Properties

Label 990.2.bh.c.937.1
Level $990$
Weight $2$
Character 990.937
Analytic conductor $7.905$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(73,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bh (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,8,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 937.1
Character \(\chi\) \(=\) 990.937
Dual form 990.2.bh.c.523.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.453990 - 0.891007i) q^{2} +(-0.587785 + 0.809017i) q^{4} +(-1.69562 + 1.45770i) q^{5} +(-0.753160 + 0.119289i) q^{7} +(0.987688 + 0.156434i) q^{8} +(2.06861 + 0.849027i) q^{10} +(1.49880 - 2.95865i) q^{11} +(-0.760418 + 0.387452i) q^{13} +(0.448214 + 0.616914i) q^{14} +(-0.309017 - 0.951057i) q^{16} +(1.29037 + 0.657479i) q^{17} +(-4.09783 + 2.97724i) q^{19} +(-0.182641 - 2.22860i) q^{20} +(-3.31662 + 0.00776159i) q^{22} +(1.65567 - 1.65567i) q^{23} +(0.750246 - 4.94339i) q^{25} +(0.690445 + 0.501638i) q^{26} +(0.346189 - 0.679435i) q^{28} +(0.552936 + 0.401731i) q^{29} +(-1.08804 + 3.34864i) q^{31} +(-0.707107 + 0.707107i) q^{32} -1.44822i q^{34} +(1.10318 - 1.30015i) q^{35} +(-1.26983 - 8.01741i) q^{37} +(4.51312 + 2.29955i) q^{38} +(-1.90278 + 1.17450i) q^{40} +(-7.30492 - 10.0544i) q^{41} +(-7.61267 - 7.61267i) q^{43} +(1.51263 + 2.95160i) q^{44} +(-2.22687 - 0.723555i) q^{46} +(-12.5361 - 1.98553i) q^{47} +(-6.10438 + 1.98343i) q^{49} +(-4.74520 + 1.57578i) q^{50} +(0.133507 - 0.842930i) q^{52} +(-3.72862 - 7.31784i) q^{53} +(1.77142 + 7.20153i) q^{55} -0.762548 q^{56} +(0.106918 - 0.675052i) q^{58} +(-0.254349 + 0.350081i) q^{59} +(12.0627 - 3.91939i) q^{61} +(3.47761 - 0.550800i) q^{62} +(0.951057 + 0.309017i) q^{64} +(0.724592 - 1.76543i) q^{65} +(-3.82631 - 3.82631i) q^{67} +(-1.29037 + 0.657479i) q^{68} +(-1.65927 - 0.392691i) q^{70} +(2.45595 + 7.55864i) q^{71} +(-0.179057 - 1.13052i) q^{73} +(-6.56708 + 4.77126i) q^{74} -5.06519i q^{76} +(-0.775899 + 2.40712i) q^{77} +(3.11720 - 9.59376i) q^{79} +(1.91033 + 1.16218i) q^{80} +(-5.64213 + 11.0733i) q^{82} +(0.108440 - 0.212826i) q^{83} +(-3.14639 + 0.766141i) q^{85} +(-3.32686 + 10.2390i) q^{86} +(1.94318 - 2.68776i) q^{88} +11.2102i q^{89} +(0.526498 - 0.382523i) q^{91} +(0.366287 + 2.31265i) q^{92} +(3.92217 + 12.0712i) q^{94} +(2.60843 - 11.0217i) q^{95} +(-12.6763 + 6.45889i) q^{97} +(4.53858 + 4.53858i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 8 q^{5} - 20 q^{7} - 12 q^{11} + 12 q^{16} + 20 q^{17} + 4 q^{20} - 4 q^{22} + 8 q^{23} - 20 q^{25} - 8 q^{26} - 20 q^{28} + 16 q^{31} + 20 q^{37} + 36 q^{38} + 20 q^{41} + 40 q^{46} - 40 q^{47}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.453990 0.891007i −0.321020 0.630037i
\(3\) 0 0
\(4\) −0.587785 + 0.809017i −0.293893 + 0.404508i
\(5\) −1.69562 + 1.45770i −0.758304 + 0.651901i
\(6\) 0 0
\(7\) −0.753160 + 0.119289i −0.284668 + 0.0450869i −0.297135 0.954835i \(-0.596031\pi\)
0.0124678 + 0.999922i \(0.496031\pi\)
\(8\) 0.987688 + 0.156434i 0.349201 + 0.0553079i
\(9\) 0 0
\(10\) 2.06861 + 0.849027i 0.654152 + 0.268486i
\(11\) 1.49880 2.95865i 0.451904 0.892067i
\(12\) 0 0
\(13\) −0.760418 + 0.387452i −0.210902 + 0.107460i −0.556251 0.831014i \(-0.687761\pi\)
0.345349 + 0.938474i \(0.387761\pi\)
\(14\) 0.448214 + 0.616914i 0.119790 + 0.164877i
\(15\) 0 0
\(16\) −0.309017 0.951057i −0.0772542 0.237764i
\(17\) 1.29037 + 0.657479i 0.312962 + 0.159462i 0.603415 0.797427i \(-0.293806\pi\)
−0.290453 + 0.956889i \(0.593806\pi\)
\(18\) 0 0
\(19\) −4.09783 + 2.97724i −0.940106 + 0.683027i −0.948446 0.316939i \(-0.897345\pi\)
0.00834049 + 0.999965i \(0.497345\pi\)
\(20\) −0.182641 2.22860i −0.0408398 0.498329i
\(21\) 0 0
\(22\) −3.31662 + 0.00776159i −0.707105 + 0.00165478i
\(23\) 1.65567 1.65567i 0.345231 0.345231i −0.513098 0.858330i \(-0.671502\pi\)
0.858330 + 0.513098i \(0.171502\pi\)
\(24\) 0 0
\(25\) 0.750246 4.94339i 0.150049 0.988679i
\(26\) 0.690445 + 0.501638i 0.135407 + 0.0983793i
\(27\) 0 0
\(28\) 0.346189 0.679435i 0.0654237 0.128401i
\(29\) 0.552936 + 0.401731i 0.102678 + 0.0745996i 0.637939 0.770087i \(-0.279787\pi\)
−0.535262 + 0.844686i \(0.679787\pi\)
\(30\) 0 0
\(31\) −1.08804 + 3.34864i −0.195417 + 0.601433i 0.804554 + 0.593879i \(0.202404\pi\)
−0.999971 + 0.00755335i \(0.997596\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 1.44822i 0.248368i
\(35\) 1.10318 1.30015i 0.186472 0.219765i
\(36\) 0 0
\(37\) −1.26983 8.01741i −0.208759 1.31805i −0.840050 0.542509i \(-0.817475\pi\)
0.631291 0.775546i \(-0.282525\pi\)
\(38\) 4.51312 + 2.29955i 0.732124 + 0.373036i
\(39\) 0 0
\(40\) −1.90278 + 1.17450i −0.300855 + 0.185704i
\(41\) −7.30492 10.0544i −1.14084 1.57023i −0.765624 0.643288i \(-0.777570\pi\)
−0.375212 0.926939i \(-0.622430\pi\)
\(42\) 0 0
\(43\) −7.61267 7.61267i −1.16092 1.16092i −0.984274 0.176647i \(-0.943475\pi\)
−0.176647 0.984274i \(-0.556525\pi\)
\(44\) 1.51263 + 2.95160i 0.228037 + 0.444971i
\(45\) 0 0
\(46\) −2.22687 0.723555i −0.328335 0.106682i
\(47\) −12.5361 1.98553i −1.82858 0.289619i −0.855114 0.518440i \(-0.826513\pi\)
−0.973468 + 0.228821i \(0.926513\pi\)
\(48\) 0 0
\(49\) −6.10438 + 1.98343i −0.872054 + 0.283347i
\(50\) −4.74520 + 1.57578i −0.671073 + 0.222849i
\(51\) 0 0
\(52\) 0.133507 0.842930i 0.0185141 0.116893i
\(53\) −3.72862 7.31784i −0.512166 1.00518i −0.991810 0.127719i \(-0.959234\pi\)
0.479644 0.877463i \(-0.340766\pi\)
\(54\) 0 0
\(55\) 1.77142 + 7.20153i 0.238859 + 0.971054i
\(56\) −0.762548 −0.101900
\(57\) 0 0
\(58\) 0.106918 0.675052i 0.0140390 0.0886386i
\(59\) −0.254349 + 0.350081i −0.0331134 + 0.0455767i −0.825253 0.564764i \(-0.808967\pi\)
0.792139 + 0.610340i \(0.208967\pi\)
\(60\) 0 0
\(61\) 12.0627 3.91939i 1.54446 0.501827i 0.591860 0.806040i \(-0.298394\pi\)
0.952604 + 0.304214i \(0.0983937\pi\)
\(62\) 3.47761 0.550800i 0.441657 0.0699517i
\(63\) 0 0
\(64\) 0.951057 + 0.309017i 0.118882 + 0.0386271i
\(65\) 0.724592 1.76543i 0.0898745 0.218975i
\(66\) 0 0
\(67\) −3.82631 3.82631i −0.467458 0.467458i 0.433632 0.901090i \(-0.357232\pi\)
−0.901090 + 0.433632i \(0.857232\pi\)
\(68\) −1.29037 + 0.657479i −0.156481 + 0.0797310i
\(69\) 0 0
\(70\) −1.65927 0.392691i −0.198321 0.0469355i
\(71\) 2.45595 + 7.55864i 0.291468 + 0.897045i 0.984385 + 0.176028i \(0.0563250\pi\)
−0.692918 + 0.721017i \(0.743675\pi\)
\(72\) 0 0
\(73\) −0.179057 1.13052i −0.0209571 0.132318i 0.974992 0.222242i \(-0.0713375\pi\)
−0.995949 + 0.0899243i \(0.971337\pi\)
\(74\) −6.56708 + 4.77126i −0.763407 + 0.554648i
\(75\) 0 0
\(76\) 5.06519i 0.581017i
\(77\) −0.775899 + 2.40712i −0.0884219 + 0.274317i
\(78\) 0 0
\(79\) 3.11720 9.59376i 0.350713 1.07938i −0.607741 0.794135i \(-0.707924\pi\)
0.958454 0.285247i \(-0.0920757\pi\)
\(80\) 1.91033 + 1.16218i 0.213581 + 0.129935i
\(81\) 0 0
\(82\) −5.64213 + 11.0733i −0.623070 + 1.22284i
\(83\) 0.108440 0.212826i 0.0119029 0.0233607i −0.884979 0.465632i \(-0.845827\pi\)
0.896881 + 0.442271i \(0.145827\pi\)
\(84\) 0 0
\(85\) −3.14639 + 0.766141i −0.341274 + 0.0830996i
\(86\) −3.32686 + 10.2390i −0.358744 + 1.10410i
\(87\) 0 0
\(88\) 1.94318 2.68776i 0.207144 0.286516i
\(89\) 11.2102i 1.18828i 0.804361 + 0.594141i \(0.202508\pi\)
−0.804361 + 0.594141i \(0.797492\pi\)
\(90\) 0 0
\(91\) 0.526498 0.382523i 0.0551919 0.0400993i
\(92\) 0.366287 + 2.31265i 0.0381881 + 0.241110i
\(93\) 0 0
\(94\) 3.92217 + 12.0712i 0.404540 + 1.24505i
\(95\) 2.60843 11.0217i 0.267620 1.13080i
\(96\) 0 0
\(97\) −12.6763 + 6.45889i −1.28708 + 0.655800i −0.957529 0.288337i \(-0.906898\pi\)
−0.329552 + 0.944137i \(0.606898\pi\)
\(98\) 4.53858 + 4.53858i 0.458466 + 0.458466i
\(99\) 0 0
\(100\) 3.55831 + 3.51261i 0.355831 + 0.351261i
\(101\) 8.91281 + 2.89595i 0.886858 + 0.288158i 0.716802 0.697277i \(-0.245605\pi\)
0.170056 + 0.985434i \(0.445605\pi\)
\(102\) 0 0
\(103\) 0.0976359 0.0154640i 0.00962035 0.00152371i −0.151622 0.988438i \(-0.548450\pi\)
0.161243 + 0.986915i \(0.448450\pi\)
\(104\) −0.811667 + 0.263727i −0.0795905 + 0.0258605i
\(105\) 0 0
\(106\) −4.82748 + 6.64446i −0.468886 + 0.645367i
\(107\) −1.02130 + 6.44826i −0.0987332 + 0.623377i 0.887852 + 0.460129i \(0.152197\pi\)
−0.986585 + 0.163248i \(0.947803\pi\)
\(108\) 0 0
\(109\) 11.8125 1.13143 0.565716 0.824600i \(-0.308600\pi\)
0.565716 + 0.824600i \(0.308600\pi\)
\(110\) 5.61240 4.84778i 0.535121 0.462217i
\(111\) 0 0
\(112\) 0.346189 + 0.679435i 0.0327118 + 0.0642006i
\(113\) 1.80338 11.3861i 0.169647 1.07111i −0.745061 0.666997i \(-0.767580\pi\)
0.914708 0.404115i \(-0.132420\pi\)
\(114\) 0 0
\(115\) −0.393922 + 5.22085i −0.0367334 + 0.486847i
\(116\) −0.650015 + 0.211203i −0.0603524 + 0.0196097i
\(117\) 0 0
\(118\) 0.427397 + 0.0676930i 0.0393451 + 0.00623165i
\(119\) −1.05029 0.341259i −0.0962797 0.0312832i
\(120\) 0 0
\(121\) −6.50722 8.86883i −0.591565 0.806257i
\(122\) −8.96853 8.96853i −0.811973 0.811973i
\(123\) 0 0
\(124\) −2.06957 2.84852i −0.185853 0.255805i
\(125\) 5.93383 + 9.47574i 0.530738 + 0.847536i
\(126\) 0 0
\(127\) −5.78299 2.94658i −0.513157 0.261467i 0.178181 0.983998i \(-0.442979\pi\)
−0.691339 + 0.722531i \(0.742979\pi\)
\(128\) −0.156434 0.987688i −0.0138270 0.0873001i
\(129\) 0 0
\(130\) −1.90197 + 0.155873i −0.166814 + 0.0136709i
\(131\) 1.56355i 0.136608i −0.997665 0.0683040i \(-0.978241\pi\)
0.997665 0.0683040i \(-0.0217588\pi\)
\(132\) 0 0
\(133\) 2.73116 2.73116i 0.236822 0.236822i
\(134\) −1.67216 + 5.14637i −0.144452 + 0.444579i
\(135\) 0 0
\(136\) 1.17164 + 0.851243i 0.100467 + 0.0729935i
\(137\) 0.766306 1.50396i 0.0654700 0.128492i −0.855952 0.517055i \(-0.827028\pi\)
0.921422 + 0.388563i \(0.127028\pi\)
\(138\) 0 0
\(139\) 7.01947 + 5.09995i 0.595384 + 0.432572i 0.844237 0.535969i \(-0.180054\pi\)
−0.248854 + 0.968541i \(0.580054\pi\)
\(140\) 0.403404 + 1.65670i 0.0340939 + 0.140017i
\(141\) 0 0
\(142\) 5.61982 5.61982i 0.471605 0.471605i
\(143\) 0.00662403 + 2.83052i 0.000553929 + 0.236700i
\(144\) 0 0
\(145\) −1.52317 + 0.124829i −0.126492 + 0.0103665i
\(146\) −0.926013 + 0.672788i −0.0766374 + 0.0556803i
\(147\) 0 0
\(148\) 7.23261 + 3.68520i 0.594517 + 0.302922i
\(149\) 4.55529 + 14.0197i 0.373184 + 1.14854i 0.944696 + 0.327948i \(0.106357\pi\)
−0.571512 + 0.820594i \(0.693643\pi\)
\(150\) 0 0
\(151\) 6.72937 + 9.26219i 0.547629 + 0.753746i 0.989688 0.143240i \(-0.0457519\pi\)
−0.442059 + 0.896986i \(0.645752\pi\)
\(152\) −4.51312 + 2.29955i −0.366062 + 0.186518i
\(153\) 0 0
\(154\) 2.49701 0.401481i 0.201215 0.0323522i
\(155\) −3.03639 7.26404i −0.243889 0.583461i
\(156\) 0 0
\(157\) 0.814122 + 0.128944i 0.0649740 + 0.0102909i 0.188837 0.982008i \(-0.439528\pi\)
−0.123863 + 0.992299i \(0.539528\pi\)
\(158\) −9.96328 + 1.57803i −0.792636 + 0.125541i
\(159\) 0 0
\(160\) 0.168237 2.22973i 0.0133003 0.176276i
\(161\) −1.04948 + 1.44449i −0.0827108 + 0.113842i
\(162\) 0 0
\(163\) 4.05736 + 7.96301i 0.317797 + 0.623711i 0.993547 0.113419i \(-0.0361803\pi\)
−0.675750 + 0.737131i \(0.736180\pi\)
\(164\) 12.4279 0.970454
\(165\) 0 0
\(166\) −0.238860 −0.0185391
\(167\) −9.59049 18.8224i −0.742134 1.45652i −0.884418 0.466695i \(-0.845445\pi\)
0.142284 0.989826i \(-0.454555\pi\)
\(168\) 0 0
\(169\) −7.21309 + 9.92797i −0.554853 + 0.763690i
\(170\) 2.11107 + 2.45563i 0.161911 + 0.188338i
\(171\) 0 0
\(172\) 10.6334 1.68416i 0.810788 0.128416i
\(173\) −2.42835 0.384613i −0.184624 0.0292416i 0.0634376 0.997986i \(-0.479794\pi\)
−0.248062 + 0.968744i \(0.579794\pi\)
\(174\) 0 0
\(175\) 0.0246365 + 3.81266i 0.00186234 + 0.288210i
\(176\) −3.27700 0.511167i −0.247013 0.0385307i
\(177\) 0 0
\(178\) 9.98839 5.08934i 0.748661 0.381462i
\(179\) −9.35481 12.8758i −0.699211 0.962382i −0.999962 0.00867926i \(-0.997237\pi\)
0.300751 0.953703i \(-0.402763\pi\)
\(180\) 0 0
\(181\) −1.59094 4.89640i −0.118253 0.363947i 0.874358 0.485281i \(-0.161283\pi\)
−0.992612 + 0.121334i \(0.961283\pi\)
\(182\) −0.579855 0.295451i −0.0429817 0.0219003i
\(183\) 0 0
\(184\) 1.89429 1.37628i 0.139649 0.101461i
\(185\) 13.8401 + 11.7434i 1.01754 + 0.863395i
\(186\) 0 0
\(187\) 3.87926 2.83234i 0.283679 0.207121i
\(188\) 8.97488 8.97488i 0.654560 0.654560i
\(189\) 0 0
\(190\) −11.0046 + 2.67960i −0.798355 + 0.194398i
\(191\) −21.7592 15.8090i −1.57444 1.14390i −0.922744 0.385413i \(-0.874059\pi\)
−0.651693 0.758482i \(-0.725941\pi\)
\(192\) 0 0
\(193\) −4.39692 + 8.62943i −0.316497 + 0.621160i −0.993373 0.114937i \(-0.963333\pi\)
0.676876 + 0.736097i \(0.263333\pi\)
\(194\) 11.5098 + 8.36237i 0.826357 + 0.600383i
\(195\) 0 0
\(196\) 1.98343 6.10438i 0.141674 0.436027i
\(197\) 5.96449 5.96449i 0.424952 0.424952i −0.461952 0.886905i \(-0.652851\pi\)
0.886905 + 0.461952i \(0.152851\pi\)
\(198\) 0 0
\(199\) 0.826885i 0.0586163i −0.999570 0.0293082i \(-0.990670\pi\)
0.999570 0.0293082i \(-0.00933042\pi\)
\(200\) 1.51433 4.76517i 0.107079 0.336948i
\(201\) 0 0
\(202\) −1.46602 9.25610i −0.103149 0.651257i
\(203\) −0.464371 0.236609i −0.0325924 0.0166067i
\(204\) 0 0
\(205\) 27.0426 + 6.40001i 1.88873 + 0.446996i
\(206\) −0.0581043 0.0799737i −0.00404832 0.00557203i
\(207\) 0 0
\(208\) 0.603471 + 0.603471i 0.0418432 + 0.0418432i
\(209\) 2.66682 + 16.5863i 0.184468 + 1.14730i
\(210\) 0 0
\(211\) −13.8523 4.50087i −0.953629 0.309853i −0.209440 0.977822i \(-0.567164\pi\)
−0.744190 + 0.667969i \(0.767164\pi\)
\(212\) 8.11188 + 1.28480i 0.557126 + 0.0882402i
\(213\) 0 0
\(214\) 6.20910 2.01746i 0.424446 0.137911i
\(215\) 24.0051 + 1.81123i 1.63714 + 0.123525i
\(216\) 0 0
\(217\) 0.420011 2.65185i 0.0285122 0.180019i
\(218\) −5.36276 10.5250i −0.363212 0.712844i
\(219\) 0 0
\(220\) −6.86738 2.79984i −0.462999 0.188765i
\(221\) −1.23597 −0.0831401
\(222\) 0 0
\(223\) −0.210549 + 1.32935i −0.0140994 + 0.0890201i −0.993735 0.111766i \(-0.964349\pi\)
0.979635 + 0.200786i \(0.0643494\pi\)
\(224\) 0.448214 0.616914i 0.0299476 0.0412193i
\(225\) 0 0
\(226\) −10.9638 + 3.56235i −0.729300 + 0.236964i
\(227\) −2.02684 + 0.321020i −0.134526 + 0.0213068i −0.223334 0.974742i \(-0.571694\pi\)
0.0888083 + 0.996049i \(0.471694\pi\)
\(228\) 0 0
\(229\) 17.0466 + 5.53877i 1.12647 + 0.366012i 0.812234 0.583332i \(-0.198251\pi\)
0.314237 + 0.949345i \(0.398251\pi\)
\(230\) 4.83065 2.01923i 0.318524 0.133144i
\(231\) 0 0
\(232\) 0.483284 + 0.483284i 0.0317291 + 0.0317291i
\(233\) 21.9042 11.1608i 1.43499 0.731166i 0.448320 0.893873i \(-0.352023\pi\)
0.986674 + 0.162707i \(0.0520226\pi\)
\(234\) 0 0
\(235\) 24.1508 14.9072i 1.57542 0.972436i
\(236\) −0.133719 0.411545i −0.00870438 0.0267893i
\(237\) 0 0
\(238\) 0.172757 + 1.09074i 0.0111981 + 0.0707023i
\(239\) −2.40071 + 1.74422i −0.155289 + 0.112824i −0.662717 0.748870i \(-0.730597\pi\)
0.507427 + 0.861695i \(0.330597\pi\)
\(240\) 0 0
\(241\) 21.2858i 1.37114i 0.728007 + 0.685570i \(0.240447\pi\)
−0.728007 + 0.685570i \(0.759553\pi\)
\(242\) −4.94797 + 9.82434i −0.318067 + 0.631532i
\(243\) 0 0
\(244\) −3.91939 + 12.0627i −0.250913 + 0.772232i
\(245\) 7.45945 12.2615i 0.476567 0.783356i
\(246\) 0 0
\(247\) 1.96252 3.85166i 0.124872 0.245075i
\(248\) −1.59848 + 3.13720i −0.101504 + 0.199212i
\(249\) 0 0
\(250\) 5.74904 9.58898i 0.363601 0.606460i
\(251\) −4.10394 + 12.6306i −0.259038 + 0.797238i 0.733969 + 0.679183i \(0.237666\pi\)
−0.993007 + 0.118055i \(0.962334\pi\)
\(252\) 0 0
\(253\) −2.41704 7.38007i −0.151958 0.463981i
\(254\) 6.49040i 0.407244i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −2.89548 18.2813i −0.180615 1.14036i −0.896796 0.442444i \(-0.854112\pi\)
0.716181 0.697914i \(-0.245888\pi\)
\(258\) 0 0
\(259\) 1.91277 + 5.88692i 0.118854 + 0.365795i
\(260\) 1.00236 + 1.62390i 0.0621636 + 0.100710i
\(261\) 0 0
\(262\) −1.39313 + 0.709837i −0.0860681 + 0.0438539i
\(263\) 17.4405 + 17.4405i 1.07543 + 1.07543i 0.996913 + 0.0785172i \(0.0250185\pi\)
0.0785172 + 0.996913i \(0.474981\pi\)
\(264\) 0 0
\(265\) 16.9895 + 6.97306i 1.04366 + 0.428352i
\(266\) −3.67341 1.19356i −0.225231 0.0731820i
\(267\) 0 0
\(268\) 5.34459 0.846501i 0.326473 0.0517083i
\(269\) 19.3677 6.29294i 1.18087 0.383687i 0.348179 0.937428i \(-0.386800\pi\)
0.832689 + 0.553741i \(0.186800\pi\)
\(270\) 0 0
\(271\) 4.38344 6.03328i 0.266275 0.366496i −0.654853 0.755756i \(-0.727269\pi\)
0.921128 + 0.389261i \(0.127269\pi\)
\(272\) 0.226552 1.43039i 0.0137367 0.0867302i
\(273\) 0 0
\(274\) −1.68793 −0.101972
\(275\) −13.5013 9.62885i −0.814159 0.580642i
\(276\) 0 0
\(277\) −7.43406 14.5902i −0.446669 0.876638i −0.999072 0.0430609i \(-0.986289\pi\)
0.552403 0.833577i \(-0.313711\pi\)
\(278\) 1.35731 8.56972i 0.0814061 0.513978i
\(279\) 0 0
\(280\) 1.29299 1.11156i 0.0772709 0.0664286i
\(281\) −3.98244 + 1.29397i −0.237572 + 0.0771919i −0.425383 0.905013i \(-0.639861\pi\)
0.187811 + 0.982205i \(0.439861\pi\)
\(282\) 0 0
\(283\) −27.3003 4.32395i −1.62284 0.257032i −0.722225 0.691658i \(-0.756881\pi\)
−0.900611 + 0.434626i \(0.856881\pi\)
\(284\) −7.55864 2.45595i −0.448523 0.145734i
\(285\) 0 0
\(286\) 2.51901 1.29093i 0.148952 0.0763345i
\(287\) 6.70114 + 6.70114i 0.395556 + 0.395556i
\(288\) 0 0
\(289\) −8.75956 12.0565i −0.515268 0.709206i
\(290\) 0.802728 + 1.30048i 0.0471378 + 0.0763670i
\(291\) 0 0
\(292\) 1.01986 + 0.519644i 0.0596827 + 0.0304099i
\(293\) 2.92476 + 18.4662i 0.170866 + 1.07881i 0.912822 + 0.408357i \(0.133898\pi\)
−0.741956 + 0.670448i \(0.766102\pi\)
\(294\) 0 0
\(295\) −0.0790332 0.964368i −0.00460149 0.0561477i
\(296\) 8.11735i 0.471812i
\(297\) 0 0
\(298\) 10.4236 10.4236i 0.603824 0.603824i
\(299\) −0.617509 + 1.90050i −0.0357115 + 0.109909i
\(300\) 0 0
\(301\) 6.64166 + 4.82545i 0.382819 + 0.278134i
\(302\) 5.19760 10.2009i 0.299088 0.586994i
\(303\) 0 0
\(304\) 4.09783 + 2.97724i 0.235026 + 0.170757i
\(305\) −14.7404 + 24.2295i −0.844031 + 1.38738i
\(306\) 0 0
\(307\) 7.13262 7.13262i 0.407080 0.407080i −0.473639 0.880719i \(-0.657060\pi\)
0.880719 + 0.473639i \(0.157060\pi\)
\(308\) −1.49134 2.04259i −0.0849771 0.116387i
\(309\) 0 0
\(310\) −5.09381 + 6.00325i −0.289309 + 0.340962i
\(311\) −18.5344 + 13.4660i −1.05099 + 0.763589i −0.972401 0.233318i \(-0.925042\pi\)
−0.0785899 + 0.996907i \(0.525042\pi\)
\(312\) 0 0
\(313\) 12.9044 + 6.57514i 0.729402 + 0.371649i 0.778919 0.627125i \(-0.215768\pi\)
−0.0495173 + 0.998773i \(0.515768\pi\)
\(314\) −0.254714 0.783928i −0.0143743 0.0442396i
\(315\) 0 0
\(316\) 5.92927 + 8.16094i 0.333547 + 0.459089i
\(317\) 1.99314 1.01556i 0.111946 0.0570393i −0.397121 0.917766i \(-0.629991\pi\)
0.509067 + 0.860727i \(0.329991\pi\)
\(318\) 0 0
\(319\) 2.01732 1.03383i 0.112948 0.0578834i
\(320\) −2.06308 + 0.862376i −0.115330 + 0.0482083i
\(321\) 0 0
\(322\) 1.76350 + 0.279311i 0.0982762 + 0.0155654i
\(323\) −7.24520 + 1.14753i −0.403134 + 0.0638501i
\(324\) 0 0
\(325\) 1.34483 + 4.04973i 0.0745977 + 0.224639i
\(326\) 5.25310 7.23027i 0.290942 0.400447i
\(327\) 0 0
\(328\) −5.64213 11.0733i −0.311535 0.611421i
\(329\) 9.67856 0.533596
\(330\) 0 0
\(331\) 1.96672 0.108101 0.0540503 0.998538i \(-0.482787\pi\)
0.0540503 + 0.998538i \(0.482787\pi\)
\(332\) 0.108440 + 0.212826i 0.00595143 + 0.0116803i
\(333\) 0 0
\(334\) −12.4169 + 17.0904i −0.679422 + 0.935144i
\(335\) 12.0655 + 0.910366i 0.659211 + 0.0497386i
\(336\) 0 0
\(337\) −0.400422 + 0.0634205i −0.0218123 + 0.00345474i −0.167331 0.985901i \(-0.553515\pi\)
0.145519 + 0.989355i \(0.453515\pi\)
\(338\) 12.1206 + 1.91971i 0.659272 + 0.104418i
\(339\) 0 0
\(340\) 1.22958 2.99581i 0.0666833 0.162470i
\(341\) 8.27669 + 8.23804i 0.448208 + 0.446115i
\(342\) 0 0
\(343\) 9.11701 4.64535i 0.492272 0.250825i
\(344\) −6.32806 8.70983i −0.341186 0.469602i
\(345\) 0 0
\(346\) 0.759756 + 2.33829i 0.0408447 + 0.125707i
\(347\) −9.52619 4.85384i −0.511393 0.260568i 0.179198 0.983813i \(-0.442650\pi\)
−0.690591 + 0.723245i \(0.742650\pi\)
\(348\) 0 0
\(349\) −6.50852 + 4.72872i −0.348393 + 0.253123i −0.748195 0.663479i \(-0.769079\pi\)
0.399801 + 0.916602i \(0.369079\pi\)
\(350\) 3.38592 1.75286i 0.180985 0.0936944i
\(351\) 0 0
\(352\) 1.03227 + 3.15189i 0.0550203 + 0.167996i
\(353\) −17.8934 + 17.8934i −0.952372 + 0.952372i −0.998916 0.0465446i \(-0.985179\pi\)
0.0465446 + 0.998916i \(0.485179\pi\)
\(354\) 0 0
\(355\) −15.1825 9.23654i −0.805806 0.490224i
\(356\) −9.06926 6.58921i −0.480670 0.349227i
\(357\) 0 0
\(358\) −7.22542 + 14.1807i −0.381875 + 0.749473i
\(359\) 13.1469 + 9.55175i 0.693864 + 0.504122i 0.877928 0.478792i \(-0.158925\pi\)
−0.184064 + 0.982914i \(0.558925\pi\)
\(360\) 0 0
\(361\) 2.05687 6.33038i 0.108256 0.333178i
\(362\) −3.64046 + 3.64046i −0.191338 + 0.191338i
\(363\) 0 0
\(364\) 0.650787i 0.0341105i
\(365\) 1.95157 + 1.65592i 0.102150 + 0.0866750i
\(366\) 0 0
\(367\) 1.34090 + 8.46611i 0.0699944 + 0.441927i 0.997652 + 0.0684942i \(0.0218195\pi\)
−0.927657 + 0.373433i \(0.878181\pi\)
\(368\) −2.08627 1.06301i −0.108754 0.0554131i
\(369\) 0 0
\(370\) 4.18021 17.6630i 0.217319 0.918258i
\(371\) 3.68118 + 5.06672i 0.191118 + 0.263051i
\(372\) 0 0
\(373\) 23.2440 + 23.2440i 1.20353 + 1.20353i 0.973085 + 0.230446i \(0.0740184\pi\)
0.230446 + 0.973085i \(0.425982\pi\)
\(374\) −4.28478 2.17059i −0.221561 0.112238i
\(375\) 0 0
\(376\) −12.0712 3.92217i −0.622524 0.202270i
\(377\) −0.576114 0.0912475i −0.0296714 0.00469949i
\(378\) 0 0
\(379\) −12.1822 + 3.95823i −0.625757 + 0.203321i −0.604695 0.796457i \(-0.706705\pi\)
−0.0210622 + 0.999778i \(0.506705\pi\)
\(380\) 7.38351 + 8.58863i 0.378766 + 0.440588i
\(381\) 0 0
\(382\) −4.20743 + 26.5647i −0.215271 + 1.35917i
\(383\) −10.1184 19.8586i −0.517028 1.01473i −0.990959 0.134163i \(-0.957165\pi\)
0.473931 0.880562i \(-0.342835\pi\)
\(384\) 0 0
\(385\) −2.19323 5.21259i −0.111777 0.265658i
\(386\) 9.68504 0.492955
\(387\) 0 0
\(388\) 2.22558 14.0518i 0.112987 0.713370i
\(389\) −8.06422 + 11.0995i −0.408872 + 0.562765i −0.962943 0.269705i \(-0.913074\pi\)
0.554071 + 0.832470i \(0.313074\pi\)
\(390\) 0 0
\(391\) 3.22501 1.04787i 0.163096 0.0529930i
\(392\) −6.33950 + 1.00408i −0.320193 + 0.0507136i
\(393\) 0 0
\(394\) −8.02222 2.60658i −0.404154 0.131318i
\(395\) 8.69920 + 20.8113i 0.437704 + 1.04713i
\(396\) 0 0
\(397\) −0.807418 0.807418i −0.0405232 0.0405232i 0.686555 0.727078i \(-0.259122\pi\)
−0.727078 + 0.686555i \(0.759122\pi\)
\(398\) −0.736760 + 0.375398i −0.0369304 + 0.0188170i
\(399\) 0 0
\(400\) −4.93328 + 0.814066i −0.246664 + 0.0407033i
\(401\) −4.25930 13.1088i −0.212700 0.654622i −0.999309 0.0371709i \(-0.988165\pi\)
0.786609 0.617451i \(-0.211835\pi\)
\(402\) 0 0
\(403\) −0.470073 2.96793i −0.0234160 0.147843i
\(404\) −7.58169 + 5.50842i −0.377203 + 0.274054i
\(405\) 0 0
\(406\) 0.521176i 0.0258655i
\(407\) −25.6239 8.25948i −1.27013 0.409407i
\(408\) 0 0
\(409\) 6.24805 19.2295i 0.308946 0.950839i −0.669229 0.743056i \(-0.733375\pi\)
0.978175 0.207782i \(-0.0666246\pi\)
\(410\) −6.57461 27.0006i −0.324697 1.33347i
\(411\) 0 0
\(412\) −0.0448783 + 0.0880786i −0.00221099 + 0.00433932i
\(413\) 0.149805 0.294008i 0.00737140 0.0144672i
\(414\) 0 0
\(415\) 0.126362 + 0.518944i 0.00620287 + 0.0254740i
\(416\) 0.263727 0.811667i 0.0129303 0.0397953i
\(417\) 0 0
\(418\) 13.5678 9.90618i 0.663623 0.484527i
\(419\) 19.4960i 0.952442i −0.879326 0.476221i \(-0.842006\pi\)
0.879326 0.476221i \(-0.157994\pi\)
\(420\) 0 0
\(421\) −2.31295 + 1.68045i −0.112726 + 0.0819003i −0.642720 0.766101i \(-0.722194\pi\)
0.529994 + 0.848001i \(0.322194\pi\)
\(422\) 2.27849 + 14.3858i 0.110915 + 0.700290i
\(423\) 0 0
\(424\) −2.53796 7.81103i −0.123254 0.379337i
\(425\) 4.21827 5.88556i 0.204616 0.285491i
\(426\) 0 0
\(427\) −8.61756 + 4.39087i −0.417033 + 0.212489i
\(428\) −4.61644 4.61644i −0.223144 0.223144i
\(429\) 0 0
\(430\) −9.28429 22.2110i −0.447728 1.07111i
\(431\) 15.3238 + 4.97899i 0.738120 + 0.239830i 0.653861 0.756614i \(-0.273148\pi\)
0.0842582 + 0.996444i \(0.473148\pi\)
\(432\) 0 0
\(433\) −24.1225 + 3.82063i −1.15925 + 0.183608i −0.706291 0.707922i \(-0.749633\pi\)
−0.452963 + 0.891529i \(0.649633\pi\)
\(434\) −2.55349 + 0.829681i −0.122572 + 0.0398259i
\(435\) 0 0
\(436\) −6.94322 + 9.55652i −0.332520 + 0.457674i
\(437\) −1.85531 + 11.7140i −0.0887517 + 0.560356i
\(438\) 0 0
\(439\) −13.2566 −0.632702 −0.316351 0.948642i \(-0.602458\pi\)
−0.316351 + 0.948642i \(0.602458\pi\)
\(440\) 0.623048 + 7.38998i 0.0297026 + 0.352303i
\(441\) 0 0
\(442\) 0.561117 + 1.10125i 0.0266896 + 0.0523813i
\(443\) 0.340637 2.15069i 0.0161841 0.102183i −0.978274 0.207316i \(-0.933527\pi\)
0.994458 + 0.105134i \(0.0335271\pi\)
\(444\) 0 0
\(445\) −16.3411 19.0083i −0.774642 0.901078i
\(446\) 1.28005 0.415913i 0.0606121 0.0196941i
\(447\) 0 0
\(448\) −0.753160 0.119289i −0.0355834 0.00563586i
\(449\) 4.58948 + 1.49121i 0.216591 + 0.0703747i 0.415303 0.909683i \(-0.363676\pi\)
−0.198712 + 0.980058i \(0.563676\pi\)
\(450\) 0 0
\(451\) −40.6959 + 6.54326i −1.91630 + 0.308110i
\(452\) 8.15153 + 8.15153i 0.383416 + 0.383416i
\(453\) 0 0
\(454\) 1.20620 + 1.66019i 0.0566096 + 0.0779164i
\(455\) −0.335137 + 1.41609i −0.0157115 + 0.0663871i
\(456\) 0 0
\(457\) 18.2443 + 9.29594i 0.853433 + 0.434846i 0.825257 0.564757i \(-0.191030\pi\)
0.0281758 + 0.999603i \(0.491030\pi\)
\(458\) −2.80391 17.7032i −0.131018 0.827215i
\(459\) 0 0
\(460\) −3.99222 3.38743i −0.186138 0.157940i
\(461\) 0.616244i 0.0287013i −0.999897 0.0143507i \(-0.995432\pi\)
0.999897 0.0143507i \(-0.00456812\pi\)
\(462\) 0 0
\(463\) −13.5983 + 13.5983i −0.631968 + 0.631968i −0.948561 0.316593i \(-0.897461\pi\)
0.316593 + 0.948561i \(0.397461\pi\)
\(464\) 0.211203 0.650015i 0.00980484 0.0301762i
\(465\) 0 0
\(466\) −19.8886 14.4499i −0.921323 0.669380i
\(467\) −0.705649 + 1.38491i −0.0326535 + 0.0640862i −0.906757 0.421654i \(-0.861450\pi\)
0.874103 + 0.485740i \(0.161450\pi\)
\(468\) 0 0
\(469\) 3.33825 + 2.42538i 0.154146 + 0.111994i
\(470\) −24.2466 14.7508i −1.11841 0.680404i
\(471\) 0 0
\(472\) −0.305982 + 0.305982i −0.0140840 + 0.0140840i
\(473\) −33.9331 + 11.1134i −1.56024 + 0.510994i
\(474\) 0 0
\(475\) 11.6433 + 22.4908i 0.534232 + 1.03195i
\(476\) 0.893428 0.649114i 0.0409502 0.0297521i
\(477\) 0 0
\(478\) 2.64401 + 1.34719i 0.120934 + 0.0616191i
\(479\) −7.47583 23.0082i −0.341579 1.05127i −0.963390 0.268105i \(-0.913603\pi\)
0.621810 0.783168i \(-0.286397\pi\)
\(480\) 0 0
\(481\) 4.07197 + 5.60459i 0.185666 + 0.255547i
\(482\) 18.9658 9.66356i 0.863869 0.440163i
\(483\) 0 0
\(484\) 10.9999 0.0514844i 0.499995 0.00234020i
\(485\) 12.0790 29.4300i 0.548481 1.33635i
\(486\) 0 0
\(487\) −18.5340 2.93550i −0.839857 0.133020i −0.278337 0.960483i \(-0.589783\pi\)
−0.561520 + 0.827463i \(0.689783\pi\)
\(488\) 12.5273 1.98412i 0.567083 0.0898171i
\(489\) 0 0
\(490\) −14.3116 1.07983i −0.646531 0.0487818i
\(491\) −14.9190 + 20.5343i −0.673285 + 0.926698i −0.999829 0.0184843i \(-0.994116\pi\)
0.326544 + 0.945182i \(0.394116\pi\)
\(492\) 0 0
\(493\) 0.449365 + 0.881928i 0.0202384 + 0.0397200i
\(494\) −4.32282 −0.194493
\(495\) 0 0
\(496\) 3.52096 0.158096
\(497\) −2.75138 5.39989i −0.123416 0.242218i
\(498\) 0 0
\(499\) 5.36524 7.38462i 0.240181 0.330581i −0.671861 0.740677i \(-0.734505\pi\)
0.912042 + 0.410096i \(0.134505\pi\)
\(500\) −11.1539 0.769128i −0.498815 0.0343965i
\(501\) 0 0
\(502\) 13.1171 2.07755i 0.585446 0.0927255i
\(503\) −22.1939 3.51517i −0.989577 0.156734i −0.359399 0.933184i \(-0.617018\pi\)
−0.630178 + 0.776451i \(0.717018\pi\)
\(504\) 0 0
\(505\) −19.3341 + 8.08174i −0.860358 + 0.359633i
\(506\) −5.47838 + 5.50408i −0.243544 + 0.244686i
\(507\) 0 0
\(508\) 5.78299 2.94658i 0.256579 0.130733i
\(509\) −16.8593 23.2049i −0.747276 1.02854i −0.998167 0.0605220i \(-0.980723\pi\)
0.250891 0.968015i \(-0.419277\pi\)
\(510\) 0 0
\(511\) 0.269717 + 0.830104i 0.0119316 + 0.0367217i
\(512\) 0.891007 + 0.453990i 0.0393773 + 0.0200637i
\(513\) 0 0
\(514\) −14.9743 + 10.8794i −0.660486 + 0.479871i
\(515\) −0.143011 + 0.168544i −0.00630184 + 0.00742696i
\(516\) 0 0
\(517\) −24.6636 + 34.1141i −1.08470 + 1.50034i
\(518\) 4.37690 4.37690i 0.192310 0.192310i
\(519\) 0 0
\(520\) 0.991845 1.63034i 0.0434953 0.0714953i
\(521\) 27.5311 + 20.0025i 1.20616 + 0.876325i 0.994876 0.101100i \(-0.0322361\pi\)
0.211282 + 0.977425i \(0.432236\pi\)
\(522\) 0 0
\(523\) 12.9583 25.4321i 0.566628 1.11207i −0.412903 0.910775i \(-0.635485\pi\)
0.979531 0.201295i \(-0.0645149\pi\)
\(524\) 1.26494 + 0.919032i 0.0552591 + 0.0401481i
\(525\) 0 0
\(526\) 7.62180 23.4575i 0.332326 1.02279i
\(527\) −3.60563 + 3.60563i −0.157064 + 0.157064i
\(528\) 0 0
\(529\) 17.5175i 0.761630i
\(530\) −1.50003 18.3035i −0.0651572 0.795052i
\(531\) 0 0
\(532\) 0.604220 + 3.81490i 0.0261963 + 0.165397i
\(533\) 9.45038 + 4.81521i 0.409341 + 0.208570i
\(534\) 0 0
\(535\) −7.66786 12.4225i −0.331510 0.537073i
\(536\) −3.18063 4.37777i −0.137382 0.189091i
\(537\) 0 0
\(538\) −14.3998 14.3998i −0.620819 0.620819i
\(539\) −3.28094 + 21.0335i −0.141320 + 0.905976i
\(540\) 0 0
\(541\) 29.0892 + 9.45165i 1.25064 + 0.406358i 0.858151 0.513398i \(-0.171613\pi\)
0.392491 + 0.919756i \(0.371613\pi\)
\(542\) −7.36573 1.16662i −0.316385 0.0501105i
\(543\) 0 0
\(544\) −1.37734 + 0.447525i −0.0590530 + 0.0191875i
\(545\) −20.0295 + 17.2190i −0.857970 + 0.737582i
\(546\) 0 0
\(547\) 0.0192582 0.121591i 0.000823420 0.00519887i −0.987273 0.159033i \(-0.949162\pi\)
0.988097 + 0.153834i \(0.0491623\pi\)
\(548\) 0.766306 + 1.50396i 0.0327350 + 0.0642460i
\(549\) 0 0
\(550\) −2.44991 + 16.4012i −0.104464 + 0.699348i
\(551\) −3.46189 −0.147481
\(552\) 0 0
\(553\) −1.20332 + 7.59748i −0.0511705 + 0.323078i
\(554\) −9.62494 + 13.2476i −0.408924 + 0.562836i
\(555\) 0 0
\(556\) −8.25188 + 2.68120i −0.349958 + 0.113708i
\(557\) 35.5695 5.63365i 1.50713 0.238705i 0.652436 0.757844i \(-0.273747\pi\)
0.854690 + 0.519138i \(0.173747\pi\)
\(558\) 0 0
\(559\) 8.73836 + 2.83926i 0.369593 + 0.120088i
\(560\) −1.57741 0.647424i −0.0666579 0.0273587i
\(561\) 0 0
\(562\) 2.96093 + 2.96093i 0.124899 + 0.124899i
\(563\) −10.5592 + 5.38016i −0.445015 + 0.226747i −0.662114 0.749403i \(-0.730341\pi\)
0.217099 + 0.976150i \(0.430341\pi\)
\(564\) 0 0
\(565\) 13.5396 + 21.9352i 0.569615 + 0.922822i
\(566\) 8.54143 + 26.2878i 0.359023 + 1.10496i
\(567\) 0 0
\(568\) 1.24328 + 7.84977i 0.0521669 + 0.329369i
\(569\) −28.8735 + 20.9778i −1.21044 + 0.879435i −0.995270 0.0971424i \(-0.969030\pi\)
−0.215168 + 0.976577i \(0.569030\pi\)
\(570\) 0 0
\(571\) 31.2536i 1.30792i −0.756528 0.653961i \(-0.773106\pi\)
0.756528 0.653961i \(-0.226894\pi\)
\(572\) −2.29384 1.65838i −0.0959101 0.0693404i
\(573\) 0 0
\(574\) 2.92851 9.01301i 0.122233 0.376196i
\(575\) −6.94248 9.42680i −0.289521 0.393125i
\(576\) 0 0
\(577\) 20.9695 41.1550i 0.872972 1.71330i 0.191454 0.981502i \(-0.438680\pi\)
0.681518 0.731801i \(-0.261320\pi\)
\(578\) −6.76566 + 13.2784i −0.281415 + 0.552307i
\(579\) 0 0
\(580\) 0.794308 1.30564i 0.0329819 0.0542139i
\(581\) −0.0562850 + 0.173227i −0.00233510 + 0.00718668i
\(582\) 0 0
\(583\) −27.2394 + 0.0637459i −1.12814 + 0.00264009i
\(584\) 1.14461i 0.0473645i
\(585\) 0 0
\(586\) 15.1257 10.9894i 0.624836 0.453970i
\(587\) 4.82637 + 30.4725i 0.199205 + 1.25773i 0.861216 + 0.508239i \(0.169703\pi\)
−0.662011 + 0.749494i \(0.730297\pi\)
\(588\) 0 0
\(589\) −5.51112 16.9615i −0.227082 0.698885i
\(590\) −0.823378 + 0.508233i −0.0338979 + 0.0209236i
\(591\) 0 0
\(592\) −7.23261 + 3.68520i −0.297259 + 0.151461i
\(593\) −3.14365 3.14365i −0.129094 0.129094i 0.639607 0.768702i \(-0.279097\pi\)
−0.768702 + 0.639607i \(0.779097\pi\)
\(594\) 0 0
\(595\) 2.27834 0.952355i 0.0934028 0.0390427i
\(596\) −14.0197 4.55529i −0.574271 0.186592i
\(597\) 0 0
\(598\) 1.97370 0.312603i 0.0807105 0.0127833i
\(599\) −8.63991 + 2.80728i −0.353017 + 0.114702i −0.480157 0.877183i \(-0.659420\pi\)
0.127140 + 0.991885i \(0.459420\pi\)
\(600\) 0 0
\(601\) −17.5277 + 24.1249i −0.714971 + 0.984074i 0.284705 + 0.958615i \(0.408105\pi\)
−0.999676 + 0.0254583i \(0.991895\pi\)
\(602\) 1.28426 8.10847i 0.0523423 0.330476i
\(603\) 0 0
\(604\) −11.4487 −0.465841
\(605\) 23.9618 + 5.55260i 0.974186 + 0.225745i
\(606\) 0 0
\(607\) 9.38932 + 18.4276i 0.381101 + 0.747952i 0.999274 0.0380895i \(-0.0121272\pi\)
−0.618174 + 0.786041i \(0.712127\pi\)
\(608\) 0.792370 5.00283i 0.0321349 0.202892i
\(609\) 0 0
\(610\) 28.2806 + 2.13382i 1.14505 + 0.0863958i
\(611\) 10.3020 3.34732i 0.416774 0.135418i
\(612\) 0 0
\(613\) −12.4538 1.97249i −0.503005 0.0796682i −0.100225 0.994965i \(-0.531956\pi\)
−0.402780 + 0.915297i \(0.631956\pi\)
\(614\) −9.59336 3.11707i −0.387156 0.125795i
\(615\) 0 0
\(616\) −1.14290 + 2.25611i −0.0460489 + 0.0909013i
\(617\) −6.47501 6.47501i −0.260674 0.260674i 0.564654 0.825328i \(-0.309010\pi\)
−0.825328 + 0.564654i \(0.809010\pi\)
\(618\) 0 0
\(619\) −23.3769 32.1756i −0.939598 1.29325i −0.955996 0.293380i \(-0.905220\pi\)
0.0163985 0.999866i \(-0.494780\pi\)
\(620\) 7.66148 + 1.81320i 0.307692 + 0.0728198i
\(621\) 0 0
\(622\) 20.4128 + 10.4008i 0.818478 + 0.417035i
\(623\) −1.33725 8.44309i −0.0535759 0.338265i
\(624\) 0 0
\(625\) −23.8743 7.41752i −0.954971 0.296701i
\(626\) 14.4830i 0.578857i
\(627\) 0 0
\(628\) −0.582847 + 0.582847i −0.0232581 + 0.0232581i
\(629\) 3.63272 11.1804i 0.144846 0.445790i
\(630\) 0 0
\(631\) −21.6416 15.7235i −0.861537 0.625943i 0.0667657 0.997769i \(-0.478732\pi\)
−0.928303 + 0.371825i \(0.878732\pi\)
\(632\) 4.57962 8.98801i 0.182167 0.357524i
\(633\) 0 0
\(634\) −1.80973 1.31485i −0.0718737 0.0522193i
\(635\) 14.1010 3.43356i 0.559580 0.136257i
\(636\) 0 0
\(637\) 3.87339 3.87339i 0.153469 0.153469i
\(638\) −1.83699 1.32810i −0.0727273 0.0525799i
\(639\) 0 0
\(640\) 1.70500 + 1.44671i 0.0673961 + 0.0571862i
\(641\) 10.9993 7.99147i 0.434447 0.315644i −0.348978 0.937131i \(-0.613471\pi\)
0.783425 + 0.621487i \(0.213471\pi\)
\(642\) 0 0
\(643\) 16.4511 + 8.38228i 0.648770 + 0.330565i 0.747220 0.664577i \(-0.231388\pi\)
−0.0984497 + 0.995142i \(0.531388\pi\)
\(644\) −0.551745 1.69810i −0.0217418 0.0669144i
\(645\) 0 0
\(646\) 4.31171 + 5.93456i 0.169642 + 0.233492i
\(647\) −16.0422 + 8.17393i −0.630686 + 0.321350i −0.739950 0.672662i \(-0.765151\pi\)
0.109264 + 0.994013i \(0.465151\pi\)
\(648\) 0 0
\(649\) 0.654551 + 1.27723i 0.0256934 + 0.0501357i
\(650\) 2.99780 3.03679i 0.117583 0.119113i
\(651\) 0 0
\(652\) −8.82707 1.39807i −0.345695 0.0547527i
\(653\) 26.2280 4.15411i 1.02638 0.162563i 0.379531 0.925179i \(-0.376086\pi\)
0.646851 + 0.762616i \(0.276086\pi\)
\(654\) 0 0
\(655\) 2.27918 + 2.65118i 0.0890549 + 0.103590i
\(656\) −7.30492 + 10.0544i −0.285209 + 0.392557i
\(657\) 0 0
\(658\) −4.39397 8.62366i −0.171295 0.336185i
\(659\) 36.6251 1.42671 0.713356 0.700802i \(-0.247174\pi\)
0.713356 + 0.700802i \(0.247174\pi\)
\(660\) 0 0
\(661\) 7.39959 0.287811 0.143905 0.989591i \(-0.454034\pi\)
0.143905 + 0.989591i \(0.454034\pi\)
\(662\) −0.892871 1.75236i −0.0347024 0.0681073i
\(663\) 0 0
\(664\) 0.140398 0.193242i 0.00544851 0.00749923i
\(665\) −0.649806 + 8.61222i −0.0251984 + 0.333968i
\(666\) 0 0
\(667\) 1.58062 0.250345i 0.0612017 0.00969339i
\(668\) 20.8648 + 3.30466i 0.807283 + 0.127861i
\(669\) 0 0
\(670\) −4.66650 11.1638i −0.180283 0.431294i
\(671\) 6.48335 41.5635i 0.250287 1.60454i
\(672\) 0 0
\(673\) −27.1875 + 13.8527i −1.04800 + 0.533983i −0.891183 0.453644i \(-0.850124\pi\)
−0.156818 + 0.987627i \(0.550124\pi\)
\(674\) 0.238296 + 0.327986i 0.00917881 + 0.0126335i
\(675\) 0 0
\(676\) −3.79215 11.6710i −0.145852 0.448886i
\(677\) 26.6676 + 13.5878i 1.02492 + 0.522223i 0.883847 0.467776i \(-0.154945\pi\)
0.141074 + 0.989999i \(0.454945\pi\)
\(678\) 0 0
\(679\) 8.77679 6.37671i 0.336822 0.244716i
\(680\) −3.22750 + 0.264505i −0.123769 + 0.0101433i
\(681\) 0 0
\(682\) 3.58261 11.1146i 0.137185 0.425599i
\(683\) 13.9351 13.9351i 0.533214 0.533214i −0.388314 0.921527i \(-0.626942\pi\)
0.921527 + 0.388314i \(0.126942\pi\)
\(684\) 0 0
\(685\) 0.892954 + 3.66719i 0.0341180 + 0.140116i
\(686\) −8.27807 6.01437i −0.316058 0.229630i
\(687\) 0 0
\(688\) −4.88763 + 9.59252i −0.186339 + 0.365711i
\(689\) 5.67063 + 4.11995i 0.216034 + 0.156958i
\(690\) 0 0
\(691\) −9.06481 + 27.8986i −0.344841 + 1.06131i 0.616827 + 0.787099i \(0.288418\pi\)
−0.961669 + 0.274214i \(0.911582\pi\)
\(692\) 1.73851 1.73851i 0.0660882 0.0660882i
\(693\) 0 0
\(694\) 10.6915i 0.405844i
\(695\) −19.3365 + 1.58469i −0.733476 + 0.0601108i
\(696\) 0 0
\(697\) −2.81556 17.7767i −0.106647 0.673341i
\(698\) 7.16813 + 3.65234i 0.271318 + 0.138243i
\(699\) 0 0
\(700\) −3.09899 2.22109i −0.117131 0.0839494i
\(701\) −4.36586 6.00910i −0.164896 0.226960i 0.718570 0.695454i \(-0.244797\pi\)
−0.883467 + 0.468494i \(0.844797\pi\)
\(702\) 0 0
\(703\) 29.0734 + 29.0734i 1.09652 + 1.09652i
\(704\) 2.33971 2.35069i 0.0881813 0.0885950i
\(705\) 0 0
\(706\) 24.0666 + 7.81972i 0.905759 + 0.294299i
\(707\) −7.05822 1.11791i −0.265452 0.0420434i
\(708\) 0 0
\(709\) −25.9291 + 8.42488i −0.973788 + 0.316403i −0.752344 0.658770i \(-0.771077\pi\)
−0.221444 + 0.975173i \(0.571077\pi\)
\(710\) −1.33708 + 17.7210i −0.0501798 + 0.665059i
\(711\) 0 0
\(712\) −1.75367 + 11.0722i −0.0657214 + 0.414949i
\(713\) 3.74281 + 7.34567i 0.140169 + 0.275098i
\(714\) 0 0
\(715\) −4.13727 4.78983i −0.154725 0.179130i
\(716\) 15.9154 0.594785
\(717\) 0 0
\(718\) 2.54212 16.0503i 0.0948712 0.598993i
\(719\) 1.00656 1.38541i 0.0375383 0.0516670i −0.789835 0.613319i \(-0.789834\pi\)
0.827374 + 0.561652i \(0.189834\pi\)
\(720\) 0 0
\(721\) −0.0716907 + 0.0232937i −0.00266990 + 0.000867504i
\(722\) −6.57421 + 1.04125i −0.244667 + 0.0387514i
\(723\) 0 0
\(724\) 4.89640 + 1.59094i 0.181973 + 0.0591267i
\(725\) 2.40075 2.43198i 0.0891618 0.0903215i
\(726\) 0 0
\(727\) −13.9556 13.9556i −0.517583 0.517583i 0.399256 0.916839i \(-0.369268\pi\)
−0.916839 + 0.399256i \(0.869268\pi\)
\(728\) 0.579855 0.295451i 0.0214909 0.0109501i
\(729\) 0 0
\(730\) 0.589445 2.49064i 0.0218163 0.0921826i
\(731\) −4.81803 14.8284i −0.178201 0.548447i
\(732\) 0 0
\(733\) −0.923038 5.82783i −0.0340932 0.215256i 0.964760 0.263131i \(-0.0847551\pi\)
−0.998853 + 0.0478750i \(0.984755\pi\)
\(734\) 6.93460 5.03828i 0.255961 0.185966i
\(735\) 0 0
\(736\) 2.34147i 0.0863079i
\(737\) −17.0556 + 5.58585i −0.628250 + 0.205757i
\(738\) 0 0
\(739\) 10.0720 30.9985i 0.370505 1.14030i −0.575956 0.817480i \(-0.695370\pi\)
0.946461 0.322817i \(-0.104630\pi\)
\(740\) −17.6357 + 4.29426i −0.648300 + 0.157860i
\(741\) 0 0
\(742\) 2.84325 5.58020i 0.104379 0.204856i
\(743\) −19.3261 + 37.9296i −0.709007 + 1.39150i 0.202113 + 0.979362i \(0.435219\pi\)
−0.911120 + 0.412142i \(0.864781\pi\)
\(744\) 0 0
\(745\) −28.1606 17.1319i −1.03172 0.627665i
\(746\) 10.1580 31.2632i 0.371911 1.14463i
\(747\) 0 0
\(748\) 0.0112405 + 4.80319i 0.000410993 + 0.175622i
\(749\) 4.97840i 0.181907i
\(750\) 0 0
\(751\) 22.4102 16.2819i 0.817758 0.594136i −0.0983111 0.995156i \(-0.531344\pi\)
0.916070 + 0.401019i \(0.131344\pi\)
\(752\) 1.98553 + 12.5361i 0.0724047 + 0.457146i
\(753\) 0 0
\(754\) 0.180248 + 0.554747i 0.00656425 + 0.0202027i
\(755\) −24.9119 5.89576i −0.906637 0.214569i
\(756\) 0 0
\(757\) 14.2535 7.26251i 0.518051 0.263960i −0.175357 0.984505i \(-0.556108\pi\)
0.693409 + 0.720544i \(0.256108\pi\)
\(758\) 9.05740 + 9.05740i 0.328980 + 0.328980i
\(759\) 0 0
\(760\) 4.30048 10.4779i 0.155995 0.380074i
\(761\) −6.47967 2.10537i −0.234888 0.0763197i 0.189208 0.981937i \(-0.439408\pi\)
−0.424096 + 0.905617i \(0.639408\pi\)
\(762\) 0 0
\(763\) −8.89670 + 1.40910i −0.322082 + 0.0510128i
\(764\) 25.5794 8.31126i 0.925431 0.300691i
\(765\) 0 0
\(766\) −13.1004 + 18.0312i −0.473338 + 0.651494i
\(767\) 0.0577717 0.364756i 0.00208602 0.0131706i
\(768\) 0 0
\(769\) 48.7563 1.75820 0.879098 0.476640i \(-0.158146\pi\)
0.879098 + 0.476640i \(0.158146\pi\)
\(770\) −3.64875 + 4.32065i −0.131492 + 0.155705i
\(771\) 0 0
\(772\) −4.39692 8.62943i −0.158248 0.310580i
\(773\) −4.09258 + 25.8396i −0.147200 + 0.929384i 0.797944 + 0.602731i \(0.205921\pi\)
−0.945144 + 0.326653i \(0.894079\pi\)
\(774\) 0 0
\(775\) 15.7373 + 7.89090i 0.565301 + 0.283449i
\(776\) −13.5306 + 4.39636i −0.485720 + 0.157820i
\(777\) 0 0
\(778\) 13.5508 + 2.14623i 0.485818 + 0.0769461i
\(779\) 59.8686 + 19.4525i 2.14501 + 0.696957i
\(780\) 0 0
\(781\) 26.0443 + 4.06256i 0.931939 + 0.145370i
\(782\) −2.39778 2.39778i −0.0857444 0.0857444i
\(783\) 0 0
\(784\) 3.77271 + 5.19269i 0.134740 + 0.185453i
\(785\) −1.56840 + 0.968102i −0.0559787 + 0.0345531i
\(786\) 0 0
\(787\) 20.7757 + 10.5858i 0.740574 + 0.377341i 0.783217 0.621749i \(-0.213578\pi\)
−0.0426425 + 0.999090i \(0.513578\pi\)
\(788\) 1.31953 + 8.33122i 0.0470065 + 0.296787i
\(789\) 0 0
\(790\) 14.5936 17.1992i 0.519218 0.611919i
\(791\) 8.79065i 0.312560i
\(792\) 0 0
\(793\) −7.65408 + 7.65408i −0.271804 + 0.271804i
\(794\) −0.352855 + 1.08598i −0.0125223 + 0.0385398i
\(795\) 0 0
\(796\) 0.668964 + 0.486031i 0.0237108 + 0.0172269i
\(797\) 16.0427 31.4855i 0.568261 1.11527i −0.410804 0.911724i \(-0.634752\pi\)
0.979064 0.203551i \(-0.0652482\pi\)
\(798\) 0 0
\(799\) −14.8709 10.8043i −0.526093 0.382229i
\(800\) 2.96500 + 4.02601i 0.104829 + 0.142341i
\(801\) 0 0
\(802\) −9.74633 + 9.74633i −0.344155 + 0.344155i
\(803\) −3.61319 1.16466i −0.127507 0.0410998i
\(804\) 0 0
\(805\) −0.326103 3.97913i −0.0114936 0.140246i
\(806\) −2.43103 + 1.76625i −0.0856295 + 0.0622135i
\(807\) 0 0
\(808\) 8.35005 + 4.25456i 0.293754 + 0.149675i
\(809\) −11.3255 34.8562i −0.398182 1.22548i −0.926455 0.376405i \(-0.877160\pi\)
0.528273 0.849075i \(-0.322840\pi\)
\(810\) 0 0
\(811\) 14.6687 + 20.1898i 0.515089 + 0.708960i 0.984767 0.173878i \(-0.0556299\pi\)
−0.469678 + 0.882838i \(0.655630\pi\)
\(812\) 0.464371 0.236609i 0.0162962 0.00830334i
\(813\) 0 0
\(814\) 4.27378 + 26.5808i 0.149796 + 0.931657i
\(815\) −18.4874 7.58784i −0.647585 0.265790i
\(816\) 0 0
\(817\) 53.8602 + 8.53061i 1.88433 + 0.298448i
\(818\) −19.9702 + 3.16297i −0.698241 + 0.110591i
\(819\) 0 0
\(820\) −21.0729 + 18.1161i −0.735899 + 0.632640i
\(821\) −7.96168 + 10.9583i −0.277865 + 0.382448i −0.925025 0.379906i \(-0.875956\pi\)
0.647160 + 0.762354i \(0.275956\pi\)
\(822\) 0 0
\(823\) 3.90905 + 7.67193i 0.136261 + 0.267427i 0.949047 0.315136i \(-0.102050\pi\)
−0.812786 + 0.582563i \(0.802050\pi\)
\(824\) 0.0988529 0.00344371
\(825\) 0 0
\(826\) −0.329973 −0.0114812
\(827\) 4.53336 + 8.89722i 0.157640 + 0.309387i 0.956295 0.292403i \(-0.0944547\pi\)
−0.798655 + 0.601789i \(0.794455\pi\)
\(828\) 0 0
\(829\) −12.4310 + 17.1098i −0.431746 + 0.594247i −0.968353 0.249585i \(-0.919706\pi\)
0.536607 + 0.843832i \(0.319706\pi\)
\(830\) 0.405015 0.348185i 0.0140583 0.0120857i
\(831\) 0 0
\(832\) −0.842930 + 0.133507i −0.0292233 + 0.00462852i
\(833\) −9.18100 1.45413i −0.318103 0.0503825i
\(834\) 0 0
\(835\) 43.6991 + 17.9356i 1.51227 + 0.620687i
\(836\) −14.9861 7.59169i −0.518306 0.262564i
\(837\) 0 0
\(838\) −17.3711 + 8.85100i −0.600073 + 0.305753i
\(839\) −23.3328 32.1148i −0.805537 1.10873i −0.991997 0.126264i \(-0.959701\pi\)
0.186460 0.982463i \(-0.440299\pi\)
\(840\) 0 0
\(841\) −8.81714 27.1364i −0.304039 0.935737i
\(842\) 2.54735 + 1.29794i 0.0877875 + 0.0447300i
\(843\) 0 0
\(844\) 11.7834 8.56117i 0.405603 0.294688i
\(845\) −2.24131 27.3485i −0.0771033 0.940819i
\(846\) 0 0
\(847\) 5.95893 + 5.90340i 0.204751 + 0.202843i
\(848\) −5.80747 + 5.80747i −0.199429 + 0.199429i
\(849\) 0 0
\(850\) −7.15913 1.08652i −0.245556 0.0372674i
\(851\) −15.3766 11.1718i −0.527104 0.382964i
\(852\) 0 0
\(853\) 16.5238 32.4298i 0.565764 1.11037i −0.414012 0.910272i \(-0.635873\pi\)
0.979775 0.200102i \(-0.0641273\pi\)
\(854\) 7.82458 + 5.68489i 0.267752 + 0.194533i
\(855\) 0 0
\(856\) −2.01746 + 6.20910i −0.0689554 + 0.212223i
\(857\) 10.3508 10.3508i 0.353576 0.353576i −0.507862 0.861438i \(-0.669564\pi\)
0.861438 + 0.507862i \(0.169564\pi\)
\(858\) 0 0
\(859\) 21.8229i 0.744588i −0.928115 0.372294i \(-0.878571\pi\)
0.928115 0.372294i \(-0.121429\pi\)
\(860\) −15.5752 + 18.3559i −0.531109 + 0.625933i
\(861\) 0 0
\(862\) −2.52053 15.9140i −0.0858495 0.542032i
\(863\) 5.34286 + 2.72232i 0.181873 + 0.0926690i 0.542556 0.840019i \(-0.317456\pi\)
−0.360683 + 0.932688i \(0.617456\pi\)
\(864\) 0 0
\(865\) 4.67821 2.88764i 0.159064 0.0981828i
\(866\) 14.3556 + 19.7588i 0.487823 + 0.671431i
\(867\) 0 0
\(868\) 1.89851 + 1.89851i 0.0644397 + 0.0644397i
\(869\) −23.7125 23.6018i −0.804392 0.800636i
\(870\) 0 0
\(871\) 4.39211 + 1.42708i 0.148821 + 0.0483548i
\(872\) 11.6671 + 1.84788i 0.395097 + 0.0625772i
\(873\) 0 0
\(874\) 11.2795 3.66494i 0.381536 0.123969i
\(875\) −5.59947 6.42890i −0.189297 0.217337i
\(876\) 0 0
\(877\) 4.44076 28.0379i 0.149954 0.946771i −0.791876 0.610682i \(-0.790895\pi\)
0.941830 0.336090i \(-0.109105\pi\)
\(878\) 6.01836 + 11.8117i 0.203110 + 0.398625i
\(879\) 0 0
\(880\) 6.30166 3.91012i 0.212429 0.131810i
\(881\) 9.63291 0.324541 0.162270 0.986746i \(-0.448118\pi\)
0.162270 + 0.986746i \(0.448118\pi\)
\(882\) 0 0
\(883\) −7.79859 + 49.2384i −0.262443 + 1.65700i 0.406471 + 0.913663i \(0.366759\pi\)
−0.668915 + 0.743339i \(0.733241\pi\)
\(884\) 0.726483 0.999918i 0.0244343 0.0336309i
\(885\) 0 0
\(886\) −2.07093 + 0.672885i −0.0695742 + 0.0226060i
\(887\) 33.0342 5.23210i 1.10918 0.175677i 0.425144 0.905126i \(-0.360223\pi\)
0.684035 + 0.729449i \(0.260223\pi\)
\(888\) 0 0
\(889\) 4.70701 + 1.52940i 0.157868 + 0.0512944i
\(890\) −9.51779 + 23.1896i −0.319037 + 0.777317i
\(891\) 0 0
\(892\) −0.951712 0.951712i −0.0318657 0.0318657i
\(893\) 57.2823 29.1868i 1.91688 0.976698i
\(894\) 0 0
\(895\) 34.6312 + 8.19597i 1.15759 + 0.273961i
\(896\) 0.235640 + 0.725226i 0.00787219 + 0.0242281i
\(897\) 0 0
\(898\) −0.754900 4.76625i −0.0251913 0.159052i
\(899\) −1.94687 + 1.41448i −0.0649316 + 0.0471756i
\(900\) 0 0
\(901\) 11.8942i 0.396255i
\(902\) 24.3056 + 33.2897i 0.809289 + 1.10843i
\(903\) 0 0
\(904\) 3.56235 10.9638i 0.118482 0.364650i
\(905\) 9.83509 + 5.98333i 0.326929 + 0.198893i
\(906\) 0 0
\(907\) −19.2581 + 37.7962i −0.639456 + 1.25500i 0.312833 + 0.949808i \(0.398722\pi\)
−0.952290 + 0.305196i \(0.901278\pi\)
\(908\) 0.931635 1.82844i 0.0309174 0.0606788i
\(909\) 0 0
\(910\) 1.41389 0.344280i 0.0468700 0.0114128i
\(911\) 4.93516 15.1889i 0.163509 0.503229i −0.835414 0.549621i \(-0.814772\pi\)
0.998923 + 0.0463915i \(0.0147722\pi\)
\(912\) 0 0
\(913\) −0.467147 0.639819i −0.0154603 0.0211749i
\(914\) 20.4761i 0.677288i
\(915\) 0 0
\(916\) −14.5007 + 10.5354i −0.479116 + 0.348098i
\(917\) 0.186514 + 1.17760i 0.00615923 + 0.0388879i
\(918\) 0 0
\(919\) −7.78224 23.9513i −0.256713 0.790080i −0.993487 0.113942i \(-0.963652\pi\)
0.736775 0.676138i \(-0.236348\pi\)
\(920\) −1.20579 + 5.09495i −0.0397539 + 0.167976i
\(921\) 0 0
\(922\) −0.549077 + 0.279769i −0.0180829 + 0.00921369i
\(923\) −4.79616 4.79616i −0.157868 0.157868i
\(924\) 0 0
\(925\) −40.5859 + 0.262256i −1.33446 + 0.00862293i
\(926\) 18.2897 + 5.94269i 0.601037 + 0.195289i
\(927\) 0 0
\(928\) −0.675052 + 0.106918i −0.0221597 + 0.00350974i
\(929\) 8.61430 2.79896i 0.282626 0.0918308i −0.164274 0.986415i \(-0.552528\pi\)
0.446900 + 0.894584i \(0.352528\pi\)
\(930\) 0 0
\(931\) 19.1095 26.3020i 0.626289 0.862012i
\(932\) −3.84574 + 24.2810i −0.125971 + 0.795352i
\(933\) 0 0
\(934\) 1.55432 0.0508591
\(935\) −2.44905 + 10.4573i −0.0800926 + 0.341992i
\(936\) 0 0
\(937\) −10.0962 19.8149i −0.329829 0.647326i 0.665227 0.746641i \(-0.268335\pi\)
−0.995056 + 0.0993152i \(0.968335\pi\)
\(938\) 0.645497 4.07551i 0.0210762 0.133070i
\(939\) 0 0
\(940\) −2.13533 + 28.3006i −0.0696467 + 0.923064i
\(941\) 20.9430 6.80478i 0.682721 0.221829i 0.0529346 0.998598i \(-0.483143\pi\)
0.629786 + 0.776769i \(0.283143\pi\)
\(942\) 0 0
\(943\) −28.7413 4.55217i −0.935944 0.148239i
\(944\) 0.411545 + 0.133719i 0.0133947 + 0.00435219i
\(945\) 0 0
\(946\) 25.3074 + 25.1892i 0.822814 + 0.818972i
\(947\) 2.70333 + 2.70333i 0.0878464 + 0.0878464i 0.749664 0.661818i \(-0.230215\pi\)
−0.661818 + 0.749664i \(0.730215\pi\)
\(948\) 0 0
\(949\) 0.574182 + 0.790294i 0.0186387 + 0.0256540i
\(950\) 14.7535 20.5849i 0.478667 0.667862i
\(951\) 0 0
\(952\) −0.983972 0.501359i −0.0318907 0.0162491i
\(953\) 5.80899 + 36.6765i 0.188172 + 1.18807i 0.883168 + 0.469056i \(0.155406\pi\)
−0.694997 + 0.719013i \(0.744594\pi\)
\(954\) 0 0
\(955\) 59.9399 4.91228i 1.93961 0.158958i
\(956\) 2.96744i 0.0959740i
\(957\) 0 0
\(958\) −17.1065 + 17.1065i −0.552687 + 0.552687i
\(959\) −0.397745 + 1.22413i −0.0128439 + 0.0395294i
\(960\) 0 0
\(961\) 15.0500 + 10.9345i 0.485484 + 0.352725i
\(962\) 3.14509 6.17258i 0.101402 0.199012i
\(963\) 0 0
\(964\) −17.2206 12.5115i −0.554638 0.402968i
\(965\) −5.12360 21.0416i −0.164934 0.677353i
\(966\) 0 0
\(967\) −16.6994 + 16.6994i −0.537017 + 0.537017i −0.922652 0.385634i \(-0.873983\pi\)
0.385634 + 0.922652i \(0.373983\pi\)
\(968\) −5.03971 9.77759i −0.161983 0.314264i
\(969\) 0 0
\(970\) −31.7061 + 2.59842i −1.01802 + 0.0834302i
\(971\) 21.9153 15.9224i 0.703294 0.510973i −0.177709 0.984083i \(-0.556869\pi\)
0.881003 + 0.473110i \(0.156869\pi\)
\(972\) 0 0
\(973\) −5.89515 3.00373i −0.188990 0.0962951i
\(974\) 5.79872 + 17.8466i 0.185803 + 0.571843i
\(975\) 0 0
\(976\) −7.45513 10.2611i −0.238633 0.328450i
\(977\) −36.0042 + 18.3451i −1.15188 + 0.586911i −0.922336 0.386388i \(-0.873722\pi\)
−0.229541 + 0.973299i \(0.573722\pi\)
\(978\) 0 0
\(979\) 33.1671 + 16.8018i 1.06003 + 0.536989i
\(980\) 5.53518 + 13.2419i 0.176815 + 0.422998i
\(981\) 0 0
\(982\) 25.0692 + 3.97058i 0.799992 + 0.126706i
\(983\) −23.7573 + 3.76279i −0.757740 + 0.120014i −0.523338 0.852125i \(-0.675313\pi\)
−0.234402 + 0.972140i \(0.575313\pi\)
\(984\) 0 0
\(985\) −1.41909 + 18.8079i −0.0452159 + 0.599270i
\(986\) 0.581796 0.800773i 0.0185282 0.0255018i
\(987\) 0 0
\(988\) 1.96252 + 3.85166i 0.0624361 + 0.122538i
\(989\) −25.2082 −0.801573
\(990\) 0 0
\(991\) −4.81752 −0.153034 −0.0765169 0.997068i \(-0.524380\pi\)
−0.0765169 + 0.997068i \(0.524380\pi\)
\(992\) −1.59848 3.13720i −0.0507519 0.0996062i
\(993\) 0 0
\(994\) −3.56224 + 4.90300i −0.112987 + 0.155514i
\(995\) 1.20535 + 1.40208i 0.0382121 + 0.0444490i
\(996\) 0 0
\(997\) −36.3270 + 5.75364i −1.15049 + 0.182219i −0.702409 0.711774i \(-0.747892\pi\)
−0.448080 + 0.893993i \(0.647892\pi\)
\(998\) −9.01551 1.42792i −0.285381 0.0451999i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.bh.c.937.1 48
3.2 odd 2 110.2.k.a.57.6 yes 48
5.3 odd 4 inner 990.2.bh.c.343.3 48
11.6 odd 10 inner 990.2.bh.c.127.3 48
12.11 even 2 880.2.cm.c.497.2 48
15.2 even 4 550.2.bh.b.343.1 48
15.8 even 4 110.2.k.a.13.6 48
15.14 odd 2 550.2.bh.b.57.1 48
33.17 even 10 110.2.k.a.17.6 yes 48
55.28 even 20 inner 990.2.bh.c.523.1 48
60.23 odd 4 880.2.cm.c.673.2 48
132.83 odd 10 880.2.cm.c.17.2 48
165.17 odd 20 550.2.bh.b.193.1 48
165.83 odd 20 110.2.k.a.83.6 yes 48
165.149 even 10 550.2.bh.b.457.1 48
660.83 even 20 880.2.cm.c.193.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.k.a.13.6 48 15.8 even 4
110.2.k.a.17.6 yes 48 33.17 even 10
110.2.k.a.57.6 yes 48 3.2 odd 2
110.2.k.a.83.6 yes 48 165.83 odd 20
550.2.bh.b.57.1 48 15.14 odd 2
550.2.bh.b.193.1 48 165.17 odd 20
550.2.bh.b.343.1 48 15.2 even 4
550.2.bh.b.457.1 48 165.149 even 10
880.2.cm.c.17.2 48 132.83 odd 10
880.2.cm.c.193.2 48 660.83 even 20
880.2.cm.c.497.2 48 12.11 even 2
880.2.cm.c.673.2 48 60.23 odd 4
990.2.bh.c.127.3 48 11.6 odd 10 inner
990.2.bh.c.343.3 48 5.3 odd 4 inner
990.2.bh.c.523.1 48 55.28 even 20 inner
990.2.bh.c.937.1 48 1.1 even 1 trivial