Properties

Label 990.2.bn
Level $990$
Weight $2$
Character orbit 990.bn
Rep. character $\chi_{990}(49,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $576$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bn (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 495 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).

Total New Old
Modular forms 1792 576 1216
Cusp forms 1664 576 1088
Eisenstein series 128 0 128

Trace form

\( 576 q - 72 q^{4} + 2 q^{5} - 20 q^{9} - 4 q^{11} + 6 q^{15} + 72 q^{16} - 2 q^{20} + 8 q^{21} - 6 q^{25} + 8 q^{29} + 18 q^{30} + 12 q^{31} + 60 q^{35} + 16 q^{36} - 112 q^{39} - 32 q^{41} - 8 q^{44} + 36 q^{45}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
990.2.bn.a 990.bn 495.al $576$ $7.905$ None 990.2.bn.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{30}]$

Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)