Properties

Label 990.2.bv
Level $990$
Weight $2$
Character orbit 990.bv
Rep. character $\chi_{990}(47,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $1152$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bv (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 495 \)
Character field: \(\Q(\zeta_{60})\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).

Total New Old
Modular forms 3584 1152 2432
Cusp forms 3328 1152 2176
Eisenstein series 256 0 256

Trace form

\( 1152 q - 4 q^{3} + 24 q^{11} - 16 q^{12} - 4 q^{15} - 144 q^{16} + 12 q^{20} + 16 q^{21} + 12 q^{25} + 8 q^{27} + 92 q^{33} - 16 q^{36} + 24 q^{37} + 108 q^{38} - 64 q^{42} - 32 q^{45} + 12 q^{47} - 8 q^{48}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
990.2.bv.a 990.bv 495.av $1152$ $7.905$ None 990.2.bv.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{60}]$

Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)