Properties

Label 990.2.n.j.91.1
Level $990$
Weight $2$
Character 990.91
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(91,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0,-2,2,0,-1,-2,0,-8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.1
Root \(2.51217 - 1.82520i\) of defining polynomial
Character \(\chi\) \(=\) 990.91
Dual form 990.2.n.j.631.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.675538 + 2.07909i) q^{7} +(0.309017 + 0.951057i) q^{8} -1.00000 q^{10} +(-1.92705 - 2.69935i) q^{11} +(5.11739 - 3.71800i) q^{13} +(-0.675538 - 2.07909i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(1.34945 + 0.980434i) q^{17} +(1.82119 + 5.60505i) q^{19} +(0.809017 - 0.587785i) q^{20} +(3.14565 + 1.05113i) q^{22} +3.26042 q^{23} +(0.309017 + 0.951057i) q^{25} +(-1.95467 + 6.01586i) q^{26} +(1.76858 + 1.28495i) q^{28} +(1.95002 - 6.00154i) q^{29} +(-3.74888 + 2.72372i) q^{31} +1.00000 q^{32} -1.66801 q^{34} +(-1.76858 + 1.28495i) q^{35} +(-0.849452 + 2.61434i) q^{37} +(-4.76794 - 3.46411i) q^{38} +(-0.309017 + 0.951057i) q^{40} +(2.89414 + 8.90725i) q^{41} +1.29259 q^{43} +(-3.16272 + 0.998590i) q^{44} +(-2.63773 + 1.91643i) q^{46} +(-0.582494 - 1.79273i) q^{47} +(1.79684 + 1.30548i) q^{49} +(-0.809017 - 0.587785i) q^{50} +(-1.95467 - 6.01586i) q^{52} +(6.36099 - 4.62153i) q^{53} +(0.0276194 - 3.31651i) q^{55} -2.18609 q^{56} +(1.95002 + 6.00154i) q^{58} +(-2.47991 + 7.63236i) q^{59} +(3.51153 + 2.55128i) q^{61} +(1.43195 - 4.40708i) q^{62} +(-0.809017 + 0.587785i) q^{64} +6.32545 q^{65} +5.61675 q^{67} +(1.34945 - 0.980434i) q^{68} +(0.675538 - 2.07909i) q^{70} +(11.1539 + 8.10380i) q^{71} +(4.32382 - 13.3074i) q^{73} +(-0.849452 - 2.61434i) q^{74} +5.89350 q^{76} +(6.91399 - 2.18301i) q^{77} +(-1.40632 + 1.02175i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(-7.57696 - 5.50498i) q^{82} +(7.25616 + 5.27191i) q^{83} +(0.515445 + 1.58638i) q^{85} +(-1.04573 + 0.759764i) q^{86} +(1.97174 - 2.66688i) q^{88} -13.3656 q^{89} +(4.27308 + 13.1512i) q^{91} +(1.00752 - 3.10084i) q^{92} +(1.52499 + 1.10797i) q^{94} +(-1.82119 + 5.60505i) q^{95} +(-9.72751 + 7.06745i) q^{97} -2.22102 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 2 q^{4} + 2 q^{5} - q^{7} - 2 q^{8} - 8 q^{10} - 2 q^{11} + q^{13} - q^{14} - 2 q^{16} + 12 q^{17} - 7 q^{19} + 2 q^{20} + 8 q^{22} - 26 q^{23} - 2 q^{25} + 6 q^{26} + 4 q^{28} + 22 q^{29}+ \cdots + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0 0
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) −0.675538 + 2.07909i −0.255329 + 0.785823i 0.738435 + 0.674325i \(0.235565\pi\)
−0.993765 + 0.111499i \(0.964435\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −1.92705 2.69935i −0.581028 0.813884i
\(12\) 0 0
\(13\) 5.11739 3.71800i 1.41931 1.03119i 0.427425 0.904051i \(-0.359421\pi\)
0.991885 0.127138i \(-0.0405790\pi\)
\(14\) −0.675538 2.07909i −0.180545 0.555661i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 1.34945 + 0.980434i 0.327290 + 0.237790i 0.739280 0.673398i \(-0.235166\pi\)
−0.411990 + 0.911188i \(0.635166\pi\)
\(18\) 0 0
\(19\) 1.82119 + 5.60505i 0.417810 + 1.28589i 0.909713 + 0.415237i \(0.136301\pi\)
−0.491903 + 0.870650i \(0.663699\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) 0 0
\(22\) 3.14565 + 1.05113i 0.670656 + 0.224101i
\(23\) 3.26042 0.679844 0.339922 0.940454i \(-0.389599\pi\)
0.339922 + 0.940454i \(0.389599\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) −1.95467 + 6.01586i −0.383342 + 1.17981i
\(27\) 0 0
\(28\) 1.76858 + 1.28495i 0.334231 + 0.242833i
\(29\) 1.95002 6.00154i 0.362110 1.11446i −0.589662 0.807650i \(-0.700739\pi\)
0.951771 0.306808i \(-0.0992611\pi\)
\(30\) 0 0
\(31\) −3.74888 + 2.72372i −0.673319 + 0.489195i −0.871135 0.491044i \(-0.836615\pi\)
0.197815 + 0.980239i \(0.436615\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.66801 −0.286062
\(35\) −1.76858 + 1.28495i −0.298945 + 0.217196i
\(36\) 0 0
\(37\) −0.849452 + 2.61434i −0.139649 + 0.429795i −0.996284 0.0861273i \(-0.972551\pi\)
0.856635 + 0.515923i \(0.172551\pi\)
\(38\) −4.76794 3.46411i −0.773462 0.561953i
\(39\) 0 0
\(40\) −0.309017 + 0.951057i −0.0488599 + 0.150375i
\(41\) 2.89414 + 8.90725i 0.451989 + 1.39108i 0.874634 + 0.484783i \(0.161102\pi\)
−0.422645 + 0.906295i \(0.638898\pi\)
\(42\) 0 0
\(43\) 1.29259 0.197118 0.0985589 0.995131i \(-0.468577\pi\)
0.0985589 + 0.995131i \(0.468577\pi\)
\(44\) −3.16272 + 0.998590i −0.476798 + 0.150543i
\(45\) 0 0
\(46\) −2.63773 + 1.91643i −0.388913 + 0.282561i
\(47\) −0.582494 1.79273i −0.0849655 0.261497i 0.899543 0.436831i \(-0.143899\pi\)
−0.984509 + 0.175334i \(0.943899\pi\)
\(48\) 0 0
\(49\) 1.79684 + 1.30548i 0.256692 + 0.186497i
\(50\) −0.809017 0.587785i −0.114412 0.0831254i
\(51\) 0 0
\(52\) −1.95467 6.01586i −0.271064 0.834249i
\(53\) 6.36099 4.62153i 0.873749 0.634816i −0.0578416 0.998326i \(-0.518422\pi\)
0.931590 + 0.363510i \(0.118422\pi\)
\(54\) 0 0
\(55\) 0.0276194 3.31651i 0.00372420 0.447198i
\(56\) −2.18609 −0.292128
\(57\) 0 0
\(58\) 1.95002 + 6.00154i 0.256050 + 0.788041i
\(59\) −2.47991 + 7.63236i −0.322856 + 0.993649i 0.649543 + 0.760325i \(0.274960\pi\)
−0.972399 + 0.233324i \(0.925040\pi\)
\(60\) 0 0
\(61\) 3.51153 + 2.55128i 0.449606 + 0.326658i 0.789440 0.613828i \(-0.210371\pi\)
−0.339834 + 0.940485i \(0.610371\pi\)
\(62\) 1.43195 4.40708i 0.181857 0.559699i
\(63\) 0 0
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 6.32545 0.784575
\(66\) 0 0
\(67\) 5.61675 0.686196 0.343098 0.939300i \(-0.388524\pi\)
0.343098 + 0.939300i \(0.388524\pi\)
\(68\) 1.34945 0.980434i 0.163645 0.118895i
\(69\) 0 0
\(70\) 0.675538 2.07909i 0.0807423 0.248499i
\(71\) 11.1539 + 8.10380i 1.32373 + 0.961744i 0.999878 + 0.0156347i \(0.00497689\pi\)
0.323849 + 0.946109i \(0.395023\pi\)
\(72\) 0 0
\(73\) 4.32382 13.3074i 0.506065 1.55751i −0.292908 0.956141i \(-0.594623\pi\)
0.798973 0.601367i \(-0.205377\pi\)
\(74\) −0.849452 2.61434i −0.0987467 0.303911i
\(75\) 0 0
\(76\) 5.89350 0.676031
\(77\) 6.91399 2.18301i 0.787922 0.248777i
\(78\) 0 0
\(79\) −1.40632 + 1.02175i −0.158223 + 0.114956i −0.664080 0.747662i \(-0.731176\pi\)
0.505857 + 0.862617i \(0.331176\pi\)
\(80\) −0.309017 0.951057i −0.0345492 0.106331i
\(81\) 0 0
\(82\) −7.57696 5.50498i −0.836735 0.607924i
\(83\) 7.25616 + 5.27191i 0.796467 + 0.578667i 0.909876 0.414881i \(-0.136177\pi\)
−0.113408 + 0.993548i \(0.536177\pi\)
\(84\) 0 0
\(85\) 0.515445 + 1.58638i 0.0559078 + 0.172067i
\(86\) −1.04573 + 0.759764i −0.112763 + 0.0819275i
\(87\) 0 0
\(88\) 1.97174 2.66688i 0.210188 0.284290i
\(89\) −13.3656 −1.41675 −0.708377 0.705834i \(-0.750572\pi\)
−0.708377 + 0.705834i \(0.750572\pi\)
\(90\) 0 0
\(91\) 4.27308 + 13.1512i 0.447941 + 1.37862i
\(92\) 1.00752 3.10084i 0.105042 0.323285i
\(93\) 0 0
\(94\) 1.52499 + 1.10797i 0.157291 + 0.114278i
\(95\) −1.82119 + 5.60505i −0.186850 + 0.575066i
\(96\) 0 0
\(97\) −9.72751 + 7.06745i −0.987679 + 0.717591i −0.959412 0.282010i \(-0.908999\pi\)
−0.0282672 + 0.999600i \(0.508999\pi\)
\(98\) −2.22102 −0.224357
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −1.00000 + 0.726543i −0.0995037 + 0.0722937i −0.636425 0.771339i \(-0.719587\pi\)
0.536921 + 0.843633i \(0.319587\pi\)
\(102\) 0 0
\(103\) −5.75879 + 17.7237i −0.567431 + 1.74637i 0.0931861 + 0.995649i \(0.470295\pi\)
−0.660617 + 0.750723i \(0.729705\pi\)
\(104\) 5.11739 + 3.71800i 0.501802 + 0.364580i
\(105\) 0 0
\(106\) −2.42968 + 7.47779i −0.235991 + 0.726307i
\(107\) −3.07270 9.45681i −0.297050 0.914224i −0.982525 0.186129i \(-0.940406\pi\)
0.685476 0.728095i \(-0.259594\pi\)
\(108\) 0 0
\(109\) 4.81263 0.460966 0.230483 0.973076i \(-0.425969\pi\)
0.230483 + 0.973076i \(0.425969\pi\)
\(110\) 1.92705 + 2.69935i 0.183737 + 0.257373i
\(111\) 0 0
\(112\) 1.76858 1.28495i 0.167115 0.121416i
\(113\) 0.329357 + 1.01366i 0.0309833 + 0.0953567i 0.965352 0.260950i \(-0.0840358\pi\)
−0.934369 + 0.356307i \(0.884036\pi\)
\(114\) 0 0
\(115\) 2.63773 + 1.91643i 0.245970 + 0.178708i
\(116\) −5.10522 3.70916i −0.474008 0.344387i
\(117\) 0 0
\(118\) −2.47991 7.63236i −0.228294 0.702616i
\(119\) −2.95002 + 2.14332i −0.270428 + 0.196477i
\(120\) 0 0
\(121\) −3.57295 + 10.4036i −0.324814 + 0.945778i
\(122\) −4.34050 −0.392970
\(123\) 0 0
\(124\) 1.43195 + 4.40708i 0.128593 + 0.395767i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 5.02802 + 3.65307i 0.446164 + 0.324157i 0.788079 0.615574i \(-0.211076\pi\)
−0.341915 + 0.939731i \(0.611076\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 0 0
\(130\) −5.11739 + 3.71800i −0.448825 + 0.326091i
\(131\) −3.22756 −0.281993 −0.140997 0.990010i \(-0.545031\pi\)
−0.140997 + 0.990010i \(0.545031\pi\)
\(132\) 0 0
\(133\) −12.8837 −1.11716
\(134\) −4.54405 + 3.30144i −0.392546 + 0.285201i
\(135\) 0 0
\(136\) −0.515445 + 1.58638i −0.0441990 + 0.136031i
\(137\) 12.9242 + 9.38996i 1.10419 + 0.802239i 0.981738 0.190236i \(-0.0609253\pi\)
0.122449 + 0.992475i \(0.460925\pi\)
\(138\) 0 0
\(139\) 6.87093 21.1465i 0.582784 1.79363i −0.0252068 0.999682i \(-0.508024\pi\)
0.607991 0.793944i \(-0.291976\pi\)
\(140\) 0.675538 + 2.07909i 0.0570934 + 0.175715i
\(141\) 0 0
\(142\) −13.7870 −1.15698
\(143\) −19.8977 6.64884i −1.66393 0.556004i
\(144\) 0 0
\(145\) 5.10522 3.70916i 0.423965 0.308029i
\(146\) 4.32382 + 13.3074i 0.357842 + 1.10132i
\(147\) 0 0
\(148\) 2.22389 + 1.61575i 0.182803 + 0.132814i
\(149\) 5.17104 + 3.75698i 0.423628 + 0.307784i 0.779096 0.626905i \(-0.215678\pi\)
−0.355468 + 0.934688i \(0.615678\pi\)
\(150\) 0 0
\(151\) −4.21698 12.9785i −0.343173 1.05618i −0.962555 0.271087i \(-0.912617\pi\)
0.619382 0.785090i \(-0.287383\pi\)
\(152\) −4.76794 + 3.46411i −0.386731 + 0.280977i
\(153\) 0 0
\(154\) −4.31040 + 5.83003i −0.347342 + 0.469797i
\(155\) −4.63387 −0.372202
\(156\) 0 0
\(157\) −6.79985 20.9278i −0.542687 1.67022i −0.726427 0.687244i \(-0.758820\pi\)
0.183740 0.982975i \(-0.441180\pi\)
\(158\) 0.537165 1.65322i 0.0427345 0.131523i
\(159\) 0 0
\(160\) 0.809017 + 0.587785i 0.0639584 + 0.0464685i
\(161\) −2.20254 + 6.77871i −0.173584 + 0.534237i
\(162\) 0 0
\(163\) 6.80575 4.94466i 0.533067 0.387296i −0.288437 0.957499i \(-0.593135\pi\)
0.821504 + 0.570203i \(0.193135\pi\)
\(164\) 9.36564 0.731333
\(165\) 0 0
\(166\) −8.96911 −0.696138
\(167\) 9.57369 6.95569i 0.740834 0.538248i −0.152138 0.988359i \(-0.548616\pi\)
0.892972 + 0.450112i \(0.148616\pi\)
\(168\) 0 0
\(169\) 8.34694 25.6892i 0.642072 1.97610i
\(170\) −1.34945 0.980434i −0.103498 0.0751959i
\(171\) 0 0
\(172\) 0.399432 1.22932i 0.0304564 0.0937351i
\(173\) −4.43293 13.6432i −0.337029 1.03727i −0.965714 0.259609i \(-0.916406\pi\)
0.628684 0.777661i \(-0.283594\pi\)
\(174\) 0 0
\(175\) −2.18609 −0.165253
\(176\) −0.0276194 + 3.31651i −0.00208189 + 0.249991i
\(177\) 0 0
\(178\) 10.8130 7.85612i 0.810471 0.588841i
\(179\) −3.75329 11.5514i −0.280534 0.863395i −0.987702 0.156349i \(-0.950027\pi\)
0.707168 0.707046i \(-0.249973\pi\)
\(180\) 0 0
\(181\) 5.18083 + 3.76409i 0.385088 + 0.279783i 0.763440 0.645879i \(-0.223509\pi\)
−0.378352 + 0.925662i \(0.623509\pi\)
\(182\) −11.1871 8.12788i −0.829241 0.602479i
\(183\) 0 0
\(184\) 1.00752 + 3.10084i 0.0742757 + 0.228597i
\(185\) −2.22389 + 1.61575i −0.163504 + 0.118793i
\(186\) 0 0
\(187\) 0.0460695 5.53198i 0.00336894 0.404539i
\(188\) −1.88499 −0.137477
\(189\) 0 0
\(190\) −1.82119 5.60505i −0.132123 0.406633i
\(191\) −4.25112 + 13.0836i −0.307600 + 0.946696i 0.671094 + 0.741372i \(0.265825\pi\)
−0.978694 + 0.205323i \(0.934175\pi\)
\(192\) 0 0
\(193\) 8.85410 + 6.43288i 0.637332 + 0.463049i 0.858933 0.512089i \(-0.171128\pi\)
−0.221600 + 0.975138i \(0.571128\pi\)
\(194\) 3.71558 11.4354i 0.266763 0.821012i
\(195\) 0 0
\(196\) 1.79684 1.30548i 0.128346 0.0932487i
\(197\) −11.9113 −0.848646 −0.424323 0.905511i \(-0.639488\pi\)
−0.424323 + 0.905511i \(0.639488\pi\)
\(198\) 0 0
\(199\) −15.2636 −1.08201 −0.541004 0.841020i \(-0.681956\pi\)
−0.541004 + 0.841020i \(0.681956\pi\)
\(200\) −0.809017 + 0.587785i −0.0572061 + 0.0415627i
\(201\) 0 0
\(202\) 0.381966 1.17557i 0.0268750 0.0827129i
\(203\) 11.1605 + 8.10855i 0.783311 + 0.569108i
\(204\) 0 0
\(205\) −2.89414 + 8.90725i −0.202136 + 0.622109i
\(206\) −5.75879 17.7237i −0.401234 1.23487i
\(207\) 0 0
\(208\) −6.32545 −0.438591
\(209\) 11.6205 15.7172i 0.803803 1.08718i
\(210\) 0 0
\(211\) −3.02009 + 2.19423i −0.207912 + 0.151057i −0.686868 0.726782i \(-0.741015\pi\)
0.478957 + 0.877839i \(0.341015\pi\)
\(212\) −2.42968 7.47779i −0.166871 0.513577i
\(213\) 0 0
\(214\) 8.04444 + 5.84463i 0.549907 + 0.399531i
\(215\) 1.04573 + 0.759764i 0.0713179 + 0.0518155i
\(216\) 0 0
\(217\) −3.13036 9.63426i −0.212503 0.654016i
\(218\) −3.89350 + 2.82879i −0.263701 + 0.191590i
\(219\) 0 0
\(220\) −3.14565 1.05113i −0.212080 0.0708669i
\(221\) 10.5509 0.709733
\(222\) 0 0
\(223\) −5.99199 18.4414i −0.401253 1.23493i −0.923984 0.382432i \(-0.875087\pi\)
0.522731 0.852498i \(-0.324913\pi\)
\(224\) −0.675538 + 2.07909i −0.0451363 + 0.138915i
\(225\) 0 0
\(226\) −0.862267 0.626474i −0.0573571 0.0416724i
\(227\) −1.85068 + 5.69581i −0.122834 + 0.378044i −0.993500 0.113830i \(-0.963688\pi\)
0.870666 + 0.491874i \(0.163688\pi\)
\(228\) 0 0
\(229\) −13.4709 + 9.78715i −0.890179 + 0.646753i −0.935925 0.352200i \(-0.885434\pi\)
0.0457456 + 0.998953i \(0.485434\pi\)
\(230\) −3.26042 −0.214986
\(231\) 0 0
\(232\) 6.31040 0.414298
\(233\) 7.79461 5.66311i 0.510642 0.371003i −0.302425 0.953173i \(-0.597796\pi\)
0.813067 + 0.582170i \(0.197796\pi\)
\(234\) 0 0
\(235\) 0.582494 1.79273i 0.0379977 0.116945i
\(236\) 6.49248 + 4.71706i 0.422624 + 0.307054i
\(237\) 0 0
\(238\) 1.12681 3.46796i 0.0730401 0.224794i
\(239\) −3.69811 11.3816i −0.239211 0.736216i −0.996535 0.0831762i \(-0.973494\pi\)
0.757324 0.653039i \(-0.226506\pi\)
\(240\) 0 0
\(241\) −9.67120 −0.622977 −0.311488 0.950250i \(-0.600828\pi\)
−0.311488 + 0.950250i \(0.600828\pi\)
\(242\) −3.22448 10.5168i −0.207278 0.676044i
\(243\) 0 0
\(244\) 3.51153 2.55128i 0.224803 0.163329i
\(245\) 0.686333 + 2.11231i 0.0438482 + 0.134951i
\(246\) 0 0
\(247\) 30.1594 + 21.9121i 1.91899 + 1.39423i
\(248\) −3.74888 2.72372i −0.238054 0.172957i
\(249\) 0 0
\(250\) −0.309017 0.951057i −0.0195440 0.0601501i
\(251\) −19.0533 + 13.8431i −1.20264 + 0.873767i −0.994541 0.104342i \(-0.966726\pi\)
−0.208095 + 0.978109i \(0.566726\pi\)
\(252\) 0 0
\(253\) −6.28299 8.80100i −0.395008 0.553314i
\(254\) −6.21497 −0.389962
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 5.09380 15.6771i 0.317743 0.977912i −0.656868 0.754006i \(-0.728119\pi\)
0.974611 0.223906i \(-0.0718809\pi\)
\(258\) 0 0
\(259\) −4.86163 3.53218i −0.302087 0.219479i
\(260\) 1.95467 6.01586i 0.121224 0.373088i
\(261\) 0 0
\(262\) 2.61115 1.89711i 0.161317 0.117204i
\(263\) −8.61724 −0.531362 −0.265681 0.964061i \(-0.585597\pi\)
−0.265681 + 0.964061i \(0.585597\pi\)
\(264\) 0 0
\(265\) 7.86261 0.482996
\(266\) 10.4231 7.57285i 0.639084 0.464322i
\(267\) 0 0
\(268\) 1.73567 5.34185i 0.106023 0.326305i
\(269\) −12.4603 9.05292i −0.759716 0.551966i 0.139107 0.990277i \(-0.455577\pi\)
−0.898823 + 0.438311i \(0.855577\pi\)
\(270\) 0 0
\(271\) 1.65217 5.08487i 0.100362 0.308884i −0.888252 0.459357i \(-0.848080\pi\)
0.988614 + 0.150473i \(0.0480798\pi\)
\(272\) −0.515445 1.58638i −0.0312534 0.0961881i
\(273\) 0 0
\(274\) −15.9752 −0.965095
\(275\) 1.97174 2.66688i 0.118900 0.160819i
\(276\) 0 0
\(277\) −3.72711 + 2.70790i −0.223940 + 0.162702i −0.694099 0.719880i \(-0.744197\pi\)
0.470158 + 0.882582i \(0.344197\pi\)
\(278\) 6.87093 + 21.1465i 0.412091 + 1.26829i
\(279\) 0 0
\(280\) −1.76858 1.28495i −0.105693 0.0767905i
\(281\) −16.5731 12.0411i −0.988668 0.718310i −0.0290392 0.999578i \(-0.509245\pi\)
−0.959629 + 0.281269i \(0.909245\pi\)
\(282\) 0 0
\(283\) −1.28000 3.93943i −0.0760879 0.234175i 0.905778 0.423754i \(-0.139288\pi\)
−0.981865 + 0.189579i \(0.939288\pi\)
\(284\) 11.1539 8.10380i 0.661863 0.480872i
\(285\) 0 0
\(286\) 20.0056 6.31653i 1.18296 0.373504i
\(287\) −20.4741 −1.20855
\(288\) 0 0
\(289\) −4.39352 13.5219i −0.258442 0.795404i
\(290\) −1.95002 + 6.00154i −0.114509 + 0.352423i
\(291\) 0 0
\(292\) −11.3199 8.22440i −0.662448 0.481296i
\(293\) 6.03267 18.5666i 0.352432 1.08467i −0.605051 0.796186i \(-0.706847\pi\)
0.957484 0.288488i \(-0.0931525\pi\)
\(294\) 0 0
\(295\) −6.49248 + 4.71706i −0.378007 + 0.274638i
\(296\) −2.74888 −0.159776
\(297\) 0 0
\(298\) −6.39176 −0.370264
\(299\) 16.6848 12.1222i 0.964909 0.701048i
\(300\) 0 0
\(301\) −0.873193 + 2.68741i −0.0503300 + 0.154900i
\(302\) 11.0402 + 8.02117i 0.635292 + 0.461566i
\(303\) 0 0
\(304\) 1.82119 5.60505i 0.104453 0.321472i
\(305\) 1.34129 + 4.12806i 0.0768019 + 0.236372i
\(306\) 0 0
\(307\) 3.01131 0.171865 0.0859323 0.996301i \(-0.472613\pi\)
0.0859323 + 0.996301i \(0.472613\pi\)
\(308\) 0.0603784 7.25018i 0.00344038 0.413117i
\(309\) 0 0
\(310\) 3.74888 2.72372i 0.212922 0.154697i
\(311\) 4.43520 + 13.6501i 0.251497 + 0.774028i 0.994500 + 0.104740i \(0.0334009\pi\)
−0.743003 + 0.669288i \(0.766599\pi\)
\(312\) 0 0
\(313\) −18.2502 13.2595i −1.03156 0.749473i −0.0629406 0.998017i \(-0.520048\pi\)
−0.968621 + 0.248544i \(0.920048\pi\)
\(314\) 17.8022 + 12.9341i 1.00464 + 0.729912i
\(315\) 0 0
\(316\) 0.537165 + 1.65322i 0.0302179 + 0.0930011i
\(317\) 7.33634 5.33016i 0.412050 0.299372i −0.362381 0.932030i \(-0.618036\pi\)
0.774431 + 0.632658i \(0.218036\pi\)
\(318\) 0 0
\(319\) −19.9580 + 6.30150i −1.11744 + 0.352816i
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) −2.20254 6.77871i −0.122743 0.377763i
\(323\) −3.03777 + 9.34930i −0.169026 + 0.520209i
\(324\) 0 0
\(325\) 5.11739 + 3.71800i 0.283862 + 0.206238i
\(326\) −2.59956 + 8.00064i −0.143977 + 0.443114i
\(327\) 0 0
\(328\) −7.57696 + 5.50498i −0.418368 + 0.303962i
\(329\) 4.12076 0.227185
\(330\) 0 0
\(331\) −24.4809 −1.34559 −0.672797 0.739827i \(-0.734907\pi\)
−0.672797 + 0.739827i \(0.734907\pi\)
\(332\) 7.25616 5.27191i 0.398234 0.289334i
\(333\) 0 0
\(334\) −3.65682 + 11.2545i −0.200092 + 0.615821i
\(335\) 4.54405 + 3.30144i 0.248268 + 0.180377i
\(336\) 0 0
\(337\) 2.63571 8.11189i 0.143576 0.441883i −0.853249 0.521504i \(-0.825371\pi\)
0.996825 + 0.0796214i \(0.0253711\pi\)
\(338\) 8.34694 + 25.6892i 0.454014 + 1.39731i
\(339\) 0 0
\(340\) 1.66801 0.0904608
\(341\) 14.5766 + 4.87078i 0.789365 + 0.263768i
\(342\) 0 0
\(343\) −16.3081 + 11.8486i −0.880556 + 0.639762i
\(344\) 0.399432 + 1.22932i 0.0215359 + 0.0662807i
\(345\) 0 0
\(346\) 11.6056 + 8.43193i 0.623919 + 0.453304i
\(347\) −7.73014 5.61627i −0.414975 0.301497i 0.360638 0.932706i \(-0.382559\pi\)
−0.775613 + 0.631209i \(0.782559\pi\)
\(348\) 0 0
\(349\) 6.47788 + 19.9369i 0.346753 + 1.06720i 0.960639 + 0.277801i \(0.0896057\pi\)
−0.613885 + 0.789395i \(0.710394\pi\)
\(350\) 1.76858 1.28495i 0.0945347 0.0686835i
\(351\) 0 0
\(352\) −1.92705 2.69935i −0.102712 0.143876i
\(353\) −7.85985 −0.418338 −0.209169 0.977880i \(-0.567076\pi\)
−0.209169 + 0.977880i \(0.567076\pi\)
\(354\) 0 0
\(355\) 4.26042 + 13.1122i 0.226119 + 0.695924i
\(356\) −4.13021 + 12.7115i −0.218901 + 0.673707i
\(357\) 0 0
\(358\) 9.82624 + 7.13918i 0.519333 + 0.377317i
\(359\) −1.94348 + 5.98142i −0.102573 + 0.315687i −0.989153 0.146888i \(-0.953074\pi\)
0.886580 + 0.462575i \(0.153074\pi\)
\(360\) 0 0
\(361\) −12.7285 + 9.24783i −0.669923 + 0.486728i
\(362\) −6.40386 −0.336579
\(363\) 0 0
\(364\) 13.8280 0.724783
\(365\) 11.3199 8.22440i 0.592511 0.430485i
\(366\) 0 0
\(367\) 1.38246 4.25476i 0.0721636 0.222097i −0.908469 0.417952i \(-0.862748\pi\)
0.980633 + 0.195855i \(0.0627482\pi\)
\(368\) −2.63773 1.91643i −0.137501 0.0999006i
\(369\) 0 0
\(370\) 0.849452 2.61434i 0.0441609 0.135913i
\(371\) 5.31150 + 16.3471i 0.275759 + 0.848699i
\(372\) 0 0
\(373\) 29.4655 1.52567 0.762833 0.646596i \(-0.223808\pi\)
0.762833 + 0.646596i \(0.223808\pi\)
\(374\) 3.21435 + 4.50255i 0.166210 + 0.232821i
\(375\) 0 0
\(376\) 1.52499 1.10797i 0.0786454 0.0571392i
\(377\) −12.3347 37.9624i −0.635272 1.95517i
\(378\) 0 0
\(379\) −7.33961 5.33254i −0.377010 0.273914i 0.383102 0.923706i \(-0.374856\pi\)
−0.760112 + 0.649792i \(0.774856\pi\)
\(380\) 4.76794 + 3.46411i 0.244590 + 0.177705i
\(381\) 0 0
\(382\) −4.25112 13.0836i −0.217506 0.669415i
\(383\) −6.29724 + 4.57521i −0.321774 + 0.233782i −0.736932 0.675967i \(-0.763726\pi\)
0.415158 + 0.909749i \(0.363726\pi\)
\(384\) 0 0
\(385\) 6.87668 + 2.29785i 0.350468 + 0.117109i
\(386\) −10.9443 −0.557049
\(387\) 0 0
\(388\) 3.71558 + 11.4354i 0.188630 + 0.580543i
\(389\) −6.21448 + 19.1262i −0.315087 + 0.969737i 0.660632 + 0.750710i \(0.270288\pi\)
−0.975719 + 0.219027i \(0.929712\pi\)
\(390\) 0 0
\(391\) 4.39978 + 3.19662i 0.222506 + 0.161660i
\(392\) −0.686333 + 2.11231i −0.0346650 + 0.106688i
\(393\) 0 0
\(394\) 9.63645 7.00129i 0.485477 0.352720i
\(395\) −1.73830 −0.0874634
\(396\) 0 0
\(397\) 18.0218 0.904488 0.452244 0.891894i \(-0.350624\pi\)
0.452244 + 0.891894i \(0.350624\pi\)
\(398\) 12.3485 8.97172i 0.618975 0.449712i
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) 6.96852 + 5.06293i 0.347991 + 0.252831i 0.748026 0.663670i \(-0.231002\pi\)
−0.400035 + 0.916500i \(0.631002\pi\)
\(402\) 0 0
\(403\) −9.05770 + 27.8767i −0.451196 + 1.38864i
\(404\) 0.381966 + 1.17557i 0.0190035 + 0.0584868i
\(405\) 0 0
\(406\) −13.7951 −0.684639
\(407\) 8.69396 2.74501i 0.430943 0.136065i
\(408\) 0 0
\(409\) 20.4587 14.8641i 1.01162 0.734983i 0.0470691 0.998892i \(-0.485012\pi\)
0.964548 + 0.263909i \(0.0850119\pi\)
\(410\) −2.89414 8.90725i −0.142931 0.439898i
\(411\) 0 0
\(412\) 15.0767 + 10.9539i 0.742776 + 0.539659i
\(413\) −14.1931 10.3119i −0.698398 0.507416i
\(414\) 0 0
\(415\) 2.77161 + 8.53013i 0.136053 + 0.418728i
\(416\) 5.11739 3.71800i 0.250901 0.182290i
\(417\) 0 0
\(418\) −0.162775 + 19.5459i −0.00796158 + 0.956019i
\(419\) 3.97713 0.194296 0.0971478 0.995270i \(-0.469028\pi\)
0.0971478 + 0.995270i \(0.469028\pi\)
\(420\) 0 0
\(421\) −2.67126 8.22131i −0.130189 0.400682i 0.864621 0.502424i \(-0.167558\pi\)
−0.994811 + 0.101742i \(0.967558\pi\)
\(422\) 1.15357 3.55033i 0.0561551 0.172828i
\(423\) 0 0
\(424\) 6.36099 + 4.62153i 0.308917 + 0.224441i
\(425\) −0.515445 + 1.58638i −0.0250027 + 0.0769505i
\(426\) 0 0
\(427\) −7.67652 + 5.57732i −0.371493 + 0.269905i
\(428\) −9.94348 −0.480636
\(429\) 0 0
\(430\) −1.29259 −0.0623341
\(431\) −10.6253 + 7.71970i −0.511801 + 0.371845i −0.813506 0.581556i \(-0.802444\pi\)
0.301705 + 0.953401i \(0.402444\pi\)
\(432\) 0 0
\(433\) −2.19526 + 6.75631i −0.105497 + 0.324687i −0.989847 0.142138i \(-0.954602\pi\)
0.884350 + 0.466825i \(0.154602\pi\)
\(434\) 8.19539 + 5.95430i 0.393391 + 0.285815i
\(435\) 0 0
\(436\) 1.48718 4.57708i 0.0712232 0.219203i
\(437\) 5.93785 + 18.2748i 0.284046 + 0.874203i
\(438\) 0 0
\(439\) −8.09996 −0.386590 −0.193295 0.981141i \(-0.561917\pi\)
−0.193295 + 0.981141i \(0.561917\pi\)
\(440\) 3.16272 0.998590i 0.150777 0.0476059i
\(441\) 0 0
\(442\) −8.53588 + 6.20168i −0.406011 + 0.294984i
\(443\) −1.52979 4.70821i −0.0726826 0.223694i 0.908116 0.418720i \(-0.137521\pi\)
−0.980798 + 0.195026i \(0.937521\pi\)
\(444\) 0 0
\(445\) −10.8130 7.85612i −0.512587 0.372416i
\(446\) 15.6872 + 11.3974i 0.742812 + 0.539684i
\(447\) 0 0
\(448\) −0.675538 2.07909i −0.0319162 0.0982279i
\(449\) −6.77645 + 4.92338i −0.319800 + 0.232349i −0.736090 0.676883i \(-0.763330\pi\)
0.416290 + 0.909232i \(0.363330\pi\)
\(450\) 0 0
\(451\) 18.4666 24.9770i 0.869558 1.17612i
\(452\) 1.06582 0.0501320
\(453\) 0 0
\(454\) −1.85068 5.69581i −0.0868568 0.267318i
\(455\) −4.27308 + 13.1512i −0.200325 + 0.616537i
\(456\) 0 0
\(457\) 13.4199 + 9.75011i 0.627755 + 0.456091i 0.855622 0.517602i \(-0.173175\pi\)
−0.227867 + 0.973692i \(0.573175\pi\)
\(458\) 5.14541 15.8359i 0.240429 0.739965i
\(459\) 0 0
\(460\) 2.63773 1.91643i 0.122985 0.0893538i
\(461\) −20.8011 −0.968805 −0.484403 0.874845i \(-0.660963\pi\)
−0.484403 + 0.874845i \(0.660963\pi\)
\(462\) 0 0
\(463\) −5.79409 −0.269274 −0.134637 0.990895i \(-0.542987\pi\)
−0.134637 + 0.990895i \(0.542987\pi\)
\(464\) −5.10522 + 3.70916i −0.237004 + 0.172193i
\(465\) 0 0
\(466\) −2.97728 + 9.16311i −0.137920 + 0.424473i
\(467\) 2.72453 + 1.97949i 0.126076 + 0.0915999i 0.649036 0.760757i \(-0.275172\pi\)
−0.522960 + 0.852357i \(0.675172\pi\)
\(468\) 0 0
\(469\) −3.79433 + 11.6778i −0.175206 + 0.539229i
\(470\) 0.582494 + 1.79273i 0.0268685 + 0.0826926i
\(471\) 0 0
\(472\) −8.02514 −0.369387
\(473\) −2.49088 3.48914i −0.114531 0.160431i
\(474\) 0 0
\(475\) −4.76794 + 3.46411i −0.218768 + 0.158944i
\(476\) 1.12681 + 3.46796i 0.0516471 + 0.158954i
\(477\) 0 0
\(478\) 9.68178 + 7.03423i 0.442834 + 0.321738i
\(479\) −12.2763 8.91922i −0.560917 0.407530i 0.270878 0.962614i \(-0.412686\pi\)
−0.831794 + 0.555084i \(0.812686\pi\)
\(480\) 0 0
\(481\) 5.37316 + 16.5369i 0.244995 + 0.754017i
\(482\) 7.82417 5.68459i 0.356381 0.258926i
\(483\) 0 0
\(484\) 8.79027 + 6.61295i 0.399558 + 0.300589i
\(485\) −12.0239 −0.545975
\(486\) 0 0
\(487\) 3.96507 + 12.2032i 0.179674 + 0.552981i 0.999816 0.0191795i \(-0.00610541\pi\)
−0.820142 + 0.572161i \(0.806105\pi\)
\(488\) −1.34129 + 4.12806i −0.0607172 + 0.186868i
\(489\) 0 0
\(490\) −1.79684 1.30548i −0.0811731 0.0589757i
\(491\) 4.34756 13.3804i 0.196203 0.603850i −0.803758 0.594957i \(-0.797169\pi\)
0.999960 0.00889318i \(-0.00283082\pi\)
\(492\) 0 0
\(493\) 8.51558 6.18693i 0.383522 0.278645i
\(494\) −37.2790 −1.67726
\(495\) 0 0
\(496\) 4.63387 0.208067
\(497\) −24.3834 + 17.7156i −1.09375 + 0.794654i
\(498\) 0 0
\(499\) 4.46624 13.7457i 0.199936 0.615340i −0.799947 0.600070i \(-0.795139\pi\)
0.999883 0.0152700i \(-0.00486078\pi\)
\(500\) 0.809017 + 0.587785i 0.0361803 + 0.0262866i
\(501\) 0 0
\(502\) 7.27773 22.3986i 0.324821 0.999696i
\(503\) 8.65278 + 26.6305i 0.385808 + 1.18740i 0.935892 + 0.352287i \(0.114596\pi\)
−0.550084 + 0.835110i \(0.685404\pi\)
\(504\) 0 0
\(505\) −1.23607 −0.0550043
\(506\) 10.2561 + 3.42711i 0.455941 + 0.152354i
\(507\) 0 0
\(508\) 5.02802 3.65307i 0.223082 0.162079i
\(509\) 7.81214 + 24.0433i 0.346267 + 1.06570i 0.960902 + 0.276889i \(0.0893034\pi\)
−0.614635 + 0.788812i \(0.710697\pi\)
\(510\) 0 0
\(511\) 24.7463 + 17.9793i 1.09471 + 0.795355i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0 0
\(514\) 5.09380 + 15.6771i 0.224678 + 0.691488i
\(515\) −15.0767 + 10.9539i −0.664359 + 0.482685i
\(516\) 0 0
\(517\) −3.71671 + 5.02704i −0.163461 + 0.221089i
\(518\) 6.00930 0.264034
\(519\) 0 0
\(520\) 1.95467 + 6.01586i 0.0857180 + 0.263813i
\(521\) 11.6676 35.9091i 0.511166 1.57321i −0.278985 0.960296i \(-0.589998\pi\)
0.790151 0.612912i \(-0.210002\pi\)
\(522\) 0 0
\(523\) −12.0268 8.73796i −0.525894 0.382084i 0.292926 0.956135i \(-0.405371\pi\)
−0.818820 + 0.574051i \(0.805371\pi\)
\(524\) −0.997371 + 3.06959i −0.0435703 + 0.134096i
\(525\) 0 0
\(526\) 6.97150 5.06509i 0.303972 0.220848i
\(527\) −7.72937 −0.336697
\(528\) 0 0
\(529\) −12.3697 −0.537812
\(530\) −6.36099 + 4.62153i −0.276304 + 0.200746i
\(531\) 0 0
\(532\) −3.98129 + 12.2531i −0.172611 + 0.531241i
\(533\) 47.9276 + 34.8215i 2.07598 + 1.50829i
\(534\) 0 0
\(535\) 3.07270 9.45681i 0.132845 0.408854i
\(536\) 1.73567 + 5.34185i 0.0749696 + 0.230733i
\(537\) 0 0
\(538\) 15.4017 0.664016
\(539\) 0.0613432 7.36603i 0.00264224 0.317277i
\(540\) 0 0
\(541\) 18.4473 13.4027i 0.793111 0.576229i −0.115774 0.993276i \(-0.536935\pi\)
0.908885 + 0.417047i \(0.136935\pi\)
\(542\) 1.65217 + 5.08487i 0.0709669 + 0.218414i
\(543\) 0 0
\(544\) 1.34945 + 0.980434i 0.0578573 + 0.0420358i
\(545\) 3.89350 + 2.82879i 0.166779 + 0.121172i
\(546\) 0 0
\(547\) 5.20860 + 16.0304i 0.222704 + 0.685411i 0.998517 + 0.0544484i \(0.0173400\pi\)
−0.775813 + 0.630963i \(0.782660\pi\)
\(548\) 12.9242 9.38996i 0.552093 0.401119i
\(549\) 0 0
\(550\) −0.0276194 + 3.31651i −0.00117769 + 0.141416i
\(551\) 37.1903 1.58436
\(552\) 0 0
\(553\) −1.17429 3.61409i −0.0499359 0.153687i
\(554\) 1.42363 4.38148i 0.0604842 0.186151i
\(555\) 0 0
\(556\) −17.9883 13.0693i −0.762875 0.554261i
\(557\) −2.97951 + 9.16999i −0.126246 + 0.388545i −0.994126 0.108229i \(-0.965482\pi\)
0.867880 + 0.496774i \(0.165482\pi\)
\(558\) 0 0
\(559\) 6.61468 4.80585i 0.279771 0.203266i
\(560\) 2.18609 0.0923791
\(561\) 0 0
\(562\) 20.4855 0.864128
\(563\) −8.26339 + 6.00370i −0.348260 + 0.253026i −0.748139 0.663542i \(-0.769052\pi\)
0.399878 + 0.916568i \(0.369052\pi\)
\(564\) 0 0
\(565\) −0.329357 + 1.01366i −0.0138561 + 0.0426448i
\(566\) 3.35108 + 2.43470i 0.140856 + 0.102338i
\(567\) 0 0
\(568\) −4.26042 + 13.1122i −0.178763 + 0.550176i
\(569\) −6.78339 20.8771i −0.284374 0.875214i −0.986585 0.163245i \(-0.947804\pi\)
0.702211 0.711969i \(-0.252196\pi\)
\(570\) 0 0
\(571\) 37.5878 1.57300 0.786501 0.617589i \(-0.211891\pi\)
0.786501 + 0.617589i \(0.211891\pi\)
\(572\) −12.4721 + 16.8692i −0.521486 + 0.705337i
\(573\) 0 0
\(574\) 16.5639 12.0344i 0.691364 0.502305i
\(575\) 1.00752 + 3.10084i 0.0420167 + 0.129314i
\(576\) 0 0
\(577\) 15.4225 + 11.2051i 0.642047 + 0.466475i 0.860553 0.509361i \(-0.170118\pi\)
−0.218506 + 0.975836i \(0.570118\pi\)
\(578\) 11.5024 + 8.35697i 0.478436 + 0.347604i
\(579\) 0 0
\(580\) −1.95002 6.00154i −0.0809702 0.249201i
\(581\) −15.8626 + 11.5249i −0.658092 + 0.478132i
\(582\) 0 0
\(583\) −24.7330 8.26459i −1.02434 0.342284i
\(584\) 13.9922 0.579000
\(585\) 0 0
\(586\) 6.03267 + 18.5666i 0.249207 + 0.766981i
\(587\) −8.13953 + 25.0509i −0.335954 + 1.03396i 0.630296 + 0.776355i \(0.282934\pi\)
−0.966250 + 0.257606i \(0.917066\pi\)
\(588\) 0 0
\(589\) −22.0940 16.0523i −0.910369 0.661422i
\(590\) 2.47991 7.63236i 0.102096 0.314219i
\(591\) 0 0
\(592\) 2.22389 1.61575i 0.0914014 0.0664070i
\(593\) −21.9693 −0.902173 −0.451087 0.892480i \(-0.648963\pi\)
−0.451087 + 0.892480i \(0.648963\pi\)
\(594\) 0 0
\(595\) −3.64643 −0.149489
\(596\) 5.17104 3.75698i 0.211814 0.153892i
\(597\) 0 0
\(598\) −6.37304 + 19.6142i −0.260613 + 0.802084i
\(599\) 22.7727 + 16.5454i 0.930469 + 0.676025i 0.946108 0.323852i \(-0.104978\pi\)
−0.0156386 + 0.999878i \(0.504978\pi\)
\(600\) 0 0
\(601\) −8.86288 + 27.2771i −0.361524 + 1.11266i 0.590605 + 0.806961i \(0.298889\pi\)
−0.952129 + 0.305696i \(0.901111\pi\)
\(602\) −0.873193 2.68741i −0.0355887 0.109531i
\(603\) 0 0
\(604\) −13.6464 −0.555265
\(605\) −9.00563 + 6.31653i −0.366131 + 0.256803i
\(606\) 0 0
\(607\) −18.5387 + 13.4692i −0.752465 + 0.546698i −0.896590 0.442862i \(-0.853963\pi\)
0.144125 + 0.989559i \(0.453963\pi\)
\(608\) 1.82119 + 5.60505i 0.0738591 + 0.227315i
\(609\) 0 0
\(610\) −3.51153 2.55128i −0.142178 0.103298i
\(611\) −9.64624 7.00841i −0.390245 0.283530i
\(612\) 0 0
\(613\) 12.7915 + 39.3683i 0.516645 + 1.59007i 0.780269 + 0.625444i \(0.215082\pi\)
−0.263624 + 0.964626i \(0.584918\pi\)
\(614\) −2.43620 + 1.77000i −0.0983170 + 0.0714315i
\(615\) 0 0
\(616\) 4.21270 + 5.90101i 0.169735 + 0.237758i
\(617\) 13.7801 0.554765 0.277382 0.960760i \(-0.410533\pi\)
0.277382 + 0.960760i \(0.410533\pi\)
\(618\) 0 0
\(619\) 6.93772 + 21.3521i 0.278851 + 0.858214i 0.988175 + 0.153331i \(0.0490002\pi\)
−0.709324 + 0.704882i \(0.751000\pi\)
\(620\) −1.43195 + 4.40708i −0.0575083 + 0.176992i
\(621\) 0 0
\(622\) −11.6115 8.43624i −0.465578 0.338263i
\(623\) 9.02900 27.7884i 0.361739 1.11332i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 22.5585 0.901618
\(627\) 0 0
\(628\) −22.0048 −0.878086
\(629\) −3.70948 + 2.69510i −0.147907 + 0.107461i
\(630\) 0 0
\(631\) 13.5301 41.6415i 0.538626 1.65772i −0.197055 0.980393i \(-0.563138\pi\)
0.735681 0.677328i \(-0.236862\pi\)
\(632\) −1.40632 1.02175i −0.0559402 0.0406430i
\(633\) 0 0
\(634\) −2.80223 + 8.62438i −0.111291 + 0.342518i
\(635\) 1.92053 + 5.91079i 0.0762139 + 0.234562i
\(636\) 0 0
\(637\) 14.0489 0.556639
\(638\) 12.4425 16.8291i 0.492602 0.666269i
\(639\) 0 0
\(640\) 0.809017 0.587785i 0.0319792 0.0232343i
\(641\) −11.3033 34.7881i −0.446455 1.37405i −0.880881 0.473339i \(-0.843049\pi\)
0.434426 0.900708i \(-0.356951\pi\)
\(642\) 0 0
\(643\) 9.35931 + 6.79994i 0.369095 + 0.268163i 0.756836 0.653605i \(-0.226744\pi\)
−0.387740 + 0.921769i \(0.626744\pi\)
\(644\) 5.76632 + 4.18947i 0.227225 + 0.165088i
\(645\) 0 0
\(646\) −3.03777 9.34930i −0.119520 0.367843i
\(647\) 20.1803 14.6619i 0.793371 0.576418i −0.115591 0.993297i \(-0.536876\pi\)
0.908962 + 0.416879i \(0.136876\pi\)
\(648\) 0 0
\(649\) 25.3813 8.01383i 0.996303 0.314570i
\(650\) −6.32545 −0.248104
\(651\) 0 0
\(652\) −2.59956 8.00064i −0.101807 0.313329i
\(653\) −0.614175 + 1.89024i −0.0240345 + 0.0739707i −0.962354 0.271798i \(-0.912382\pi\)
0.938320 + 0.345769i \(0.112382\pi\)
\(654\) 0 0
\(655\) −2.61115 1.89711i −0.102026 0.0741263i
\(656\) 2.89414 8.90725i 0.112997 0.347770i
\(657\) 0 0
\(658\) −3.33376 + 2.42212i −0.129964 + 0.0944241i
\(659\) −20.4602 −0.797018 −0.398509 0.917165i \(-0.630472\pi\)
−0.398509 + 0.917165i \(0.630472\pi\)
\(660\) 0 0
\(661\) −24.5565 −0.955135 −0.477568 0.878595i \(-0.658481\pi\)
−0.477568 + 0.878595i \(0.658481\pi\)
\(662\) 19.8055 14.3895i 0.769763 0.559265i
\(663\) 0 0
\(664\) −2.77161 + 8.53013i −0.107559 + 0.331033i
\(665\) −10.4231 7.57285i −0.404192 0.293663i
\(666\) 0 0
\(667\) 6.35788 19.5675i 0.246178 0.757658i
\(668\) −3.65682 11.2545i −0.141487 0.435451i
\(669\) 0 0
\(670\) −5.61675 −0.216994
\(671\) 0.119882 14.3953i 0.00462799 0.555724i
\(672\) 0 0
\(673\) 28.1064 20.4205i 1.08342 0.787151i 0.105144 0.994457i \(-0.466470\pi\)
0.978276 + 0.207306i \(0.0664696\pi\)
\(674\) 2.63571 + 8.11189i 0.101524 + 0.312458i
\(675\) 0 0
\(676\) −21.8526 15.8768i −0.840484 0.610647i
\(677\) 32.0961 + 23.3192i 1.23355 + 0.896229i 0.997151 0.0754258i \(-0.0240316\pi\)
0.236403 + 0.971655i \(0.424032\pi\)
\(678\) 0 0
\(679\) −8.12258 24.9987i −0.311716 0.959363i
\(680\) −1.34945 + 0.980434i −0.0517491 + 0.0375979i
\(681\) 0 0
\(682\) −14.6557 + 4.62734i −0.561194 + 0.177190i
\(683\) −39.6464 −1.51703 −0.758514 0.651657i \(-0.774074\pi\)
−0.758514 + 0.651657i \(0.774074\pi\)
\(684\) 0 0
\(685\) 4.93660 + 15.1933i 0.188618 + 0.580505i
\(686\) 6.22915 19.1714i 0.237830 0.731966i
\(687\) 0 0
\(688\) −1.04573 0.759764i −0.0398679 0.0289657i
\(689\) 15.3688 47.3003i 0.585505 1.80200i
\(690\) 0 0
\(691\) −15.4284 + 11.2094i −0.586925 + 0.426426i −0.841214 0.540702i \(-0.818159\pi\)
0.254289 + 0.967128i \(0.418159\pi\)
\(692\) −14.3453 −0.545325
\(693\) 0 0
\(694\) 9.55497 0.362702
\(695\) 17.9883 13.0693i 0.682336 0.495746i
\(696\) 0 0
\(697\) −4.82747 + 14.8574i −0.182853 + 0.562765i
\(698\) −16.9593 12.3217i −0.641920 0.466382i
\(699\) 0 0
\(700\) −0.675538 + 2.07909i −0.0255329 + 0.0785823i
\(701\) −3.42136 10.5299i −0.129223 0.397708i 0.865424 0.501041i \(-0.167049\pi\)
−0.994647 + 0.103333i \(0.967049\pi\)
\(702\) 0 0
\(703\) −16.2005 −0.611015
\(704\) 3.14565 + 1.05113i 0.118556 + 0.0396158i
\(705\) 0 0
\(706\) 6.35875 4.61990i 0.239315 0.173872i
\(707\) −0.835011 2.56990i −0.0314038 0.0966511i
\(708\) 0 0
\(709\) 21.3229 + 15.4920i 0.800798 + 0.581814i 0.911148 0.412079i \(-0.135197\pi\)
−0.110350 + 0.993893i \(0.535197\pi\)
\(710\) −11.1539 8.10380i −0.418599 0.304130i
\(711\) 0 0
\(712\) −4.13021 12.7115i −0.154786 0.476383i
\(713\) −12.2229 + 8.88047i −0.457752 + 0.332576i
\(714\) 0 0
\(715\) −12.1895 17.0746i −0.455860 0.638553i
\(716\) −12.1459 −0.453914
\(717\) 0 0
\(718\) −1.94348 5.98142i −0.0725300 0.223225i
\(719\) −2.01657 + 6.20636i −0.0752053 + 0.231458i −0.981592 0.190992i \(-0.938830\pi\)
0.906386 + 0.422450i \(0.138830\pi\)
\(720\) 0 0
\(721\) −32.9590 23.9461i −1.22746 0.891801i
\(722\) 4.86187 14.9633i 0.180940 0.556876i
\(723\) 0 0
\(724\) 5.18083 3.76409i 0.192544 0.139891i
\(725\) 6.31040 0.234362
\(726\) 0 0
\(727\) −38.4232 −1.42504 −0.712519 0.701653i \(-0.752446\pi\)
−0.712519 + 0.701653i \(0.752446\pi\)
\(728\) −11.1871 + 8.12788i −0.414620 + 0.301239i
\(729\) 0 0
\(730\) −4.32382 + 13.3074i −0.160032 + 0.492527i
\(731\) 1.74428 + 1.26730i 0.0645147 + 0.0468727i
\(732\) 0 0
\(733\) 1.19539 3.67903i 0.0441527 0.135888i −0.926550 0.376171i \(-0.877240\pi\)
0.970703 + 0.240283i \(0.0772404\pi\)
\(734\) 1.38246 + 4.25476i 0.0510274 + 0.157046i
\(735\) 0 0
\(736\) 3.26042 0.120181
\(737\) −10.8238 15.1616i −0.398699 0.558483i
\(738\) 0 0
\(739\) −3.67758 + 2.67192i −0.135282 + 0.0982881i −0.653368 0.757040i \(-0.726645\pi\)
0.518086 + 0.855328i \(0.326645\pi\)
\(740\) 0.849452 + 2.61434i 0.0312265 + 0.0961052i
\(741\) 0 0
\(742\) −13.9057 10.1031i −0.510493 0.370895i
\(743\) 5.04931 + 3.66854i 0.185241 + 0.134586i 0.676541 0.736405i \(-0.263478\pi\)
−0.491300 + 0.870990i \(0.663478\pi\)
\(744\) 0 0
\(745\) 1.97516 + 6.07892i 0.0723643 + 0.222714i
\(746\) −23.8381 + 17.3194i −0.872774 + 0.634108i
\(747\) 0 0
\(748\) −5.24699 1.75329i −0.191849 0.0641067i
\(749\) 21.7373 0.794264
\(750\) 0 0
\(751\) 6.65297 + 20.4757i 0.242770 + 0.747170i 0.995995 + 0.0894068i \(0.0284971\pi\)
−0.753225 + 0.657763i \(0.771503\pi\)
\(752\) −0.582494 + 1.79273i −0.0212414 + 0.0653743i
\(753\) 0 0
\(754\) 32.2928 + 23.4621i 1.17603 + 0.854439i
\(755\) 4.21698 12.9785i 0.153472 0.472337i
\(756\) 0 0
\(757\) 22.6882 16.4839i 0.824617 0.599119i −0.0934143 0.995627i \(-0.529778\pi\)
0.918031 + 0.396508i \(0.129778\pi\)
\(758\) 9.07226 0.329519
\(759\) 0 0
\(760\) −5.89350 −0.213780
\(761\) 37.7869 27.4538i 1.36977 0.995198i 0.372018 0.928226i \(-0.378666\pi\)
0.997755 0.0669722i \(-0.0213339\pi\)
\(762\) 0 0
\(763\) −3.25112 + 10.0059i −0.117698 + 0.362238i
\(764\) 11.1296 + 8.08610i 0.402654 + 0.292545i
\(765\) 0 0
\(766\) 2.40533 7.40285i 0.0869081 0.267476i
\(767\) 15.6865 + 48.2781i 0.566407 + 1.74322i
\(768\) 0 0
\(769\) −43.7091 −1.57619 −0.788095 0.615554i \(-0.788932\pi\)
−0.788095 + 0.615554i \(0.788932\pi\)
\(770\) −6.91399 + 2.18301i −0.249163 + 0.0786701i
\(771\) 0 0
\(772\) 8.85410 6.43288i 0.318666 0.231524i
\(773\) 4.68783 + 14.4276i 0.168609 + 0.518926i 0.999284 0.0378317i \(-0.0120451\pi\)
−0.830675 + 0.556758i \(0.812045\pi\)
\(774\) 0 0
\(775\) −3.74888 2.72372i −0.134664 0.0978390i
\(776\) −9.72751 7.06745i −0.349197 0.253707i
\(777\) 0 0
\(778\) −6.21448 19.1262i −0.222800 0.685708i
\(779\) −44.6548 + 32.4436i −1.59992 + 1.16241i
\(780\) 0 0
\(781\) 0.380789 45.7247i 0.0136257 1.63616i
\(782\) −5.43842 −0.194478
\(783\) 0 0
\(784\) −0.686333 2.11231i −0.0245119 0.0754398i
\(785\) 6.79985 20.9278i 0.242697 0.746944i
\(786\) 0 0
\(787\) 20.5684 + 14.9438i 0.733184 + 0.532690i 0.890569 0.454848i \(-0.150306\pi\)
−0.157385 + 0.987537i \(0.550306\pi\)
\(788\) −3.68080 + 11.3283i −0.131123 + 0.403555i
\(789\) 0 0
\(790\) 1.40632 1.02175i 0.0500345 0.0363522i
\(791\) −2.32998 −0.0828445
\(792\) 0 0
\(793\) 27.4556 0.974976
\(794\) −14.5799 + 10.5929i −0.517422 + 0.375929i
\(795\) 0 0
\(796\) −4.71671 + 14.5165i −0.167179 + 0.514525i
\(797\) 20.1437 + 14.6353i 0.713527 + 0.518408i 0.884310 0.466901i \(-0.154630\pi\)
−0.170783 + 0.985309i \(0.554630\pi\)
\(798\) 0 0
\(799\) 0.971609 2.99030i 0.0343730 0.105789i
\(800\) 0.309017 + 0.951057i 0.0109254 + 0.0336249i
\(801\) 0 0
\(802\) −8.61357 −0.304156
\(803\) −44.2534 + 13.9725i −1.56167 + 0.493077i
\(804\) 0 0
\(805\) −5.76632 + 4.18947i −0.203236 + 0.147660i
\(806\) −9.05770 27.8767i −0.319044 0.981916i
\(807\) 0 0
\(808\) −1.00000 0.726543i −0.0351799 0.0255597i
\(809\) 7.24534 + 5.26405i 0.254732 + 0.185074i 0.707822 0.706391i \(-0.249678\pi\)
−0.453089 + 0.891465i \(0.649678\pi\)
\(810\) 0 0
\(811\) −5.94284 18.2902i −0.208681 0.642255i −0.999542 0.0302590i \(-0.990367\pi\)
0.790861 0.611996i \(-0.209633\pi\)
\(812\) 11.1605 8.10855i 0.391655 0.284554i
\(813\) 0 0
\(814\) −5.42008 + 7.33094i −0.189974 + 0.256949i
\(815\) 8.41237 0.294672
\(816\) 0 0
\(817\) 2.35405 + 7.24502i 0.0823578 + 0.253471i
\(818\) −7.81452 + 24.0506i −0.273228 + 0.840910i
\(819\) 0 0
\(820\) 7.57696 + 5.50498i 0.264599 + 0.192242i
\(821\) −4.18658 + 12.8850i −0.146113 + 0.449688i −0.997152 0.0754129i \(-0.975973\pi\)
0.851040 + 0.525101i \(0.175973\pi\)
\(822\) 0 0
\(823\) 7.64605 5.55518i 0.266525 0.193641i −0.446494 0.894787i \(-0.647328\pi\)
0.713018 + 0.701145i \(0.247328\pi\)
\(824\) −18.6358 −0.649210
\(825\) 0 0
\(826\) 17.5437 0.610422
\(827\) 30.8750 22.4320i 1.07363 0.780036i 0.0970666 0.995278i \(-0.469054\pi\)
0.976561 + 0.215242i \(0.0690540\pi\)
\(828\) 0 0
\(829\) −15.2096 + 46.8105i −0.528253 + 1.62580i 0.229540 + 0.973299i \(0.426278\pi\)
−0.757792 + 0.652496i \(0.773722\pi\)
\(830\) −7.25616 5.27191i −0.251865 0.182991i
\(831\) 0 0
\(832\) −1.95467 + 6.01586i −0.0677660 + 0.208562i
\(833\) 1.14481 + 3.52337i 0.0396654 + 0.122078i
\(834\) 0 0
\(835\) 11.8337 0.409523
\(836\) −11.3571 15.9086i −0.392793 0.550211i
\(837\) 0 0
\(838\) −3.21757 + 2.33770i −0.111149 + 0.0807545i
\(839\) −13.4241 41.3152i −0.463452 1.42636i −0.860919 0.508743i \(-0.830110\pi\)
0.397466 0.917617i \(-0.369890\pi\)
\(840\) 0 0
\(841\) −8.75447 6.36049i −0.301878 0.219327i
\(842\) 6.99346 + 5.08105i 0.241011 + 0.175104i
\(843\) 0 0
\(844\) 1.15357 + 3.55033i 0.0397076 + 0.122208i
\(845\) 21.8526 15.8768i 0.751751 0.546179i
\(846\) 0 0
\(847\) −19.2163 14.4565i −0.660280 0.496731i
\(848\) −7.86261 −0.270003
\(849\) 0 0
\(850\) −0.515445 1.58638i −0.0176796 0.0544122i
\(851\) −2.76957 + 8.52385i −0.0949395 + 0.292194i
\(852\) 0 0
\(853\) −31.6722 23.0112i −1.08443 0.787888i −0.105984 0.994368i \(-0.533799\pi\)
−0.978451 + 0.206480i \(0.933799\pi\)
\(854\) 2.93217 9.02429i 0.100337 0.308805i
\(855\) 0 0
\(856\) 8.04444 5.84463i 0.274953 0.199765i
\(857\) 7.40798 0.253052 0.126526 0.991963i \(-0.459617\pi\)
0.126526 + 0.991963i \(0.459617\pi\)
\(858\) 0 0
\(859\) −12.2156 −0.416792 −0.208396 0.978045i \(-0.566824\pi\)
−0.208396 + 0.978045i \(0.566824\pi\)
\(860\) 1.04573 0.759764i 0.0356589 0.0259077i
\(861\) 0 0
\(862\) 4.05849 12.4907i 0.138233 0.425436i
\(863\) −41.7007 30.2973i −1.41951 1.03133i −0.991853 0.127391i \(-0.959340\pi\)
−0.427656 0.903942i \(-0.640660\pi\)
\(864\) 0 0
\(865\) 4.43293 13.6432i 0.150724 0.463881i
\(866\) −2.19526 6.75631i −0.0745979 0.229589i
\(867\) 0 0
\(868\) −10.1301 −0.343837
\(869\) 5.46809 + 1.82717i 0.185492 + 0.0619826i
\(870\) 0 0
\(871\) 28.7431 20.8831i 0.973924 0.707597i
\(872\) 1.48718 + 4.57708i 0.0503624 + 0.155000i
\(873\) 0 0
\(874\) −15.5455 11.2945i −0.525834 0.382041i
\(875\) −1.76858 1.28495i −0.0597890 0.0434392i
\(876\) 0 0
\(877\) −4.34545 13.3739i −0.146735 0.451605i 0.850495 0.525984i \(-0.176303\pi\)
−0.997230 + 0.0743786i \(0.976303\pi\)
\(878\) 6.55301 4.76104i 0.221153 0.160677i
\(879\) 0 0
\(880\) −1.97174 + 2.66688i −0.0664673 + 0.0899005i
\(881\) −53.6578 −1.80778 −0.903889 0.427767i \(-0.859300\pi\)
−0.903889 + 0.427767i \(0.859300\pi\)
\(882\) 0 0
\(883\) −4.51566 13.8978i −0.151964 0.467697i 0.845877 0.533379i \(-0.179078\pi\)
−0.997841 + 0.0656815i \(0.979078\pi\)
\(884\) 3.26042 10.0345i 0.109660 0.337498i
\(885\) 0 0
\(886\) 4.00505 + 2.90984i 0.134552 + 0.0977579i
\(887\) 0.153422 0.472186i 0.00515142 0.0158544i −0.948448 0.316933i \(-0.897347\pi\)
0.953599 + 0.301079i \(0.0973468\pi\)
\(888\) 0 0
\(889\) −10.9917 + 7.98593i −0.368649 + 0.267839i
\(890\) 13.3656 0.448017
\(891\) 0 0
\(892\) −19.3905 −0.649241
\(893\) 8.98753 6.52982i 0.300756 0.218512i
\(894\) 0 0
\(895\) 3.75329 11.5514i 0.125459 0.386122i
\(896\) 1.76858 + 1.28495i 0.0590842 + 0.0429272i
\(897\) 0 0
\(898\) 2.58837 7.96620i 0.0863752 0.265835i
\(899\) 9.03615 + 27.8104i 0.301372 + 0.927529i
\(900\) 0 0
\(901\) 13.1149 0.436922
\(902\) −0.258673 + 31.0612i −0.00861288 + 1.03423i
\(903\) 0 0
\(904\) −0.862267 + 0.626474i −0.0286786 + 0.0208362i
\(905\) 1.97890 + 6.09043i 0.0657809 + 0.202453i
\(906\) 0 0
\(907\) −19.8576 14.4274i −0.659362 0.479054i 0.207086 0.978323i \(-0.433602\pi\)
−0.866447 + 0.499268i \(0.833602\pi\)
\(908\) 4.84515 + 3.52020i 0.160792 + 0.116822i
\(909\) 0 0
\(910\) −4.27308 13.1512i −0.141651 0.435958i
\(911\) 26.6748 19.3803i 0.883774 0.642099i −0.0504732 0.998725i \(-0.516073\pi\)
0.934247 + 0.356626i \(0.116073\pi\)
\(912\) 0 0
\(913\) 0.247721 29.7461i 0.00819838 0.984454i
\(914\) −16.5879 −0.548678
\(915\) 0 0
\(916\) 5.14541 + 15.8359i 0.170009 + 0.523234i
\(917\) 2.18034 6.71040i 0.0720012 0.221597i
\(918\) 0 0
\(919\) 21.5867 + 15.6836i 0.712078 + 0.517355i 0.883843 0.467783i \(-0.154947\pi\)
−0.171765 + 0.985138i \(0.554947\pi\)
\(920\) −1.00752 + 3.10084i −0.0332171 + 0.102232i
\(921\) 0 0
\(922\) 16.8285 12.2266i 0.554216 0.402662i
\(923\) 87.2089 2.87052
\(924\) 0 0
\(925\) −2.74888 −0.0903827
\(926\) 4.68752 3.40568i 0.154041 0.111918i
\(927\) 0 0
\(928\) 1.95002 6.00154i 0.0640125 0.197010i
\(929\) −10.2252 7.42906i −0.335479 0.243740i 0.407273 0.913306i \(-0.366480\pi\)
−0.742752 + 0.669567i \(0.766480\pi\)
\(930\) 0 0
\(931\) −4.04490 + 12.4489i −0.132566 + 0.407997i
\(932\) −2.97728 9.16311i −0.0975239 0.300148i
\(933\) 0 0
\(934\) −3.36771 −0.110195
\(935\) 3.28889 4.44839i 0.107558 0.145478i
\(936\) 0 0
\(937\) −47.4472 + 34.4724i −1.55003 + 1.12616i −0.606402 + 0.795158i \(0.707388\pi\)
−0.943629 + 0.331005i \(0.892612\pi\)
\(938\) −3.79433 11.6778i −0.123889 0.381292i
\(939\) 0 0
\(940\) −1.52499 1.10797i −0.0497397 0.0361380i
\(941\) −30.2547 21.9813i −0.986274 0.716570i −0.0271720 0.999631i \(-0.508650\pi\)
−0.959102 + 0.283061i \(0.908650\pi\)
\(942\) 0 0
\(943\) 9.43611 + 29.0414i 0.307282 + 0.945717i
\(944\) 6.49248 4.71706i 0.211312 0.153527i
\(945\) 0 0
\(946\) 4.06603 + 1.35867i 0.132198 + 0.0441742i
\(947\) −57.0728 −1.85462 −0.927308 0.374298i \(-0.877884\pi\)
−0.927308 + 0.374298i \(0.877884\pi\)
\(948\) 0 0
\(949\) −27.3501 84.1749i −0.887822 2.73243i
\(950\) 1.82119 5.60505i 0.0590873 0.181852i
\(951\) 0 0
\(952\) −2.95002 2.14332i −0.0956107 0.0694652i
\(953\) −0.804955 + 2.47740i −0.0260751 + 0.0802508i −0.963247 0.268616i \(-0.913434\pi\)
0.937172 + 0.348867i \(0.113434\pi\)
\(954\) 0 0
\(955\) −11.1296 + 8.08610i −0.360144 + 0.261660i
\(956\) −11.9673 −0.387051
\(957\) 0 0
\(958\) 15.1743 0.490259
\(959\) −28.2534 + 20.5273i −0.912349 + 0.662861i
\(960\) 0 0
\(961\) −2.94407 + 9.06091i −0.0949700 + 0.292287i
\(962\) −14.0671 10.2204i −0.453542 0.329518i
\(963\) 0 0
\(964\) −2.98857 + 9.19786i −0.0962552 + 0.296243i
\(965\) 3.38197 + 10.4086i 0.108869 + 0.335065i
\(966\) 0 0
\(967\) 5.55100 0.178508 0.0892540 0.996009i \(-0.471552\pi\)
0.0892540 + 0.996009i \(0.471552\pi\)
\(968\) −10.9985 0.183200i −0.353504 0.00588827i
\(969\) 0 0
\(970\) 9.72751 7.06745i 0.312331 0.226922i
\(971\) 10.8588 + 33.4200i 0.348476 + 1.07250i 0.959696 + 0.281039i \(0.0906791\pi\)
−0.611220 + 0.791461i \(0.709321\pi\)
\(972\) 0 0
\(973\) 39.3241 + 28.5706i 1.26067 + 0.915931i
\(974\) −10.3807 7.54201i −0.332619 0.241662i
\(975\) 0 0
\(976\) −1.34129 4.12806i −0.0429335 0.132136i
\(977\) −28.1587 + 20.4585i −0.900876 + 0.654525i −0.938691 0.344760i \(-0.887960\pi\)
0.0378147 + 0.999285i \(0.487960\pi\)
\(978\) 0 0
\(979\) 25.7563 + 36.0785i 0.823174 + 1.15307i
\(980\) 2.22102 0.0709479
\(981\) 0 0
\(982\) 4.34756 + 13.3804i 0.138736 + 0.426986i
\(983\) 7.03664 21.6566i 0.224434 0.690737i −0.773914 0.633290i \(-0.781704\pi\)
0.998349 0.0574469i \(-0.0182960\pi\)
\(984\) 0 0
\(985\) −9.63645 7.00129i −0.307043 0.223080i
\(986\) −3.25266 + 10.0107i −0.103586 + 0.318804i
\(987\) 0 0
\(988\) 30.1594 21.9121i 0.959497 0.697115i
\(989\) 4.21438 0.134009
\(990\) 0 0
\(991\) 55.0090 1.74742 0.873709 0.486448i \(-0.161708\pi\)
0.873709 + 0.486448i \(0.161708\pi\)
\(992\) −3.74888 + 2.72372i −0.119027 + 0.0864783i
\(993\) 0 0
\(994\) 9.31365 28.6645i 0.295411 0.909181i
\(995\) −12.3485 8.97172i −0.391474 0.284423i
\(996\) 0 0
\(997\) 5.49445 16.9102i 0.174011 0.535551i −0.825576 0.564291i \(-0.809150\pi\)
0.999587 + 0.0287402i \(0.00914955\pi\)
\(998\) 4.46624 + 13.7457i 0.141376 + 0.435111i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.n.j.91.1 8
3.2 odd 2 110.2.g.c.91.1 yes 8
11.4 even 5 inner 990.2.n.j.631.1 8
12.11 even 2 880.2.bo.g.641.2 8
15.2 even 4 550.2.ba.f.399.3 16
15.8 even 4 550.2.ba.f.399.2 16
15.14 odd 2 550.2.h.l.201.2 8
33.2 even 10 1210.2.a.v.1.1 4
33.20 odd 10 1210.2.a.u.1.1 4
33.26 odd 10 110.2.g.c.81.1 8
132.35 odd 10 9680.2.a.ci.1.4 4
132.59 even 10 880.2.bo.g.81.2 8
132.119 even 10 9680.2.a.cj.1.4 4
165.59 odd 10 550.2.h.l.301.2 8
165.92 even 20 550.2.ba.f.499.2 16
165.119 odd 10 6050.2.a.dh.1.4 4
165.134 even 10 6050.2.a.cy.1.4 4
165.158 even 20 550.2.ba.f.499.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.g.c.81.1 8 33.26 odd 10
110.2.g.c.91.1 yes 8 3.2 odd 2
550.2.h.l.201.2 8 15.14 odd 2
550.2.h.l.301.2 8 165.59 odd 10
550.2.ba.f.399.2 16 15.8 even 4
550.2.ba.f.399.3 16 15.2 even 4
550.2.ba.f.499.2 16 165.92 even 20
550.2.ba.f.499.3 16 165.158 even 20
880.2.bo.g.81.2 8 132.59 even 10
880.2.bo.g.641.2 8 12.11 even 2
990.2.n.j.91.1 8 1.1 even 1 trivial
990.2.n.j.631.1 8 11.4 even 5 inner
1210.2.a.u.1.1 4 33.20 odd 10
1210.2.a.v.1.1 4 33.2 even 10
6050.2.a.cy.1.4 4 165.134 even 10
6050.2.a.dh.1.4 4 165.119 odd 10
9680.2.a.ci.1.4 4 132.35 odd 10
9680.2.a.cj.1.4 4 132.119 even 10