Properties

Label 990.2.c.i
Level $990$
Weight $2$
Character orbit 990.c
Analytic conductor $7.905$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(199,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,4,0,0,0,0,-4,4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - q^{4} + (\beta_{3} + \beta_{2} + 1) q^{5} + ( - \beta_{3} - \beta_1) q^{7} - \beta_{2} q^{8} + (\beta_{2} - \beta_1 - 1) q^{10} + q^{11} + ( - \beta_{3} - 4 \beta_{2} - \beta_1) q^{13}+ \cdots + \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{5} - 4 q^{10} + 4 q^{11} + 4 q^{16} + 8 q^{19} - 4 q^{20} + 16 q^{26} - 8 q^{29} + 16 q^{31} + 12 q^{35} + 4 q^{40} + 16 q^{41} - 4 q^{44} - 8 q^{46} + 4 q^{49} + 4 q^{50} + 4 q^{55}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.22474 1.22474i
−1.22474 + 1.22474i
1.22474 + 1.22474i
−1.22474 1.22474i
1.00000i 0 −1.00000 −0.224745 2.22474i 0 2.44949i 1.00000i 0 −2.22474 + 0.224745i
199.2 1.00000i 0 −1.00000 2.22474 + 0.224745i 0 2.44949i 1.00000i 0 0.224745 2.22474i
199.3 1.00000i 0 −1.00000 −0.224745 + 2.22474i 0 2.44949i 1.00000i 0 −2.22474 0.224745i
199.4 1.00000i 0 −1.00000 2.22474 0.224745i 0 2.44949i 1.00000i 0 0.224745 + 2.22474i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.2.c.i yes 4
3.b odd 2 1 990.2.c.f 4
5.b even 2 1 inner 990.2.c.i yes 4
5.c odd 4 1 4950.2.a.bz 2
5.c odd 4 1 4950.2.a.cd 2
15.d odd 2 1 990.2.c.f 4
15.e even 4 1 4950.2.a.by 2
15.e even 4 1 4950.2.a.cc 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
990.2.c.f 4 3.b odd 2 1
990.2.c.f 4 15.d odd 2 1
990.2.c.i yes 4 1.a even 1 1 trivial
990.2.c.i yes 4 5.b even 2 1 inner
4950.2.a.by 2 15.e even 4 1
4950.2.a.bz 2 5.c odd 4 1
4950.2.a.cc 2 15.e even 4 1
4950.2.a.cd 2 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\):

\( T_{7}^{2} + 6 \) Copy content Toggle raw display
\( T_{29}^{2} + 4T_{29} - 20 \) Copy content Toggle raw display
\( T_{41}^{2} - 8T_{41} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 44T^{2} + 100 \) Copy content Toggle raw display
$17$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$19$ \( (T - 2)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 20T^{2} + 4 \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T - 20)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T - 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 56T^{2} + 400 \) Copy content Toggle raw display
$41$ \( (T^{2} - 8 T - 8)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 120T^{2} + 144 \) Copy content Toggle raw display
$47$ \( T^{4} + 20T^{2} + 4 \) Copy content Toggle raw display
$53$ \( T^{4} + 180T^{2} + 324 \) Copy content Toggle raw display
$59$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 8 T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 264T^{2} + 3600 \) Copy content Toggle raw display
$71$ \( (T^{2} - 12 T + 30)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 120T^{2} + 144 \) Copy content Toggle raw display
$79$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 224T^{2} + 6400 \) Copy content Toggle raw display
$89$ \( (T^{2} - 96)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
show more
show less