Properties

Label 990.2.s
Level $990$
Weight $2$
Character orbit 990.s
Rep. character $\chi_{990}(529,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $120$
Newform subspaces $4$
Sturm bound $432$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(432\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).

Total New Old
Modular forms 448 120 328
Cusp forms 416 120 296
Eisenstein series 32 0 32

Trace form

\( 120 q + 60 q^{4} + 2 q^{5} - 8 q^{6} - 4 q^{11} + 20 q^{14} + 34 q^{15} - 60 q^{16} - 2 q^{20} + 56 q^{21} - 4 q^{24} - 6 q^{25} + 48 q^{26} + 4 q^{29} - 32 q^{30} + 12 q^{31} - 24 q^{35} - 20 q^{41} - 8 q^{44}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
990.2.s.a 990.s 45.j $4$ $7.905$ \(\Q(\zeta_{12})\) None 990.2.s.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
990.2.s.b 990.s 45.j $8$ $7.905$ 8.0.303595776.1 None 990.2.s.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{5}q^{2}+(\beta _{3}+2\beta _{5})q^{3}+(1+\beta _{4})q^{4}+\cdots\)
990.2.s.c 990.s 45.j $52$ $7.905$ None 990.2.s.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
990.2.s.d 990.s 45.j $56$ $7.905$ None 990.2.s.d \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)