$563$$ −12.0000 −0.505740 −0.252870 0.967500i $$-0.581374\pi$$
−0.252870 + 0.967500i $$0.581374\pi$$
$$564$$ 0 0
$$565$$ 14.0000 0.588984
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −42.0000 −1.76073 −0.880366 0.474295i $$-0.842703\pi$$
−0.880366 + 0.474295i $$0.842703\pi$$
$$570$$ 0 0
$$571$$ 26.0000 1.08807 0.544033 0.839064i $$-0.316897\pi$$
0.544033 + 0.839064i $$0.316897\pi$$
$$572$$ 0 0
$$573$$ 16.0000 0.668410
$$574$$ 0 0
$$575$$ −4.00000 −0.166812
$$576$$ 0 0
$$577$$ 30.0000 1.24892 0.624458 0.781058i $$-0.285320\pi$$
0.624458 + 0.781058i $$0.285320\pi$$
$$578$$ 0 0
$$579$$ −4.00000 −0.166234
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 16.0000 0.662652
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 2.00000 0.0825488 0.0412744 0.999148i $$-0.486858\pi$$
0.0412744 + 0.999148i $$0.486858\pi$$
$$588$$ 0 0
$$589$$ −4.00000 −0.164817
$$590$$ 0 0
$$591$$ 16.0000 0.658152
$$592$$ 0 0
$$593$$ −34.0000 −1.39621 −0.698106 0.715994i $$-0.745974\pi$$
−0.698106 + 0.715994i $$0.745974\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −32.0000 −1.30967
$$598$$ 0 0
$$599$$ −16.0000 −0.653742 −0.326871 0.945069i $$-0.605994\pi$$
−0.326871 + 0.945069i $$0.605994\pi$$
$$600$$ 0 0
$$601$$ −14.0000 −0.571072 −0.285536 0.958368i $$-0.592172\pi$$
−0.285536 + 0.958368i $$0.592172\pi$$
$$602$$ 0 0
$$603$$ −4.00000 −0.162893
$$604$$ 0 0
$$605$$ −7.00000 −0.284590
$$606$$ 0 0
$$607$$ −24.0000 −0.974130 −0.487065 0.873366i $$-0.661933\pi$$
−0.487065 + 0.873366i $$0.661933\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 44.0000 1.77714 0.888572 0.458738i $$-0.151698\pi$$
0.888572 + 0.458738i $$0.151698\pi$$
$$614$$ 0 0
$$615$$ −12.0000 −0.483887
$$616$$ 0 0
$$617$$ −38.0000 −1.52982 −0.764911 0.644136i $$-0.777217\pi$$
−0.764911 + 0.644136i $$0.777217\pi$$
$$618$$ 0 0
$$619$$ 34.0000 1.36658 0.683288 0.730149i $$-0.260549\pi$$
0.683288 + 0.730149i $$0.260549\pi$$
$$620$$ 0 0
$$621$$ −16.0000 −0.642058
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ 16.0000 0.638978
$$628$$ 0 0
$$629$$ 16.0000 0.637962
$$630$$ 0 0
$$631$$ −28.0000 −1.11466 −0.557331 0.830290i $$-0.688175\pi$$
−0.557331 + 0.830290i $$0.688175\pi$$
$$632$$ 0 0
$$633$$ −32.0000 −1.27189
$$634$$ 0 0
$$635$$ 16.0000 0.634941
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 30.0000 1.18493 0.592464 0.805597i $$-0.298155\pi$$
0.592464 + 0.805597i $$0.298155\pi$$
$$642$$ 0 0
$$643$$ 2.00000 0.0788723 0.0394362 0.999222i $$-0.487444\pi$$
0.0394362 + 0.999222i $$0.487444\pi$$
$$644$$ 0 0
$$645$$ 4.00000 0.157500
$$646$$ 0 0
$$647$$ 24.0000 0.943537 0.471769 0.881722i $$-0.343616\pi$$
0.471769 + 0.881722i $$0.343616\pi$$
$$648$$ 0 0
$$649$$ 16.0000 0.628055
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 6.00000 0.234798 0.117399 0.993085i $$-0.462544\pi$$
0.117399 + 0.993085i $$0.462544\pi$$
$$654$$ 0 0
$$655$$ −20.0000 −0.781465
$$656$$ 0 0
$$657$$ 6.00000 0.234082
$$658$$ 0 0
$$659$$ 36.0000 1.40236 0.701180 0.712984i $$-0.252657\pi$$
0.701180 + 0.712984i $$0.252657\pi$$
$$660$$ 0 0
$$661$$ 10.0000 0.388955 0.194477 0.980907i $$-0.437699\pi$$
0.194477 + 0.980907i $$0.437699\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −16.0000 −0.619522
$$668$$ 0 0
$$669$$ 16.0000 0.618596
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 34.0000 1.31060 0.655302 0.755367i $$-0.272541\pi$$
0.655302 + 0.755367i $$0.272541\pi$$
$$674$$ 0 0
$$675$$ 4.00000 0.153960
$$676$$ 0 0
$$677$$ 48.0000 1.84479 0.922395 0.386248i $$-0.126229\pi$$
0.922395 + 0.386248i $$0.126229\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 16.0000 0.613121
$$682$$ 0 0
$$683$$ 48.0000 1.83667 0.918334 0.395805i $$-0.129534\pi$$
0.918334 + 0.395805i $$0.129534\pi$$
$$684$$ 0 0
$$685$$ 18.0000 0.687745
$$686$$ 0 0
$$687$$ 8.00000 0.305219
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −28.0000 −1.06517 −0.532585 0.846376i $$-0.678779\pi$$
−0.532585 + 0.846376i $$0.678779\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −2.00000 −0.0758643
$$696$$ 0 0
$$697$$ 12.0000 0.454532
$$698$$ 0 0
$$699$$ 52.0000 1.96682
$$700$$ 0 0
$$701$$ 2.00000 0.0755390 0.0377695 0.999286i $$-0.487975\pi$$
0.0377695 + 0.999286i $$0.487975\pi$$
$$702$$ 0 0
$$703$$ 32.0000 1.20690
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 16.0000 0.600893 0.300446 0.953799i $$-0.402864\pi$$
0.300446 + 0.953799i $$0.402864\pi$$
$$710$$ 0 0
$$711$$ −4.00000 −0.150012
$$712$$ 0 0
$$713$$ 4.00000 0.149801
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ −24.0000 −0.896296
$$718$$ 0 0
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 4.00000 0.148762
$$724$$ 0 0
$$725$$ 4.00000 0.148556
$$726$$ 0 0
$$727$$ 40.0000 1.48352 0.741759 0.670667i $$-0.233992\pi$$
0.741759 + 0.670667i $$0.233992\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ −4.00000 −0.147945
$$732$$ 0 0
$$733$$ −2.00000 −0.0738717 −0.0369358 0.999318i $$-0.511760\pi$$
−0.0369358 + 0.999318i $$0.511760\pi$$
$$734$$ 0 0
$$735$$ 14.0000 0.516398
$$736$$ 0 0
$$737$$ 8.00000 0.294684
$$738$$ 0 0
$$739$$ −26.0000 −0.956425 −0.478213 0.878244i $$-0.658715\pi$$
−0.478213 + 0.878244i $$0.658715\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 24.0000 0.880475 0.440237 0.897881i $$-0.354894\pi$$
0.440237 + 0.897881i $$0.354894\pi$$
$$744$$ 0 0
$$745$$ 14.0000 0.512920
$$746$$ 0 0
$$747$$ −6.00000 −0.219529
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 48.0000 1.75154 0.875772 0.482724i $$-0.160353\pi$$
0.875772 + 0.482724i $$0.160353\pi$$
$$752$$ 0 0
$$753$$ 28.0000 1.02038
$$754$$ 0 0
$$755$$ 4.00000 0.145575
$$756$$ 0 0
$$757$$ −12.0000 −0.436147 −0.218074 0.975932i $$-0.569977\pi$$
−0.218074 + 0.975932i $$0.569977\pi$$
$$758$$ 0 0
$$759$$ −16.0000 −0.580763
$$760$$ 0 0
$$761$$ 22.0000 0.797499 0.398750 0.917060i $$-0.369444\pi$$
0.398750 + 0.917060i $$0.369444\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 2.00000 0.0723102
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ −2.00000 −0.0721218 −0.0360609 0.999350i $$-0.511481\pi$$
−0.0360609 + 0.999350i $$0.511481\pi$$
$$770$$ 0 0
$$771$$ −20.0000 −0.720282
$$772$$ 0 0
$$773$$ 28.0000 1.00709 0.503545 0.863969i $$-0.332029\pi$$
0.503545 + 0.863969i $$0.332029\pi$$
$$774$$ 0 0
$$775$$ −1.00000 −0.0359211
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 24.0000 0.859889
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 16.0000 0.571793
$$784$$ 0 0
$$785$$ −6.00000 −0.214149
$$786$$ 0 0
$$787$$ −22.0000 −0.784215 −0.392108 0.919919i $$-0.628254\pi$$
−0.392108 + 0.919919i $$0.628254\pi$$
$$788$$ 0 0
$$789$$ 48.0000 1.70885
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 16.0000 0.567462
$$796$$ 0 0
$$797$$ −24.0000 −0.850124 −0.425062 0.905164i $$-0.639748\pi$$
−0.425062 + 0.905164i $$0.639748\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ −12.0000 −0.423471
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −10.0000 −0.351581 −0.175791 0.984428i $$-0.556248\pi$$
−0.175791 + 0.984428i $$0.556248\pi$$
$$810$$ 0 0
$$811$$ −24.0000 −0.842754 −0.421377 0.906886i $$-0.638453\pi$$
−0.421377 + 0.906886i $$0.638453\pi$$
$$812$$ 0 0
$$813$$ 40.0000 1.40286
$$814$$ 0 0
$$815$$ −24.0000 −0.840683
$$816$$ 0 0
$$817$$ −8.00000 −0.279885
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −20.0000 −0.698005 −0.349002 0.937122i $$-0.613479\pi$$
−0.349002 + 0.937122i $$0.613479\pi$$
$$822$$ 0 0
$$823$$ 16.0000 0.557725 0.278862 0.960331i $$-0.410043\pi$$
0.278862 + 0.960331i $$0.410043\pi$$
$$824$$ 0 0
$$825$$ 4.00000 0.139262
$$826$$ 0 0
$$827$$ 14.0000 0.486828 0.243414 0.969923i $$-0.421733\pi$$
0.243414 + 0.969923i $$0.421733\pi$$
$$828$$ 0 0
$$829$$ −32.0000 −1.11141 −0.555703 0.831381i $$-0.687551\pi$$
−0.555703 + 0.831381i $$0.687551\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −14.0000 −0.485071
$$834$$ 0 0
$$835$$ 12.0000 0.415277
$$836$$ 0 0
$$837$$ −4.00000 −0.138260
$$838$$ 0 0
$$839$$ 16.0000 0.552381 0.276191 0.961103i $$-0.410928\pi$$
0.276191 + 0.961103i $$0.410928\pi$$
$$840$$ 0 0
$$841$$ −13.0000 −0.448276
$$842$$ 0 0
$$843$$ −20.0000 −0.688837
$$844$$ 0 0
$$845$$ −13.0000 −0.447214
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ −48.0000 −1.64736
$$850$$ 0 0
$$851$$ −32.0000 −1.09695
$$852$$ 0 0
$$853$$ 14.0000 0.479351 0.239675 0.970853i $$-0.422959\pi$$
0.239675 + 0.970853i $$0.422959\pi$$
$$854$$ 0 0
$$855$$ 4.00000 0.136797
$$856$$ 0 0
$$857$$ −6.00000 −0.204956 −0.102478 0.994735i $$-0.532677\pi$$
−0.102478 + 0.994735i $$0.532677\pi$$
$$858$$ 0 0
$$859$$ −42.0000 −1.43302 −0.716511 0.697576i $$-0.754262\pi$$
−0.716511 + 0.697576i $$0.754262\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 24.0000 0.816970 0.408485 0.912765i $$-0.366057\pi$$
0.408485 + 0.912765i $$0.366057\pi$$
$$864$$ 0 0
$$865$$ 2.00000 0.0680020
$$866$$ 0 0
$$867$$ 26.0000 0.883006
$$868$$ 0 0
$$869$$ 8.00000 0.271381
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ −2.00000 −0.0676897
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −34.0000 −1.14810 −0.574049 0.818821i $$-0.694628\pi$$
−0.574049 + 0.818821i $$0.694628\pi$$
$$878$$ 0 0
$$879$$ −36.0000 −1.21425
$$880$$ 0 0
$$881$$ −6.00000 −0.202145 −0.101073 0.994879i $$-0.532227\pi$$
−0.101073 + 0.994879i $$0.532227\pi$$
$$882$$ 0 0
$$883$$ 26.0000 0.874970 0.437485 0.899226i $$-0.355869\pi$$
0.437485 + 0.899226i $$0.355869\pi$$
$$884$$ 0 0
$$885$$ 16.0000 0.537834
$$886$$ 0 0
$$887$$ 48.0000 1.61168 0.805841 0.592132i $$-0.201714\pi$$
0.805841 + 0.592132i $$0.201714\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 22.0000 0.737028
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ −14.0000 −0.467968
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ −4.00000 −0.133407
$$900$$ 0 0
$$901$$ −16.0000 −0.533037
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 24.0000 0.797787
$$906$$ 0 0
$$907$$ 32.0000 1.06254 0.531271 0.847202i $$-0.321714\pi$$
0.531271 + 0.847202i $$0.321714\pi$$
$$908$$ 0 0
$$909$$ −2.00000 −0.0663358
$$910$$ 0 0
$$911$$ −24.0000 −0.795155 −0.397578 0.917568i $$-0.630149\pi$$
−0.397578 + 0.917568i $$0.630149\pi$$
$$912$$ 0 0
$$913$$ 12.0000 0.397142
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 40.0000 1.31948 0.659739 0.751495i $$-0.270667\pi$$
0.659739 + 0.751495i $$0.270667\pi$$
$$920$$ 0 0
$$921$$ −32.0000 −1.05444
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 8.00000 0.263038
$$926$$ 0 0
$$927$$ 8.00000 0.262754
$$928$$ 0 0
$$929$$ 30.0000 0.984268 0.492134 0.870519i $$-0.336217\pi$$
0.492134 + 0.870519i $$0.336217\pi$$
$$930$$ 0 0
$$931$$ −28.0000 −0.917663
$$932$$ 0 0
$$933$$ −16.0000 −0.523816
$$934$$ 0 0
$$935$$ −4.00000 −0.130814
$$936$$ 0 0
$$937$$ −14.0000 −0.457360 −0.228680 0.973502i $$-0.573441\pi$$
−0.228680 + 0.973502i $$0.573441\pi$$
$$938$$ 0 0
$$939$$ 44.0000 1.43589
$$940$$ 0 0
$$941$$ 60.0000 1.95594 0.977972 0.208736i $$-0.0669349\pi$$
0.977972 + 0.208736i $$0.0669349\pi$$
$$942$$ 0 0
$$943$$ −24.0000 −0.781548
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 14.0000 0.454939 0.227469 0.973785i $$-0.426955\pi$$
0.227469 + 0.973785i $$0.426955\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ 4.00000 0.129709
$$952$$ 0 0
$$953$$ 18.0000 0.583077 0.291539 0.956559i $$-0.405833\pi$$
0.291539 + 0.956559i $$0.405833\pi$$
$$954$$ 0 0
$$955$$ −8.00000 −0.258874
$$956$$ 0 0
$$957$$ 16.0000 0.517207
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 1.00000 0.0322581
$$962$$ 0 0
$$963$$ 8.00000 0.257796
$$964$$ 0 0
$$965$$ 2.00000 0.0643823
$$966$$ 0 0
$$967$$ −8.00000 −0.257263 −0.128631 0.991692i $$-0.541058\pi$$
−0.128631 + 0.991692i $$0.541058\pi$$
$$968$$ 0 0
$$969$$ −16.0000 −0.513994
$$970$$ 0 0
$$971$$ −36.0000 −1.15529 −0.577647 0.816286i $$-0.696029\pi$$
−0.577647 + 0.816286i $$0.696029\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 34.0000 1.08776 0.543878 0.839164i $$-0.316955\pi$$
0.543878 + 0.839164i $$0.316955\pi$$
$$978$$ 0 0
$$979$$ 12.0000 0.383522
$$980$$ 0 0
$$981$$ 18.0000 0.574696
$$982$$ 0 0
$$983$$ 8.00000 0.255160 0.127580 0.991828i $$-0.459279\pi$$
0.127580 + 0.991828i $$0.459279\pi$$
$$984$$ 0 0
$$985$$ −8.00000 −0.254901
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 8.00000 0.254385
$$990$$ 0 0
$$991$$ −40.0000 −1.27064 −0.635321 0.772248i $$-0.719132\pi$$
−0.635321 + 0.772248i $$0.719132\pi$$
$$992$$ 0 0
$$993$$ −60.0000 −1.90404
$$994$$ 0 0
$$995$$ 16.0000 0.507234
$$996$$ 0 0
$$997$$ 10.0000 0.316703 0.158352 0.987383i $$-0.449382\pi$$
0.158352 + 0.987383i $$0.449382\pi$$
$$998$$ 0 0
$$999$$ 32.0000 1.01244
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9920.2.a.d.1.1 1
4.3 odd 2 9920.2.a.bg.1.1 1
8.3 odd 2 2480.2.a.c.1.1 1
8.5 even 2 310.2.a.b.1.1 1
24.5 odd 2 2790.2.a.h.1.1 1
40.13 odd 4 1550.2.b.e.249.1 2
40.29 even 2 1550.2.a.a.1.1 1
40.37 odd 4 1550.2.b.e.249.2 2
248.61 odd 2 9610.2.a.a.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
310.2.a.b.1.1 1 8.5 even 2
1550.2.a.a.1.1 1 40.29 even 2
1550.2.b.e.249.1 2 40.13 odd 4
1550.2.b.e.249.2 2 40.37 odd 4
2480.2.a.c.1.1 1 8.3 odd 2
2790.2.a.h.1.1 1 24.5 odd 2
9610.2.a.a.1.1 1 248.61 odd 2
9920.2.a.d.1.1 1 1.1 even 1 trivial
9920.2.a.bg.1.1 1 4.3 odd 2