Properties

Label 990.2.n.b.91.1
Level $990$
Weight $2$
Character 990.91
Analytic conductor $7.905$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(91,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,-1,0,0,-1,0,4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 990.91
Dual form 990.2.n.b.631.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(0.309017 + 0.951057i) q^{8} +1.00000 q^{10} +(-3.04508 + 1.31433i) q^{11} +(1.11803 - 0.812299i) q^{13} +(-0.809017 - 0.587785i) q^{16} +(1.30902 + 0.951057i) q^{17} +(0.618034 + 1.90211i) q^{19} +(-0.809017 + 0.587785i) q^{20} +(1.69098 - 2.85317i) q^{22} -4.85410 q^{23} +(0.309017 + 0.951057i) q^{25} +(-0.427051 + 1.31433i) q^{26} +(-2.04508 + 6.29412i) q^{29} +(3.35410 - 2.43690i) q^{31} +1.00000 q^{32} -1.61803 q^{34} +(-2.11803 + 6.51864i) q^{37} +(-1.61803 - 1.17557i) q^{38} +(0.309017 - 0.951057i) q^{40} +(1.14590 + 3.52671i) q^{41} -2.85410 q^{43} +(0.309017 + 3.30220i) q^{44} +(3.92705 - 2.85317i) q^{46} +(0.336881 + 1.03681i) q^{47} +(5.66312 + 4.11450i) q^{49} +(-0.809017 - 0.587785i) q^{50} +(-0.427051 - 1.31433i) q^{52} +(-8.85410 + 6.43288i) q^{53} +(3.23607 + 0.726543i) q^{55} +(-2.04508 - 6.29412i) q^{58} +(-0.354102 + 1.08981i) q^{59} +(6.23607 + 4.53077i) q^{61} +(-1.28115 + 3.94298i) q^{62} +(-0.809017 + 0.587785i) q^{64} -1.38197 q^{65} -12.6180 q^{67} +(1.30902 - 0.951057i) q^{68} +(8.85410 + 6.43288i) q^{71} +(-2.11803 - 6.51864i) q^{74} +2.00000 q^{76} +(-9.78115 + 7.10642i) q^{79} +(0.309017 + 0.951057i) q^{80} +(-3.00000 - 2.17963i) q^{82} +(0.618034 + 0.449028i) q^{83} +(-0.500000 - 1.53884i) q^{85} +(2.30902 - 1.67760i) q^{86} +(-2.19098 - 2.48990i) q^{88} -4.47214 q^{89} +(-1.50000 + 4.61653i) q^{92} +(-0.881966 - 0.640786i) q^{94} +(0.618034 - 1.90211i) q^{95} +(-7.47214 + 5.42882i) q^{97} -7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} - q^{5} - q^{8} + 4 q^{10} - q^{11} - q^{16} + 3 q^{17} - 2 q^{19} - q^{20} + 9 q^{22} - 6 q^{23} - q^{25} + 5 q^{26} + 3 q^{29} + 4 q^{32} - 2 q^{34} - 4 q^{37} - 2 q^{38} - q^{40}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0 0
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −3.04508 + 1.31433i −0.918128 + 0.396285i
\(12\) 0 0
\(13\) 1.11803 0.812299i 0.310087 0.225291i −0.421847 0.906667i \(-0.638618\pi\)
0.731934 + 0.681376i \(0.238618\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 1.30902 + 0.951057i 0.317483 + 0.230665i 0.735101 0.677958i \(-0.237135\pi\)
−0.417618 + 0.908623i \(0.637135\pi\)
\(18\) 0 0
\(19\) 0.618034 + 1.90211i 0.141787 + 0.436375i 0.996584 0.0825877i \(-0.0263185\pi\)
−0.854797 + 0.518962i \(0.826318\pi\)
\(20\) −0.809017 + 0.587785i −0.180902 + 0.131433i
\(21\) 0 0
\(22\) 1.69098 2.85317i 0.360519 0.608298i
\(23\) −4.85410 −1.01215 −0.506075 0.862489i \(-0.668904\pi\)
−0.506075 + 0.862489i \(0.668904\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) −0.427051 + 1.31433i −0.0837516 + 0.257761i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.04508 + 6.29412i −0.379763 + 1.16879i 0.560446 + 0.828191i \(0.310630\pi\)
−0.940209 + 0.340599i \(0.889370\pi\)
\(30\) 0 0
\(31\) 3.35410 2.43690i 0.602414 0.437680i −0.244321 0.969695i \(-0.578565\pi\)
0.846735 + 0.532015i \(0.178565\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.61803 −0.277491
\(35\) 0 0
\(36\) 0 0
\(37\) −2.11803 + 6.51864i −0.348203 + 1.07166i 0.611644 + 0.791133i \(0.290508\pi\)
−0.959847 + 0.280525i \(0.909492\pi\)
\(38\) −1.61803 1.17557i −0.262480 0.190703i
\(39\) 0 0
\(40\) 0.309017 0.951057i 0.0488599 0.150375i
\(41\) 1.14590 + 3.52671i 0.178959 + 0.550780i 0.999792 0.0203886i \(-0.00649033\pi\)
−0.820833 + 0.571168i \(0.806490\pi\)
\(42\) 0 0
\(43\) −2.85410 −0.435246 −0.217623 0.976033i \(-0.569830\pi\)
−0.217623 + 0.976033i \(0.569830\pi\)
\(44\) 0.309017 + 3.30220i 0.0465861 + 0.497825i
\(45\) 0 0
\(46\) 3.92705 2.85317i 0.579012 0.420677i
\(47\) 0.336881 + 1.03681i 0.0491391 + 0.151235i 0.972615 0.232421i \(-0.0746648\pi\)
−0.923476 + 0.383656i \(0.874665\pi\)
\(48\) 0 0
\(49\) 5.66312 + 4.11450i 0.809017 + 0.587785i
\(50\) −0.809017 0.587785i −0.114412 0.0831254i
\(51\) 0 0
\(52\) −0.427051 1.31433i −0.0592213 0.182264i
\(53\) −8.85410 + 6.43288i −1.21620 + 0.883624i −0.995779 0.0917797i \(-0.970744\pi\)
−0.220425 + 0.975404i \(0.570744\pi\)
\(54\) 0 0
\(55\) 3.23607 + 0.726543i 0.436351 + 0.0979670i
\(56\) 0 0
\(57\) 0 0
\(58\) −2.04508 6.29412i −0.268533 0.826459i
\(59\) −0.354102 + 1.08981i −0.0461001 + 0.141882i −0.971457 0.237215i \(-0.923765\pi\)
0.925357 + 0.379097i \(0.123765\pi\)
\(60\) 0 0
\(61\) 6.23607 + 4.53077i 0.798447 + 0.580105i 0.910458 0.413601i \(-0.135729\pi\)
−0.112011 + 0.993707i \(0.535729\pi\)
\(62\) −1.28115 + 3.94298i −0.162707 + 0.500759i
\(63\) 0 0
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −1.38197 −0.171412
\(66\) 0 0
\(67\) −12.6180 −1.54154 −0.770769 0.637115i \(-0.780128\pi\)
−0.770769 + 0.637115i \(0.780128\pi\)
\(68\) 1.30902 0.951057i 0.158742 0.115333i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.85410 + 6.43288i 1.05079 + 0.763443i 0.972362 0.233477i \(-0.0750105\pi\)
0.0784263 + 0.996920i \(0.475010\pi\)
\(72\) 0 0
\(73\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(74\) −2.11803 6.51864i −0.246216 0.757776i
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) −9.78115 + 7.10642i −1.10047 + 0.799535i −0.981136 0.193320i \(-0.938075\pi\)
−0.119330 + 0.992855i \(0.538075\pi\)
\(80\) 0.309017 + 0.951057i 0.0345492 + 0.106331i
\(81\) 0 0
\(82\) −3.00000 2.17963i −0.331295 0.240700i
\(83\) 0.618034 + 0.449028i 0.0678380 + 0.0492872i 0.621187 0.783662i \(-0.286651\pi\)
−0.553349 + 0.832949i \(0.686651\pi\)
\(84\) 0 0
\(85\) −0.500000 1.53884i −0.0542326 0.166911i
\(86\) 2.30902 1.67760i 0.248988 0.180900i
\(87\) 0 0
\(88\) −2.19098 2.48990i −0.233560 0.265424i
\(89\) −4.47214 −0.474045 −0.237023 0.971504i \(-0.576172\pi\)
−0.237023 + 0.971504i \(0.576172\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.50000 + 4.61653i −0.156386 + 0.481306i
\(93\) 0 0
\(94\) −0.881966 0.640786i −0.0909678 0.0660920i
\(95\) 0.618034 1.90211i 0.0634089 0.195153i
\(96\) 0 0
\(97\) −7.47214 + 5.42882i −0.758680 + 0.551214i −0.898505 0.438963i \(-0.855346\pi\)
0.139825 + 0.990176i \(0.455346\pi\)
\(98\) −7.00000 −0.707107
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 4.30902 3.13068i 0.428763 0.311515i −0.352391 0.935853i \(-0.614631\pi\)
0.781154 + 0.624338i \(0.214631\pi\)
\(102\) 0 0
\(103\) −3.00000 + 9.23305i −0.295599 + 0.909760i 0.687421 + 0.726259i \(0.258743\pi\)
−0.983020 + 0.183500i \(0.941257\pi\)
\(104\) 1.11803 + 0.812299i 0.109632 + 0.0796525i
\(105\) 0 0
\(106\) 3.38197 10.4086i 0.328486 1.01097i
\(107\) −0.909830 2.80017i −0.0879566 0.270703i 0.897398 0.441223i \(-0.145455\pi\)
−0.985354 + 0.170520i \(0.945455\pi\)
\(108\) 0 0
\(109\) −5.70820 −0.546747 −0.273373 0.961908i \(-0.588139\pi\)
−0.273373 + 0.961908i \(0.588139\pi\)
\(110\) −3.04508 + 1.31433i −0.290337 + 0.125316i
\(111\) 0 0
\(112\) 0 0
\(113\) −3.80902 11.7229i −0.358322 1.10280i −0.954058 0.299622i \(-0.903139\pi\)
0.595736 0.803180i \(-0.296861\pi\)
\(114\) 0 0
\(115\) 3.92705 + 2.85317i 0.366199 + 0.266059i
\(116\) 5.35410 + 3.88998i 0.497116 + 0.361176i
\(117\) 0 0
\(118\) −0.354102 1.08981i −0.0325977 0.100325i
\(119\) 0 0
\(120\) 0 0
\(121\) 7.54508 8.00448i 0.685917 0.727680i
\(122\) −7.70820 −0.697868
\(123\) 0 0
\(124\) −1.28115 3.94298i −0.115051 0.354090i
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −7.61803 5.53483i −0.675991 0.491136i 0.196034 0.980597i \(-0.437194\pi\)
−0.872025 + 0.489461i \(0.837194\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 0 0
\(130\) 1.11803 0.812299i 0.0980581 0.0712434i
\(131\) 1.85410 0.161994 0.0809968 0.996714i \(-0.474190\pi\)
0.0809968 + 0.996714i \(0.474190\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.2082 7.41669i 0.881855 0.640705i
\(135\) 0 0
\(136\) −0.500000 + 1.53884i −0.0428746 + 0.131955i
\(137\) 0.500000 + 0.363271i 0.0427179 + 0.0310364i 0.608939 0.793217i \(-0.291595\pi\)
−0.566221 + 0.824253i \(0.691595\pi\)
\(138\) 0 0
\(139\) 2.70820 8.33499i 0.229707 0.706965i −0.768073 0.640363i \(-0.778784\pi\)
0.997780 0.0666024i \(-0.0212159\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −10.9443 −0.918423
\(143\) −2.33688 + 3.94298i −0.195420 + 0.329729i
\(144\) 0 0
\(145\) 5.35410 3.88998i 0.444634 0.323045i
\(146\) 0 0
\(147\) 0 0
\(148\) 5.54508 + 4.02874i 0.455803 + 0.331160i
\(149\) −1.07295 0.779543i −0.0878994 0.0638627i 0.542968 0.839754i \(-0.317301\pi\)
−0.630867 + 0.775891i \(0.717301\pi\)
\(150\) 0 0
\(151\) 1.70820 + 5.25731i 0.139012 + 0.427834i 0.996192 0.0871818i \(-0.0277861\pi\)
−0.857181 + 0.515016i \(0.827786\pi\)
\(152\) −1.61803 + 1.17557i −0.131240 + 0.0953514i
\(153\) 0 0
\(154\) 0 0
\(155\) −4.14590 −0.333007
\(156\) 0 0
\(157\) 3.48278 + 10.7189i 0.277956 + 0.855461i 0.988422 + 0.151729i \(0.0484842\pi\)
−0.710466 + 0.703731i \(0.751516\pi\)
\(158\) 3.73607 11.4984i 0.297226 0.914766i
\(159\) 0 0
\(160\) −0.809017 0.587785i −0.0639584 0.0464685i
\(161\) 0 0
\(162\) 0 0
\(163\) −8.92705 + 6.48588i −0.699221 + 0.508014i −0.879678 0.475569i \(-0.842242\pi\)
0.180458 + 0.983583i \(0.442242\pi\)
\(164\) 3.70820 0.289562
\(165\) 0 0
\(166\) −0.763932 −0.0592926
\(167\) 13.5902 9.87384i 1.05164 0.764060i 0.0791155 0.996865i \(-0.474790\pi\)
0.972523 + 0.232805i \(0.0747904\pi\)
\(168\) 0 0
\(169\) −3.42705 + 10.5474i −0.263619 + 0.811337i
\(170\) 1.30902 + 0.951057i 0.100397 + 0.0729427i
\(171\) 0 0
\(172\) −0.881966 + 2.71441i −0.0672493 + 0.206972i
\(173\) −3.00000 9.23305i −0.228086 0.701976i −0.997964 0.0637846i \(-0.979683\pi\)
0.769878 0.638191i \(-0.220317\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.23607 + 0.726543i 0.243928 + 0.0547652i
\(177\) 0 0
\(178\) 3.61803 2.62866i 0.271183 0.197026i
\(179\) 2.57295 + 7.91872i 0.192311 + 0.591873i 0.999997 + 0.00226056i \(0.000719558\pi\)
−0.807686 + 0.589613i \(0.799280\pi\)
\(180\) 0 0
\(181\) 18.7082 + 13.5923i 1.39057 + 1.01031i 0.995803 + 0.0915270i \(0.0291748\pi\)
0.394767 + 0.918781i \(0.370825\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.50000 4.61653i −0.110581 0.340335i
\(185\) 5.54508 4.02874i 0.407683 0.296199i
\(186\) 0 0
\(187\) −5.23607 1.17557i −0.382899 0.0859662i
\(188\) 1.09017 0.0795088
\(189\) 0 0
\(190\) 0.618034 + 1.90211i 0.0448369 + 0.137994i
\(191\) 4.00000 12.3107i 0.289430 0.890773i −0.695606 0.718424i \(-0.744864\pi\)
0.985036 0.172350i \(-0.0551360\pi\)
\(192\) 0 0
\(193\) −1.14590 0.832544i −0.0824835 0.0599278i 0.545779 0.837929i \(-0.316234\pi\)
−0.628263 + 0.778001i \(0.716234\pi\)
\(194\) 2.85410 8.78402i 0.204913 0.630656i
\(195\) 0 0
\(196\) 5.66312 4.11450i 0.404508 0.293893i
\(197\) 24.3607 1.73563 0.867813 0.496890i \(-0.165525\pi\)
0.867813 + 0.496890i \(0.165525\pi\)
\(198\) 0 0
\(199\) −20.0902 −1.42415 −0.712077 0.702101i \(-0.752245\pi\)
−0.712077 + 0.702101i \(0.752245\pi\)
\(200\) −0.809017 + 0.587785i −0.0572061 + 0.0415627i
\(201\) 0 0
\(202\) −1.64590 + 5.06555i −0.115805 + 0.356411i
\(203\) 0 0
\(204\) 0 0
\(205\) 1.14590 3.52671i 0.0800330 0.246316i
\(206\) −3.00000 9.23305i −0.209020 0.643297i
\(207\) 0 0
\(208\) −1.38197 −0.0958221
\(209\) −4.38197 4.97980i −0.303107 0.344460i
\(210\) 0 0
\(211\) 14.5623 10.5801i 1.00251 0.728366i 0.0398855 0.999204i \(-0.487301\pi\)
0.962625 + 0.270838i \(0.0873007\pi\)
\(212\) 3.38197 + 10.4086i 0.232274 + 0.714867i
\(213\) 0 0
\(214\) 2.38197 + 1.73060i 0.162828 + 0.118301i
\(215\) 2.30902 + 1.67760i 0.157474 + 0.114411i
\(216\) 0 0
\(217\) 0 0
\(218\) 4.61803 3.35520i 0.312773 0.227243i
\(219\) 0 0
\(220\) 1.69098 2.85317i 0.114006 0.192361i
\(221\) 2.23607 0.150414
\(222\) 0 0
\(223\) −3.61803 11.1352i −0.242281 0.745666i −0.996072 0.0885506i \(-0.971777\pi\)
0.753790 0.657115i \(-0.228223\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 9.97214 + 7.24518i 0.663337 + 0.481942i
\(227\) 3.94427 12.1392i 0.261791 0.805708i −0.730625 0.682779i \(-0.760771\pi\)
0.992415 0.122929i \(-0.0392288\pi\)
\(228\) 0 0
\(229\) −4.00000 + 2.90617i −0.264327 + 0.192045i −0.712053 0.702126i \(-0.752234\pi\)
0.447725 + 0.894171i \(0.352234\pi\)
\(230\) −4.85410 −0.320070
\(231\) 0 0
\(232\) −6.61803 −0.434495
\(233\) −2.73607 + 1.98787i −0.179246 + 0.130230i −0.673790 0.738923i \(-0.735335\pi\)
0.494545 + 0.869152i \(0.335335\pi\)
\(234\) 0 0
\(235\) 0.336881 1.03681i 0.0219757 0.0676342i
\(236\) 0.927051 + 0.673542i 0.0603459 + 0.0438438i
\(237\) 0 0
\(238\) 0 0
\(239\) −3.47214 10.6861i −0.224594 0.691229i −0.998333 0.0577239i \(-0.981616\pi\)
0.773739 0.633505i \(-0.218384\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) −1.39919 + 10.9106i −0.0899431 + 0.701363i
\(243\) 0 0
\(244\) 6.23607 4.53077i 0.399223 0.290053i
\(245\) −2.16312 6.65740i −0.138197 0.425325i
\(246\) 0 0
\(247\) 2.23607 + 1.62460i 0.142278 + 0.103371i
\(248\) 3.35410 + 2.43690i 0.212986 + 0.154743i
\(249\) 0 0
\(250\) 0.309017 + 0.951057i 0.0195440 + 0.0601501i
\(251\) −8.16312 + 5.93085i −0.515251 + 0.374352i −0.814812 0.579725i \(-0.803160\pi\)
0.299561 + 0.954077i \(0.403160\pi\)
\(252\) 0 0
\(253\) 14.7812 6.37988i 0.929283 0.401100i
\(254\) 9.41641 0.590838
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 8.79837 27.0786i 0.548827 1.68912i −0.162884 0.986645i \(-0.552080\pi\)
0.711711 0.702472i \(-0.247920\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.427051 + 1.31433i −0.0264846 + 0.0815111i
\(261\) 0 0
\(262\) −1.50000 + 1.08981i −0.0926703 + 0.0673289i
\(263\) 17.0344 1.05039 0.525194 0.850982i \(-0.323993\pi\)
0.525194 + 0.850982i \(0.323993\pi\)
\(264\) 0 0
\(265\) 10.9443 0.672301
\(266\) 0 0
\(267\) 0 0
\(268\) −3.89919 + 12.0005i −0.238181 + 0.733045i
\(269\) 14.3541 + 10.4289i 0.875185 + 0.635859i 0.931973 0.362527i \(-0.118086\pi\)
−0.0567882 + 0.998386i \(0.518086\pi\)
\(270\) 0 0
\(271\) 8.73607 26.8869i 0.530678 1.63326i −0.222128 0.975018i \(-0.571300\pi\)
0.752806 0.658242i \(-0.228700\pi\)
\(272\) −0.500000 1.53884i −0.0303170 0.0933060i
\(273\) 0 0
\(274\) −0.618034 −0.0373368
\(275\) −2.19098 2.48990i −0.132121 0.150147i
\(276\) 0 0
\(277\) 0.454915 0.330515i 0.0273332 0.0198587i −0.574035 0.818831i \(-0.694623\pi\)
0.601368 + 0.798972i \(0.294623\pi\)
\(278\) 2.70820 + 8.33499i 0.162427 + 0.499900i
\(279\) 0 0
\(280\) 0 0
\(281\) 14.7082 + 10.6861i 0.877418 + 0.637481i 0.932567 0.360997i \(-0.117563\pi\)
−0.0551492 + 0.998478i \(0.517563\pi\)
\(282\) 0 0
\(283\) 0.954915 + 2.93893i 0.0567638 + 0.174701i 0.975419 0.220360i \(-0.0707233\pi\)
−0.918655 + 0.395061i \(0.870723\pi\)
\(284\) 8.85410 6.43288i 0.525394 0.381721i
\(285\) 0 0
\(286\) −0.427051 4.56352i −0.0252521 0.269847i
\(287\) 0 0
\(288\) 0 0
\(289\) −4.44427 13.6781i −0.261428 0.804592i
\(290\) −2.04508 + 6.29412i −0.120092 + 0.369604i
\(291\) 0 0
\(292\) 0 0
\(293\) −0.472136 + 1.45309i −0.0275825 + 0.0848901i −0.963900 0.266264i \(-0.914211\pi\)
0.936318 + 0.351154i \(0.114211\pi\)
\(294\) 0 0
\(295\) 0.927051 0.673542i 0.0539750 0.0392151i
\(296\) −6.85410 −0.398387
\(297\) 0 0
\(298\) 1.32624 0.0768269
\(299\) −5.42705 + 3.94298i −0.313854 + 0.228029i
\(300\) 0 0
\(301\) 0 0
\(302\) −4.47214 3.24920i −0.257343 0.186970i
\(303\) 0 0
\(304\) 0.618034 1.90211i 0.0354467 0.109094i
\(305\) −2.38197 7.33094i −0.136391 0.419768i
\(306\) 0 0
\(307\) −32.9787 −1.88219 −0.941097 0.338136i \(-0.890204\pi\)
−0.941097 + 0.338136i \(0.890204\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.35410 2.43690i 0.190500 0.138406i
\(311\) −9.56231 29.4298i −0.542229 1.66881i −0.727490 0.686119i \(-0.759313\pi\)
0.185261 0.982689i \(-0.440687\pi\)
\(312\) 0 0
\(313\) 24.4164 + 17.7396i 1.38010 + 1.00270i 0.996871 + 0.0790445i \(0.0251869\pi\)
0.383226 + 0.923655i \(0.374813\pi\)
\(314\) −9.11803 6.62464i −0.514560 0.373850i
\(315\) 0 0
\(316\) 3.73607 + 11.4984i 0.210170 + 0.646837i
\(317\) −13.3262 + 9.68208i −0.748476 + 0.543800i −0.895354 0.445355i \(-0.853078\pi\)
0.146878 + 0.989155i \(0.453078\pi\)
\(318\) 0 0
\(319\) −2.04508 21.8541i −0.114503 1.22359i
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) −1.00000 + 3.07768i −0.0556415 + 0.171247i
\(324\) 0 0
\(325\) 1.11803 + 0.812299i 0.0620174 + 0.0450583i
\(326\) 3.40983 10.4944i 0.188853 0.581230i
\(327\) 0 0
\(328\) −3.00000 + 2.17963i −0.165647 + 0.120350i
\(329\) 0 0
\(330\) 0 0
\(331\) −4.58359 −0.251937 −0.125969 0.992034i \(-0.540204\pi\)
−0.125969 + 0.992034i \(0.540204\pi\)
\(332\) 0.618034 0.449028i 0.0339190 0.0246436i
\(333\) 0 0
\(334\) −5.19098 + 15.9762i −0.284038 + 0.874179i
\(335\) 10.2082 + 7.41669i 0.557734 + 0.405217i
\(336\) 0 0
\(337\) 7.94427 24.4500i 0.432752 1.33187i −0.462621 0.886556i \(-0.653091\pi\)
0.895373 0.445318i \(-0.146909\pi\)
\(338\) −3.42705 10.5474i −0.186407 0.573702i
\(339\) 0 0
\(340\) −1.61803 −0.0877502
\(341\) −7.01064 + 11.8290i −0.379648 + 0.640574i
\(342\) 0 0
\(343\) 0 0
\(344\) −0.881966 2.71441i −0.0475524 0.146351i
\(345\) 0 0
\(346\) 7.85410 + 5.70634i 0.422239 + 0.306775i
\(347\) −3.00000 2.17963i −0.161048 0.117009i 0.504342 0.863504i \(-0.331735\pi\)
−0.665391 + 0.746495i \(0.731735\pi\)
\(348\) 0 0
\(349\) 4.20163 + 12.9313i 0.224908 + 0.692195i 0.998301 + 0.0582685i \(0.0185580\pi\)
−0.773393 + 0.633927i \(0.781442\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.04508 + 1.31433i −0.162304 + 0.0700539i
\(353\) −0.270510 −0.0143978 −0.00719889 0.999974i \(-0.502291\pi\)
−0.00719889 + 0.999974i \(0.502291\pi\)
\(354\) 0 0
\(355\) −3.38197 10.4086i −0.179496 0.552432i
\(356\) −1.38197 + 4.25325i −0.0732441 + 0.225422i
\(357\) 0 0
\(358\) −6.73607 4.89404i −0.356012 0.258658i
\(359\) −8.76393 + 26.9726i −0.462543 + 1.42356i 0.399504 + 0.916731i \(0.369182\pi\)
−0.862047 + 0.506829i \(0.830818\pi\)
\(360\) 0 0
\(361\) 12.1353 8.81678i 0.638698 0.464041i
\(362\) −23.1246 −1.21540
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7.14590 + 21.9928i −0.373013 + 1.14802i 0.571797 + 0.820395i \(0.306247\pi\)
−0.944810 + 0.327620i \(0.893753\pi\)
\(368\) 3.92705 + 2.85317i 0.204712 + 0.148732i
\(369\) 0 0
\(370\) −2.11803 + 6.51864i −0.110111 + 0.338888i
\(371\) 0 0
\(372\) 0 0
\(373\) −28.8328 −1.49291 −0.746453 0.665438i \(-0.768245\pi\)
−0.746453 + 0.665438i \(0.768245\pi\)
\(374\) 4.92705 2.12663i 0.254772 0.109965i
\(375\) 0 0
\(376\) −0.881966 + 0.640786i −0.0454839 + 0.0330460i
\(377\) 2.82624 + 8.69827i 0.145559 + 0.447983i
\(378\) 0 0
\(379\) 4.47214 + 3.24920i 0.229718 + 0.166900i 0.696690 0.717372i \(-0.254655\pi\)
−0.466972 + 0.884272i \(0.654655\pi\)
\(380\) −1.61803 1.17557i −0.0830034 0.0603055i
\(381\) 0 0
\(382\) 4.00000 + 12.3107i 0.204658 + 0.629872i
\(383\) −17.0623 + 12.3965i −0.871843 + 0.633431i −0.931081 0.364813i \(-0.881133\pi\)
0.0592378 + 0.998244i \(0.481133\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.41641 0.0720933
\(387\) 0 0
\(388\) 2.85410 + 8.78402i 0.144895 + 0.445941i
\(389\) −0.0623059 + 0.191758i −0.00315903 + 0.00972251i −0.952624 0.304152i \(-0.901627\pi\)
0.949465 + 0.313874i \(0.101627\pi\)
\(390\) 0 0
\(391\) −6.35410 4.61653i −0.321341 0.233468i
\(392\) −2.16312 + 6.65740i −0.109254 + 0.336249i
\(393\) 0 0
\(394\) −19.7082 + 14.3188i −0.992885 + 0.721373i
\(395\) 12.0902 0.608322
\(396\) 0 0
\(397\) −18.8541 −0.946260 −0.473130 0.880993i \(-0.656876\pi\)
−0.473130 + 0.880993i \(0.656876\pi\)
\(398\) 16.2533 11.8087i 0.814704 0.591917i
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) 3.70820 + 2.69417i 0.185179 + 0.134540i 0.676513 0.736431i \(-0.263490\pi\)
−0.491334 + 0.870971i \(0.663490\pi\)
\(402\) 0 0
\(403\) 1.77051 5.44907i 0.0881954 0.271437i
\(404\) −1.64590 5.06555i −0.0818865 0.252021i
\(405\) 0 0
\(406\) 0 0
\(407\) −2.11803 22.6336i −0.104987 1.12191i
\(408\) 0 0
\(409\) 22.4443 16.3067i 1.10980 0.806315i 0.127166 0.991881i \(-0.459412\pi\)
0.982632 + 0.185566i \(0.0594119\pi\)
\(410\) 1.14590 + 3.52671i 0.0565919 + 0.174172i
\(411\) 0 0
\(412\) 7.85410 + 5.70634i 0.386944 + 0.281131i
\(413\) 0 0
\(414\) 0 0
\(415\) −0.236068 0.726543i −0.0115881 0.0356646i
\(416\) 1.11803 0.812299i 0.0548161 0.0398262i
\(417\) 0 0
\(418\) 6.47214 + 1.45309i 0.316563 + 0.0710727i
\(419\) −16.7426 −0.817932 −0.408966 0.912550i \(-0.634110\pi\)
−0.408966 + 0.912550i \(0.634110\pi\)
\(420\) 0 0
\(421\) 6.05573 + 18.6376i 0.295138 + 0.908342i 0.983175 + 0.182666i \(0.0584727\pi\)
−0.688037 + 0.725676i \(0.741527\pi\)
\(422\) −5.56231 + 17.1190i −0.270769 + 0.833341i
\(423\) 0 0
\(424\) −8.85410 6.43288i −0.429993 0.312408i
\(425\) −0.500000 + 1.53884i −0.0242536 + 0.0746448i
\(426\) 0 0
\(427\) 0 0
\(428\) −2.94427 −0.142317
\(429\) 0 0
\(430\) −2.85410 −0.137637
\(431\) −30.6525 + 22.2703i −1.47648 + 1.07272i −0.497807 + 0.867288i \(0.665861\pi\)
−0.978670 + 0.205436i \(0.934139\pi\)
\(432\) 0 0
\(433\) 5.14590 15.8374i 0.247296 0.761099i −0.747954 0.663750i \(-0.768964\pi\)
0.995250 0.0973488i \(-0.0310362\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.76393 + 5.42882i −0.0844770 + 0.259994i
\(437\) −3.00000 9.23305i −0.143509 0.441677i
\(438\) 0 0
\(439\) −24.5066 −1.16964 −0.584818 0.811165i \(-0.698834\pi\)
−0.584818 + 0.811165i \(0.698834\pi\)
\(440\) 0.309017 + 3.30220i 0.0147318 + 0.157426i
\(441\) 0 0
\(442\) −1.80902 + 1.31433i −0.0860462 + 0.0625162i
\(443\) 7.90983 + 24.3440i 0.375807 + 1.15662i 0.942932 + 0.332984i \(0.108056\pi\)
−0.567125 + 0.823632i \(0.691944\pi\)
\(444\) 0 0
\(445\) 3.61803 + 2.62866i 0.171511 + 0.124610i
\(446\) 9.47214 + 6.88191i 0.448519 + 0.325868i
\(447\) 0 0
\(448\) 0 0
\(449\) −24.1803 + 17.5680i −1.14114 + 0.829087i −0.987278 0.159005i \(-0.949171\pi\)
−0.153863 + 0.988092i \(0.549171\pi\)
\(450\) 0 0
\(451\) −8.12461 9.23305i −0.382573 0.434767i
\(452\) −12.3262 −0.579777
\(453\) 0 0
\(454\) 3.94427 + 12.1392i 0.185114 + 0.569722i
\(455\) 0 0
\(456\) 0 0
\(457\) −0.145898 0.106001i −0.00682482 0.00495852i 0.584368 0.811489i \(-0.301343\pi\)
−0.591192 + 0.806531i \(0.701343\pi\)
\(458\) 1.52786 4.70228i 0.0713924 0.219723i
\(459\) 0 0
\(460\) 3.92705 2.85317i 0.183100 0.133030i
\(461\) −10.0902 −0.469946 −0.234973 0.972002i \(-0.575500\pi\)
−0.234973 + 0.972002i \(0.575500\pi\)
\(462\) 0 0
\(463\) −7.41641 −0.344670 −0.172335 0.985038i \(-0.555131\pi\)
−0.172335 + 0.985038i \(0.555131\pi\)
\(464\) 5.35410 3.88998i 0.248558 0.180588i
\(465\) 0 0
\(466\) 1.04508 3.21644i 0.0484126 0.148999i
\(467\) −3.32624 2.41665i −0.153920 0.111829i 0.508160 0.861263i \(-0.330326\pi\)
−0.662080 + 0.749433i \(0.730326\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.336881 + 1.03681i 0.0155392 + 0.0478246i
\(471\) 0 0
\(472\) −1.14590 −0.0527442
\(473\) 8.69098 3.75123i 0.399612 0.172482i
\(474\) 0 0
\(475\) −1.61803 + 1.17557i −0.0742405 + 0.0539389i
\(476\) 0 0
\(477\) 0 0
\(478\) 9.09017 + 6.60440i 0.415775 + 0.302078i
\(479\) −3.32624 2.41665i −0.151980 0.110420i 0.509197 0.860650i \(-0.329943\pi\)
−0.661176 + 0.750230i \(0.729943\pi\)
\(480\) 0 0
\(481\) 2.92705 + 9.00854i 0.133462 + 0.410754i
\(482\) −14.5623 + 10.5801i −0.663295 + 0.481912i
\(483\) 0 0
\(484\) −5.28115 9.64932i −0.240052 0.438606i
\(485\) 9.23607 0.419388
\(486\) 0 0
\(487\) −5.38197 16.5640i −0.243880 0.750586i −0.995819 0.0913526i \(-0.970881\pi\)
0.751938 0.659233i \(-0.229119\pi\)
\(488\) −2.38197 + 7.33094i −0.107827 + 0.331856i
\(489\) 0 0
\(490\) 5.66312 + 4.11450i 0.255834 + 0.185874i
\(491\) 6.10081 18.7764i 0.275326 0.847366i −0.713807 0.700342i \(-0.753031\pi\)
0.989133 0.147024i \(-0.0469693\pi\)
\(492\) 0 0
\(493\) −8.66312 + 6.29412i −0.390167 + 0.283473i
\(494\) −2.76393 −0.124355
\(495\) 0 0
\(496\) −4.14590 −0.186156
\(497\) 0 0
\(498\) 0 0
\(499\) 3.18034 9.78808i 0.142372 0.438175i −0.854292 0.519793i \(-0.826009\pi\)
0.996664 + 0.0816187i \(0.0260090\pi\)
\(500\) −0.809017 0.587785i −0.0361803 0.0262866i
\(501\) 0 0
\(502\) 3.11803 9.59632i 0.139165 0.428305i
\(503\) 11.5729 + 35.6179i 0.516012 + 1.58812i 0.781433 + 0.623990i \(0.214489\pi\)
−0.265420 + 0.964133i \(0.585511\pi\)
\(504\) 0 0
\(505\) −5.32624 −0.237014
\(506\) −8.20820 + 13.8496i −0.364899 + 0.615689i
\(507\) 0 0
\(508\) −7.61803 + 5.53483i −0.337996 + 0.245568i
\(509\) 3.01064 + 9.26581i 0.133444 + 0.410700i 0.995345 0.0963779i \(-0.0307257\pi\)
−0.861900 + 0.507078i \(0.830726\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0 0
\(514\) 8.79837 + 27.0786i 0.388080 + 1.19439i
\(515\) 7.85410 5.70634i 0.346093 0.251451i
\(516\) 0 0
\(517\) −2.38854 2.71441i −0.105048 0.119380i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.427051 1.31433i −0.0187274 0.0576371i
\(521\) −6.94427 + 21.3723i −0.304234 + 0.936336i 0.675728 + 0.737151i \(0.263829\pi\)
−0.979962 + 0.199185i \(0.936171\pi\)
\(522\) 0 0
\(523\) −21.7082 15.7719i −0.949233 0.689658i 0.00139197 0.999999i \(-0.499557\pi\)
−0.950625 + 0.310341i \(0.899557\pi\)
\(524\) 0.572949 1.76336i 0.0250294 0.0770326i
\(525\) 0 0
\(526\) −13.7812 + 10.0126i −0.600887 + 0.436570i
\(527\) 6.70820 0.292214
\(528\) 0 0
\(529\) 0.562306 0.0244481
\(530\) −8.85410 + 6.43288i −0.384598 + 0.279427i
\(531\) 0 0
\(532\) 0 0
\(533\) 4.14590 + 3.01217i 0.179579 + 0.130472i
\(534\) 0 0
\(535\) −0.909830 + 2.80017i −0.0393354 + 0.121062i
\(536\) −3.89919 12.0005i −0.168419 0.518341i
\(537\) 0 0
\(538\) −17.7426 −0.764940
\(539\) −22.6525 5.08580i −0.975711 0.219061i
\(540\) 0 0
\(541\) 7.61803 5.53483i 0.327525 0.237961i −0.411855 0.911249i \(-0.635119\pi\)
0.739380 + 0.673289i \(0.235119\pi\)
\(542\) 8.73607 + 26.8869i 0.375246 + 1.15489i
\(543\) 0 0
\(544\) 1.30902 + 0.951057i 0.0561236 + 0.0407762i
\(545\) 4.61803 + 3.35520i 0.197815 + 0.143721i
\(546\) 0 0
\(547\) 0.572949 + 1.76336i 0.0244975 + 0.0753956i 0.962558 0.271076i \(-0.0873796\pi\)
−0.938060 + 0.346472i \(0.887380\pi\)
\(548\) 0.500000 0.363271i 0.0213589 0.0155182i
\(549\) 0 0
\(550\) 3.23607 + 0.726543i 0.137986 + 0.0309799i
\(551\) −13.2361 −0.563875
\(552\) 0 0
\(553\) 0 0
\(554\) −0.173762 + 0.534785i −0.00738244 + 0.0227208i
\(555\) 0 0
\(556\) −7.09017 5.15131i −0.300690 0.218464i
\(557\) −5.14590 + 15.8374i −0.218039 + 0.671054i 0.780885 + 0.624675i \(0.214768\pi\)
−0.998924 + 0.0463795i \(0.985232\pi\)
\(558\) 0 0
\(559\) −3.19098 + 2.31838i −0.134964 + 0.0980572i
\(560\) 0 0
\(561\) 0 0
\(562\) −18.1803 −0.766891
\(563\) −1.09017 + 0.792055i −0.0459452 + 0.0333811i −0.610521 0.792000i \(-0.709040\pi\)
0.564576 + 0.825381i \(0.309040\pi\)
\(564\) 0 0
\(565\) −3.80902 + 11.7229i −0.160247 + 0.493188i
\(566\) −2.50000 1.81636i −0.105083 0.0763472i
\(567\) 0 0
\(568\) −3.38197 + 10.4086i −0.141904 + 0.436736i
\(569\) 2.76393 + 8.50651i 0.115870 + 0.356611i 0.992128 0.125232i \(-0.0399675\pi\)
−0.876257 + 0.481843i \(0.839967\pi\)
\(570\) 0 0
\(571\) −21.7082 −0.908460 −0.454230 0.890884i \(-0.650086\pi\)
−0.454230 + 0.890884i \(0.650086\pi\)
\(572\) 3.02786 + 3.44095i 0.126601 + 0.143874i
\(573\) 0 0
\(574\) 0 0
\(575\) −1.50000 4.61653i −0.0625543 0.192522i
\(576\) 0 0
\(577\) 20.3262 + 14.7679i 0.846192 + 0.614795i 0.924094 0.382166i \(-0.124822\pi\)
−0.0779012 + 0.996961i \(0.524822\pi\)
\(578\) 11.6353 + 8.45351i 0.483963 + 0.351620i
\(579\) 0 0
\(580\) −2.04508 6.29412i −0.0849175 0.261349i
\(581\) 0 0
\(582\) 0 0
\(583\) 18.5066 31.2259i 0.766464 1.29324i
\(584\) 0 0
\(585\) 0 0
\(586\) −0.472136 1.45309i −0.0195038 0.0600264i
\(587\) −1.58359 + 4.87380i −0.0653618 + 0.201163i −0.978404 0.206702i \(-0.933727\pi\)
0.913042 + 0.407866i \(0.133727\pi\)
\(588\) 0 0
\(589\) 6.70820 + 4.87380i 0.276407 + 0.200821i
\(590\) −0.354102 + 1.08981i −0.0145781 + 0.0448669i
\(591\) 0 0
\(592\) 5.54508 4.02874i 0.227902 0.165580i
\(593\) −16.6869 −0.685250 −0.342625 0.939472i \(-0.611316\pi\)
−0.342625 + 0.939472i \(0.611316\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.07295 + 0.779543i −0.0439497 + 0.0319313i
\(597\) 0 0
\(598\) 2.07295 6.37988i 0.0847692 0.260893i
\(599\) −10.3262 7.50245i −0.421919 0.306542i 0.356491 0.934299i \(-0.383973\pi\)
−0.778409 + 0.627757i \(0.783973\pi\)
\(600\) 0 0
\(601\) 13.7426 42.2955i 0.560574 1.72527i −0.120174 0.992753i \(-0.538345\pi\)
0.680749 0.732517i \(-0.261655\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 5.52786 0.224926
\(605\) −10.8090 + 2.04087i −0.439449 + 0.0829732i
\(606\) 0 0
\(607\) 3.85410 2.80017i 0.156433 0.113655i −0.506815 0.862055i \(-0.669177\pi\)
0.663248 + 0.748399i \(0.269177\pi\)
\(608\) 0.618034 + 1.90211i 0.0250646 + 0.0771409i
\(609\) 0 0
\(610\) 6.23607 + 4.53077i 0.252491 + 0.183445i
\(611\) 1.21885 + 0.885544i 0.0493093 + 0.0358253i
\(612\) 0 0
\(613\) −2.03444 6.26137i −0.0821703 0.252894i 0.901528 0.432721i \(-0.142446\pi\)
−0.983698 + 0.179826i \(0.942446\pi\)
\(614\) 26.6803 19.3844i 1.07673 0.782291i
\(615\) 0 0
\(616\) 0 0
\(617\) 13.0557 0.525604 0.262802 0.964850i \(-0.415353\pi\)
0.262802 + 0.964850i \(0.415353\pi\)
\(618\) 0 0
\(619\) 7.76393 + 23.8949i 0.312059 + 0.960418i 0.976948 + 0.213476i \(0.0684786\pi\)
−0.664889 + 0.746942i \(0.731521\pi\)
\(620\) −1.28115 + 3.94298i −0.0514523 + 0.158354i
\(621\) 0 0
\(622\) 25.0344 + 18.1886i 1.00379 + 0.729296i
\(623\) 0 0
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −30.1803 −1.20625
\(627\) 0 0
\(628\) 11.2705 0.449742
\(629\) −8.97214 + 6.51864i −0.357742 + 0.259915i
\(630\) 0 0
\(631\) −7.19098 + 22.1316i −0.286269 + 0.881044i 0.699747 + 0.714391i \(0.253296\pi\)
−0.986016 + 0.166653i \(0.946704\pi\)
\(632\) −9.78115 7.10642i −0.389073 0.282678i
\(633\) 0 0
\(634\) 5.09017 15.6659i 0.202156 0.622174i
\(635\) 2.90983 + 8.95554i 0.115473 + 0.355390i
\(636\) 0 0
\(637\) 9.67376 0.383288
\(638\) 14.5000 + 16.4782i 0.574060 + 0.652379i
\(639\) 0 0
\(640\) −0.809017 + 0.587785i −0.0319792 + 0.0232343i
\(641\) −9.90983 30.4993i −0.391415 1.20465i −0.931719 0.363181i \(-0.881691\pi\)
0.540304 0.841470i \(-0.318309\pi\)
\(642\) 0 0
\(643\) 17.9721 + 13.0575i 0.708752 + 0.514938i 0.882771 0.469804i \(-0.155675\pi\)
−0.174019 + 0.984742i \(0.555675\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.00000 3.07768i −0.0393445 0.121090i
\(647\) −7.45492 + 5.41631i −0.293083 + 0.212937i −0.724604 0.689166i \(-0.757977\pi\)
0.431521 + 0.902103i \(0.357977\pi\)
\(648\) 0 0
\(649\) −0.354102 3.78398i −0.0138997 0.148534i
\(650\) −1.38197 −0.0542052
\(651\) 0 0
\(652\) 3.40983 + 10.4944i 0.133539 + 0.410992i
\(653\) 6.85410 21.0948i 0.268222 0.825502i −0.722712 0.691149i \(-0.757105\pi\)
0.990934 0.134352i \(-0.0428954\pi\)
\(654\) 0 0
\(655\) −1.50000 1.08981i −0.0586098 0.0425825i
\(656\) 1.14590 3.52671i 0.0447398 0.137695i
\(657\) 0 0
\(658\) 0 0
\(659\) 48.3607 1.88386 0.941932 0.335803i \(-0.109008\pi\)
0.941932 + 0.335803i \(0.109008\pi\)
\(660\) 0 0
\(661\) −40.8328 −1.58821 −0.794106 0.607779i \(-0.792061\pi\)
−0.794106 + 0.607779i \(0.792061\pi\)
\(662\) 3.70820 2.69417i 0.144123 0.104712i
\(663\) 0 0
\(664\) −0.236068 + 0.726543i −0.00916121 + 0.0281953i
\(665\) 0 0
\(666\) 0 0
\(667\) 9.92705 30.5523i 0.384377 1.18299i
\(668\) −5.19098 15.9762i −0.200845 0.618138i
\(669\) 0 0
\(670\) −12.6180 −0.487477
\(671\) −24.9443 5.60034i −0.962963 0.216199i
\(672\) 0 0
\(673\) 27.5066 19.9847i 1.06030 0.770354i 0.0861567 0.996282i \(-0.472541\pi\)
0.974144 + 0.225928i \(0.0725414\pi\)
\(674\) 7.94427 + 24.4500i 0.306002 + 0.941777i
\(675\) 0 0
\(676\) 8.97214 + 6.51864i 0.345082 + 0.250717i
\(677\) −27.7082 20.1312i −1.06491 0.773704i −0.0899218 0.995949i \(-0.528662\pi\)
−0.974991 + 0.222244i \(0.928662\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.30902 0.951057i 0.0501985 0.0364714i
\(681\) 0 0
\(682\) −1.28115 13.6906i −0.0490579 0.524239i
\(683\) 20.6525 0.790245 0.395123 0.918628i \(-0.370702\pi\)
0.395123 + 0.918628i \(0.370702\pi\)
\(684\) 0 0
\(685\) −0.190983 0.587785i −0.00729709 0.0224581i
\(686\) 0 0
\(687\) 0 0
\(688\) 2.30902 + 1.67760i 0.0880304 + 0.0639579i
\(689\) −4.67376 + 14.3844i −0.178056 + 0.548000i
\(690\) 0 0
\(691\) −2.61803 + 1.90211i −0.0995947 + 0.0723598i −0.636468 0.771303i \(-0.719605\pi\)
0.536873 + 0.843663i \(0.319605\pi\)
\(692\) −9.70820 −0.369051
\(693\) 0 0
\(694\) 3.70820 0.140761
\(695\) −7.09017 + 5.15131i −0.268945 + 0.195400i
\(696\) 0 0
\(697\) −1.85410 + 5.70634i −0.0702291 + 0.216143i
\(698\) −11.0000 7.99197i −0.416356 0.302500i
\(699\) 0 0
\(700\) 0 0
\(701\) 3.67376 + 11.3067i 0.138756 + 0.427047i 0.996155 0.0876045i \(-0.0279212\pi\)
−0.857399 + 0.514652i \(0.827921\pi\)
\(702\) 0 0
\(703\) −13.7082 −0.517015
\(704\) 1.69098 2.85317i 0.0637313 0.107533i
\(705\) 0 0
\(706\) 0.218847 0.159002i 0.00823642 0.00598411i
\(707\) 0 0
\(708\) 0 0
\(709\) 23.5623 + 17.1190i 0.884901 + 0.642918i 0.934544 0.355849i \(-0.115808\pi\)
−0.0496425 + 0.998767i \(0.515808\pi\)
\(710\) 8.85410 + 6.43288i 0.332289 + 0.241422i
\(711\) 0 0
\(712\) −1.38197 4.25325i −0.0517914 0.159397i
\(713\) −16.2812 + 11.8290i −0.609734 + 0.442998i
\(714\) 0 0
\(715\) 4.20820 1.81636i 0.157378 0.0679279i
\(716\) 8.32624 0.311166
\(717\) 0 0
\(718\) −8.76393 26.9726i −0.327067 1.00661i
\(719\) −3.90983 + 12.0332i −0.145812 + 0.448763i −0.997115 0.0759119i \(-0.975813\pi\)
0.851302 + 0.524675i \(0.175813\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −4.63525 + 14.2658i −0.172506 + 0.530920i
\(723\) 0 0
\(724\) 18.7082 13.5923i 0.695285 0.505154i
\(725\) −6.61803 −0.245788
\(726\) 0 0
\(727\) 46.7214 1.73280 0.866400 0.499351i \(-0.166428\pi\)
0.866400 + 0.499351i \(0.166428\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.73607 2.71441i −0.138183 0.100396i
\(732\) 0 0
\(733\) −13.4787 + 41.4832i −0.497848 + 1.53222i 0.314624 + 0.949216i \(0.398122\pi\)
−0.812471 + 0.583001i \(0.801878\pi\)
\(734\) −7.14590 21.9928i −0.263760 0.811770i
\(735\) 0 0
\(736\) −4.85410 −0.178925
\(737\) 38.4230 16.5842i 1.41533 0.610888i
\(738\) 0 0
\(739\) 6.70820 4.87380i 0.246765 0.179285i −0.457527 0.889196i \(-0.651265\pi\)
0.704292 + 0.709910i \(0.251265\pi\)
\(740\) −2.11803 6.51864i −0.0778605 0.239630i
\(741\) 0 0
\(742\) 0 0
\(743\) 33.5344 + 24.3642i 1.23026 + 0.893836i 0.996910 0.0785571i \(-0.0250313\pi\)
0.233350 + 0.972393i \(0.425031\pi\)
\(744\) 0 0
\(745\) 0.409830 + 1.26133i 0.0150150 + 0.0462115i
\(746\) 23.3262 16.9475i 0.854034 0.620492i
\(747\) 0 0
\(748\) −2.73607 + 4.61653i −0.100041 + 0.168797i
\(749\) 0 0
\(750\) 0 0
\(751\) 4.79180 + 14.7476i 0.174855 + 0.538149i 0.999627 0.0273171i \(-0.00869640\pi\)
−0.824772 + 0.565466i \(0.808696\pi\)
\(752\) 0.336881 1.03681i 0.0122848 0.0378087i
\(753\) 0 0
\(754\) −7.39919 5.37582i −0.269462 0.195776i
\(755\) 1.70820 5.25731i 0.0621679 0.191333i
\(756\) 0 0
\(757\) 7.06231 5.13107i 0.256684 0.186492i −0.452000 0.892018i \(-0.649289\pi\)
0.708684 + 0.705526i \(0.249289\pi\)
\(758\) −5.52786 −0.200781
\(759\) 0 0
\(760\) 2.00000 0.0725476
\(761\) −16.4164 + 11.9272i −0.595094 + 0.432361i −0.844134 0.536132i \(-0.819885\pi\)
0.249040 + 0.968493i \(0.419885\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −10.4721 7.60845i −0.378869 0.275264i
\(765\) 0 0
\(766\) 6.51722 20.0579i 0.235477 0.724723i
\(767\) 0.489357 + 1.50609i 0.0176697 + 0.0543816i
\(768\) 0 0
\(769\) 13.2148 0.476537 0.238269 0.971199i \(-0.423420\pi\)
0.238269 + 0.971199i \(0.423420\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.14590 + 0.832544i −0.0412418 + 0.0299639i
\(773\) −11.7639 36.2057i −0.423119 1.30223i −0.904784 0.425871i \(-0.859968\pi\)
0.481664 0.876356i \(-0.340032\pi\)
\(774\) 0 0
\(775\) 3.35410 + 2.43690i 0.120483 + 0.0875360i
\(776\) −7.47214 5.42882i −0.268234 0.194883i
\(777\) 0 0
\(778\) −0.0623059 0.191758i −0.00223377 0.00687485i
\(779\) −6.00000 + 4.35926i −0.214972 + 0.156187i
\(780\) 0 0
\(781\) −35.4164 7.95148i −1.26730 0.284526i
\(782\) 7.85410 0.280862
\(783\) 0 0
\(784\) −2.16312 6.65740i −0.0772542 0.237764i
\(785\) 3.48278 10.7189i 0.124306 0.382574i
\(786\) 0 0
\(787\) −12.4894 9.07405i −0.445197 0.323455i 0.342499 0.939518i \(-0.388727\pi\)
−0.787697 + 0.616063i \(0.788727\pi\)
\(788\) 7.52786 23.1684i 0.268169 0.825339i
\(789\) 0 0
\(790\) −9.78115 + 7.10642i −0.347998 + 0.252835i
\(791\) 0 0
\(792\) 0 0
\(793\) 10.6525 0.378281
\(794\) 15.2533 11.0822i 0.541319 0.393291i
\(795\) 0 0
\(796\) −6.20820 + 19.1069i −0.220044 + 0.677226i
\(797\) −7.00000 5.08580i −0.247953 0.180148i 0.456866 0.889535i \(-0.348972\pi\)
−0.704819 + 0.709387i \(0.748972\pi\)
\(798\) 0 0
\(799\) −0.545085 + 1.67760i −0.0192837 + 0.0593492i
\(800\) 0.309017 + 0.951057i 0.0109254 + 0.0336249i
\(801\) 0 0
\(802\) −4.58359 −0.161852
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.77051 + 5.44907i 0.0623635 + 0.191935i
\(807\) 0 0
\(808\) 4.30902 + 3.13068i 0.151591 + 0.110137i
\(809\) −41.7426 30.3278i −1.46759 1.06627i −0.981302 0.192472i \(-0.938350\pi\)
−0.486291 0.873797i \(-0.661650\pi\)
\(810\) 0 0
\(811\) 10.8541 + 33.4055i 0.381139 + 1.17303i 0.939243 + 0.343254i \(0.111529\pi\)
−0.558104 + 0.829771i \(0.688471\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 15.0172 + 17.0660i 0.526353 + 0.598164i
\(815\) 11.0344 0.386520
\(816\) 0 0
\(817\) −1.76393 5.42882i −0.0617122 0.189931i
\(818\) −8.57295 + 26.3848i −0.299746 + 0.922524i
\(819\) 0 0
\(820\) −3.00000 2.17963i −0.104765 0.0761159i
\(821\) −6.72949 + 20.7112i −0.234861 + 0.722827i 0.762279 + 0.647249i \(0.224080\pi\)
−0.997140 + 0.0755787i \(0.975920\pi\)
\(822\) 0 0
\(823\) −18.8541 + 13.6983i −0.657213 + 0.477493i −0.865720 0.500528i \(-0.833139\pi\)
0.208508 + 0.978021i \(0.433139\pi\)
\(824\) −9.70820 −0.338201
\(825\) 0 0
\(826\) 0 0
\(827\) 38.7426 28.1482i 1.34721 0.978808i 0.348069 0.937469i \(-0.386838\pi\)
0.999145 0.0413391i \(-0.0131624\pi\)
\(828\) 0 0
\(829\) 0.965558 2.97168i 0.0335352 0.103211i −0.932888 0.360167i \(-0.882720\pi\)
0.966423 + 0.256956i \(0.0827197\pi\)
\(830\) 0.618034 + 0.449028i 0.0214523 + 0.0155860i
\(831\) 0 0
\(832\) −0.427051 + 1.31433i −0.0148053 + 0.0455661i
\(833\) 3.50000 + 10.7719i 0.121268 + 0.373224i
\(834\) 0 0
\(835\) −16.7984 −0.581332
\(836\) −6.09017 + 2.62866i −0.210633 + 0.0909140i
\(837\) 0 0
\(838\) 13.5451 9.84108i 0.467907 0.339954i
\(839\) −1.03444 3.18368i −0.0357129 0.109913i 0.931611 0.363457i \(-0.118404\pi\)
−0.967324 + 0.253544i \(0.918404\pi\)
\(840\) 0 0
\(841\) −11.9721 8.69827i −0.412832 0.299940i
\(842\) −15.8541 11.5187i −0.546368 0.396960i
\(843\) 0 0
\(844\) −5.56231 17.1190i −0.191462 0.589261i
\(845\) 8.97214 6.51864i 0.308651 0.224248i
\(846\) 0 0
\(847\) 0 0
\(848\) 10.9443 0.375828
\(849\) 0 0
\(850\) −0.500000 1.53884i −0.0171499 0.0527818i
\(851\) 10.2812 31.6421i 0.352433 1.08468i
\(852\) 0 0
\(853\) 33.9787 + 24.6870i 1.16341 + 0.845266i 0.990205 0.139620i \(-0.0445881\pi\)
0.173204 + 0.984886i \(0.444588\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.38197 1.73060i 0.0814139 0.0591507i
\(857\) 37.7984 1.29117 0.645584 0.763689i \(-0.276614\pi\)
0.645584 + 0.763689i \(0.276614\pi\)
\(858\) 0 0
\(859\) −8.76393 −0.299022 −0.149511 0.988760i \(-0.547770\pi\)
−0.149511 + 0.988760i \(0.547770\pi\)
\(860\) 2.30902 1.67760i 0.0787368 0.0572057i
\(861\) 0 0
\(862\) 11.7082 36.0341i 0.398783 1.22733i
\(863\) −8.07295 5.86534i −0.274806 0.199659i 0.441843 0.897093i \(-0.354325\pi\)
−0.716649 + 0.697434i \(0.754325\pi\)
\(864\) 0 0
\(865\) −3.00000 + 9.23305i −0.102003 + 0.313933i
\(866\) 5.14590 + 15.8374i 0.174865 + 0.538178i
\(867\) 0 0
\(868\) 0 0
\(869\) 20.4443 34.4953i 0.693524 1.17017i
\(870\) 0 0
\(871\) −14.1074 + 10.2496i −0.478011 + 0.347295i
\(872\) −1.76393 5.42882i −0.0597343 0.183843i
\(873\) 0 0
\(874\) 7.85410 + 5.70634i 0.265669 + 0.193020i
\(875\) 0 0
\(876\) 0 0
\(877\) 15.7148 + 48.3651i 0.530650 + 1.63317i 0.752864 + 0.658176i \(0.228672\pi\)
−0.222213 + 0.974998i \(0.571328\pi\)
\(878\) 19.8262 14.4046i 0.669103 0.486132i
\(879\) 0 0
\(880\) −2.19098 2.48990i −0.0738580 0.0839345i
\(881\) 35.4853 1.19553 0.597765 0.801671i \(-0.296056\pi\)
0.597765 + 0.801671i \(0.296056\pi\)
\(882\) 0 0
\(883\) −7.64590 23.5317i −0.257305 0.791903i −0.993367 0.114989i \(-0.963317\pi\)
0.736062 0.676914i \(-0.236683\pi\)
\(884\) 0.690983 2.12663i 0.0232403 0.0715262i
\(885\) 0 0
\(886\) −20.7082 15.0454i −0.695706 0.505460i
\(887\) 1.44427 4.44501i 0.0484939 0.149249i −0.923877 0.382689i \(-0.874998\pi\)
0.972371 + 0.233440i \(0.0749982\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −4.47214 −0.149906
\(891\) 0 0
\(892\) −11.7082 −0.392020
\(893\) −1.76393 + 1.28157i −0.0590277 + 0.0428862i
\(894\) 0 0
\(895\) 2.57295 7.91872i 0.0860042 0.264694i
\(896\) 0 0
\(897\) 0 0
\(898\) 9.23607 28.4257i 0.308212 0.948578i
\(899\) 8.47871 + 26.0948i 0.282781 + 0.870310i
\(900\) 0 0
\(901\) −17.7082 −0.589946
\(902\) 12.0000 + 2.69417i 0.399556 + 0.0897060i
\(903\) 0 0
\(904\) 9.97214 7.24518i 0.331668 0.240971i
\(905\) −7.14590 21.9928i −0.237538 0.731066i
\(906\) 0 0
\(907\) 15.5451 + 11.2942i 0.516166 + 0.375017i 0.815158 0.579239i \(-0.196650\pi\)
−0.298992 + 0.954256i \(0.596650\pi\)
\(908\) −10.3262 7.50245i −0.342688 0.248978i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.9787 31.9524i 1.45708 1.05863i 0.472968 0.881080i \(-0.343183\pi\)
0.984112 0.177551i \(-0.0568174\pi\)
\(912\) 0 0
\(913\) −2.47214 0.555029i −0.0818158 0.0183688i
\(914\) 0.180340 0.00596511
\(915\) 0 0
\(916\) 1.52786 + 4.70228i 0.0504820 + 0.155368i
\(917\) 0 0
\(918\) 0 0
\(919\) 15.0172 + 10.9106i 0.495372 + 0.359909i 0.807247 0.590214i \(-0.200957\pi\)
−0.311874 + 0.950123i \(0.600957\pi\)
\(920\) −1.50000 + 4.61653i −0.0494535 + 0.152202i
\(921\) 0 0
\(922\) 8.16312 5.93085i 0.268838 0.195322i
\(923\) 15.1246 0.497833
\(924\) 0 0
\(925\) −6.85410 −0.225361
\(926\) 6.00000 4.35926i 0.197172 0.143254i
\(927\) 0 0
\(928\) −2.04508 + 6.29412i −0.0671332 + 0.206615i
\(929\) 19.7984 + 14.3844i 0.649564 + 0.471936i 0.863122 0.504995i \(-0.168506\pi\)
−0.213559 + 0.976930i \(0.568506\pi\)
\(930\) 0 0
\(931\) −4.32624 + 13.3148i −0.141787 + 0.436375i
\(932\) 1.04508 + 3.21644i 0.0342329 + 0.105358i
\(933\) 0 0
\(934\) 4.11146 0.134531
\(935\) 3.54508 + 4.02874i 0.115937 + 0.131754i
\(936\) 0 0
\(937\) 45.7426 33.2340i 1.49435 1.08571i 0.521781 0.853079i \(-0.325268\pi\)
0.972566 0.232627i \(-0.0747322\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −0.881966 0.640786i −0.0287666 0.0209001i
\(941\) 48.0066 + 34.8788i 1.56497 + 1.13702i 0.931782 + 0.363019i \(0.118254\pi\)
0.633188 + 0.773998i \(0.281746\pi\)
\(942\) 0 0
\(943\) −5.56231 17.1190i −0.181134 0.557472i
\(944\) 0.927051 0.673542i 0.0301729 0.0219219i
\(945\) 0 0
\(946\) −4.82624 + 8.14324i −0.156915 + 0.264759i
\(947\) −38.7214 −1.25828 −0.629138 0.777294i \(-0.716592\pi\)
−0.629138 + 0.777294i \(0.716592\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.618034 1.90211i 0.0200517 0.0617127i
\(951\) 0 0
\(952\) 0 0
\(953\) 6.68034 20.5600i 0.216397 0.666003i −0.782654 0.622457i \(-0.786135\pi\)
0.999051 0.0435458i \(-0.0138654\pi\)
\(954\) 0 0
\(955\) −10.4721 + 7.60845i −0.338870 + 0.246204i
\(956\) −11.2361 −0.363400
\(957\) 0 0
\(958\) 4.11146 0.132835
\(959\) 0 0
\(960\) 0 0
\(961\) −4.26800 + 13.1355i −0.137677 + 0.423727i
\(962\) −7.66312 5.56758i −0.247069 0.179506i
\(963\) 0 0
\(964\) 5.56231 17.1190i 0.179150 0.551366i
\(965\) 0.437694 + 1.34708i 0.0140899 + 0.0433642i
\(966\) 0 0
\(967\) 44.7639 1.43951 0.719756 0.694228i \(-0.244254\pi\)
0.719756 + 0.694228i \(0.244254\pi\)
\(968\) 9.94427 + 4.70228i 0.319621 + 0.151137i
\(969\) 0 0
\(970\) −7.47214 + 5.42882i −0.239916 + 0.174309i
\(971\) −15.7082 48.3449i −0.504100 1.55146i −0.802278 0.596951i \(-0.796379\pi\)
0.298178 0.954510i \(-0.403621\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 14.0902 + 10.2371i 0.451478 + 0.328018i
\(975\) 0 0
\(976\) −2.38197 7.33094i −0.0762449 0.234658i
\(977\) −1.90983 + 1.38757i −0.0611009 + 0.0443924i −0.617916 0.786244i \(-0.712023\pi\)
0.556816 + 0.830636i \(0.312023\pi\)
\(978\) 0 0
\(979\) 13.6180 5.87785i 0.435234 0.187857i
\(980\) −7.00000 −0.223607
\(981\) 0 0
\(982\) 6.10081 + 18.7764i 0.194685 + 0.599178i
\(983\) 8.36068 25.7315i 0.266664 0.820708i −0.724641 0.689127i \(-0.757994\pi\)
0.991305 0.131582i \(-0.0420056\pi\)
\(984\) 0 0
\(985\) −19.7082 14.3188i −0.627956 0.456236i
\(986\) 3.30902 10.1841i 0.105381 0.324328i
\(987\) 0 0
\(988\) 2.23607 1.62460i 0.0711388 0.0516854i
\(989\) 13.8541 0.440535
\(990\) 0 0
\(991\) −52.2705 −1.66043 −0.830214 0.557445i \(-0.811782\pi\)
−0.830214 + 0.557445i \(0.811782\pi\)
\(992\) 3.35410 2.43690i 0.106493 0.0773716i
\(993\) 0 0
\(994\) 0 0
\(995\) 16.2533 + 11.8087i 0.515264 + 0.374361i
\(996\) 0 0
\(997\) 4.11803 12.6740i 0.130419 0.401390i −0.864430 0.502753i \(-0.832320\pi\)
0.994849 + 0.101363i \(0.0323205\pi\)
\(998\) 3.18034 + 9.78808i 0.100672 + 0.309836i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.n.b.91.1 4
3.2 odd 2 990.2.n.g.91.1 yes 4
11.4 even 5 inner 990.2.n.b.631.1 yes 4
33.26 odd 10 990.2.n.g.631.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.n.b.91.1 4 1.1 even 1 trivial
990.2.n.b.631.1 yes 4 11.4 even 5 inner
990.2.n.g.91.1 yes 4 3.2 odd 2
990.2.n.g.631.1 yes 4 33.26 odd 10