Properties

Label 990.2.bg.a
Level $990$
Weight $2$
Character orbit 990.bg
Analytic conductor $7.905$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(31,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([10, 0, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bg (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [88,11,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(11\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 88 q + 11 q^{2} - 8 q^{3} + 11 q^{4} + 11 q^{5} + q^{6} - 2 q^{7} - 22 q^{8} + 6 q^{9} + 88 q^{10} + 3 q^{11} + 2 q^{12} + 2 q^{13} - 2 q^{14} + 7 q^{15} + 11 q^{16} + 18 q^{17} - 6 q^{18} + 12 q^{19}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1 −0.978148 + 0.207912i −1.73205 0.00389470i 0.913545 0.406737i −0.978148 0.207912i 1.69501 0.356303i −0.310018 + 2.94962i −0.809017 + 0.587785i 2.99997 + 0.0134916i 1.00000
31.2 −0.978148 + 0.207912i −1.63543 0.570424i 0.913545 0.406737i −0.978148 0.207912i 1.71829 + 0.217935i 0.378746 3.60353i −0.809017 + 0.587785i 2.34923 + 1.86577i 1.00000
31.3 −0.978148 + 0.207912i −1.49597 + 0.872961i 0.913545 0.406737i −0.978148 0.207912i 1.28178 1.16492i −0.0811866 + 0.772439i −0.809017 + 0.587785i 1.47588 2.61185i 1.00000
31.4 −0.978148 + 0.207912i −1.20451 + 1.24465i 0.913545 0.406737i −0.978148 0.207912i 0.919407 1.46789i 0.420802 4.00367i −0.809017 + 0.587785i −0.0983267 2.99839i 1.00000
31.5 −0.978148 + 0.207912i −0.860003 1.50346i 0.913545 0.406737i −0.978148 0.207912i 1.15380 + 1.29180i −0.324508 + 3.08749i −0.809017 + 0.587785i −1.52079 + 2.58596i 1.00000
31.6 −0.978148 + 0.207912i −0.556540 + 1.64020i 0.913545 0.406737i −0.978148 0.207912i 0.203361 1.72007i −0.187148 + 1.78059i −0.809017 + 0.587785i −2.38053 1.82568i 1.00000
31.7 −0.978148 + 0.207912i 0.157407 1.72488i 0.913545 0.406737i −0.978148 0.207912i 0.204657 + 1.71992i 0.125602 1.19502i −0.809017 + 0.587785i −2.95045 0.543016i 1.00000
31.8 −0.978148 + 0.207912i 1.16782 1.27914i 0.913545 0.406737i −0.978148 0.207912i −0.876347 + 1.49399i −0.169813 + 1.61567i −0.809017 + 0.587785i −0.272413 2.98761i 1.00000
31.9 −0.978148 + 0.207912i 1.22140 + 1.22809i 0.913545 0.406737i −0.978148 0.207912i −1.45004 0.947306i 0.0524430 0.498962i −0.809017 + 0.587785i −0.0163876 + 2.99996i 1.00000
31.10 −0.978148 + 0.207912i 1.35544 + 1.07832i 0.913545 0.406737i −0.978148 0.207912i −1.55002 0.772946i 0.475009 4.51941i −0.809017 + 0.587785i 0.674443 + 2.92320i 1.00000
31.11 −0.978148 + 0.207912i 1.70882 0.282739i 0.913545 0.406737i −0.978148 0.207912i −1.61269 + 0.631844i −0.170872 + 1.62574i −0.809017 + 0.587785i 2.84012 0.966301i 1.00000
301.1 −0.104528 + 0.994522i −1.66547 0.475629i −0.978148 0.207912i −0.104528 0.994522i 0.647112 1.60663i 0.131019 0.145512i 0.309017 0.951057i 2.54755 + 1.58429i 1.00000
301.2 −0.104528 + 0.994522i −1.64649 + 0.537666i −0.978148 0.207912i −0.104528 0.994522i −0.362616 1.69367i −0.184614 + 0.205034i 0.309017 0.951057i 2.42183 1.77052i 1.00000
301.3 −0.104528 + 0.994522i −1.30271 + 1.14147i −0.978148 0.207912i −0.104528 0.994522i −0.999047 1.41489i −1.41375 + 1.57013i 0.309017 0.951057i 0.394092 2.97400i 1.00000
301.4 −0.104528 + 0.994522i −1.11905 1.32201i −0.978148 0.207912i −0.104528 0.994522i 1.43175 0.974733i −2.02500 + 2.24899i 0.309017 0.951057i −0.495446 + 2.95881i 1.00000
301.5 −0.104528 + 0.994522i −0.845166 1.51185i −0.978148 0.207912i −0.104528 0.994522i 1.59191 0.682504i 3.24799 3.60726i 0.309017 0.951057i −1.57139 + 2.55553i 1.00000
301.6 −0.104528 + 0.994522i −0.0126374 + 1.73200i −0.978148 0.207912i −0.104528 0.994522i −1.72120 0.193612i 2.08037 2.31049i 0.309017 0.951057i −2.99968 0.0437761i 1.00000
301.7 −0.104528 + 0.994522i −0.00703919 + 1.73204i −0.978148 0.207912i −0.104528 0.994522i −1.72181 0.188048i 1.23119 1.36737i 0.309017 0.951057i −2.99990 0.0243843i 1.00000
301.8 −0.104528 + 0.994522i 0.386303 1.68842i −0.978148 0.207912i −0.104528 0.994522i 1.63879 + 0.560675i −1.26492 + 1.40484i 0.309017 0.951057i −2.70154 1.30449i 1.00000
301.9 −0.104528 + 0.994522i 1.36777 + 1.06264i −0.978148 0.207912i −0.104528 0.994522i −1.19979 + 1.24920i 0.339825 0.377414i 0.309017 0.951057i 0.741590 + 2.90690i 1.00000
See all 88 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
11.c even 5 1 inner
99.m even 15 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.2.bg.a 88
9.c even 3 1 inner 990.2.bg.a 88
11.c even 5 1 inner 990.2.bg.a 88
99.m even 15 1 inner 990.2.bg.a 88
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
990.2.bg.a 88 1.a even 1 1 trivial
990.2.bg.a 88 9.c even 3 1 inner
990.2.bg.a 88 11.c even 5 1 inner
990.2.bg.a 88 99.m even 15 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{88} + 2 T_{7}^{87} - 34 T_{7}^{86} + 4 T_{7}^{85} + 480 T_{7}^{84} - 2654 T_{7}^{83} + \cdots + 26\!\cdots\!61 \) acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\). Copy content Toggle raw display