Defining parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.s (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 448 | 120 | 328 |
Cusp forms | 416 | 120 | 296 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
990.2.s.a | $4$ | $7.905$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\zeta_{12}q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
990.2.s.b | $8$ | $7.905$ | 8.0.303595776.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{2}+(\beta _{3}+2\beta _{5})q^{3}+(1+\beta _{4})q^{4}+\cdots\) |
990.2.s.c | $52$ | $7.905$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
990.2.s.d | $56$ | $7.905$ | None | \(0\) | \(0\) | \(4\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)