gp: [N,k,chi] = [990,2,Mod(31,990)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(990, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([10, 0, 18]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("990.31");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [88,11,-8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{88} + 2 T_{7}^{87} - 34 T_{7}^{86} + 4 T_{7}^{85} + 480 T_{7}^{84} - 2654 T_{7}^{83} + \cdots + 26\!\cdots\!61 \)
T7^88 + 2*T7^87 - 34*T7^86 + 4*T7^85 + 480*T7^84 - 2654*T7^83 + 2046*T7^82 + 59701*T7^81 - 347783*T7^80 - 785000*T7^79 + 10200607*T7^78 + 8525791*T7^77 - 99912415*T7^76 + 238319304*T7^75 - 588920740*T7^74 - 11446375771*T7^73 + 37698545578*T7^72 + 134794873326*T7^71 - 495115783370*T7^70 + 300446327032*T7^69 + 1286385210465*T7^68 - 27252868332116*T7^67 + 72128602376947*T7^66 + 214474354452022*T7^65 - 769287963592539*T7^64 - 312240422950426*T7^63 + 1182308884987746*T7^62 - 12542862758411356*T7^61 + 66311532956379807*T7^60 + 126200848698386750*T7^59 - 566683373890330650*T7^58 - 1967586703598297672*T7^57 + 5369268825679487872*T7^56 + 3527726010412939491*T7^55 - 1188133417108033624*T7^54 + 84173281773643236930*T7^53 - 484894740779321095768*T7^52 - 173377841585632485737*T7^51 + 3369977998068340085086*T7^50 - 4060385308059027009112*T7^49 + 7644013058192814518744*T7^48 - 40375801458017028345017*T7^47 + 81348367351961674902639*T7^46 - 133345284033209861396188*T7^45 + 329189148680043503447970*T7^44 - 319665166294352587390648*T7^43 - 534177565035799462898737*T7^42 + 1173890135289948325117847*T7^41 - 1235555838428135783187248*T7^40 + 3642148327788948808875854*T7^39 - 4381718202882256675901395*T7^38 - 2122814160701775937425323*T7^37 + 6603258127476756902117874*T7^36 - 38368081849309854942005653*T7^35 + 156843871580820799496559087*T7^34 - 296884615923157363108320863*T7^33 + 377286236487732729496272598*T7^32 - 405873222583945859626281781*T7^31 + 176018321677774591269588763*T7^30 + 240532489261911205029700402*T7^29 - 120851278713429129896963686*T7^28 - 517810582380846849279955119*T7^27 + 1151335619578844017653566239*T7^26 - 1723627724101520852163820852*T7^25 + 1428569305814031553371286741*T7^24 - 329259943752134720245457331*T7^23 + 83921710668150528073148591*T7^22 - 253638071880656540177896537*T7^21 + 29210274223232313959297662*T7^20 - 6931143461416222722064802*T7^19 + 61341886311975723302003810*T7^18 + 75843477341341037145760262*T7^17 - 73988250005571912026884535*T7^16 - 18015506166995166809658498*T7^15 + 27472359734450891759925816*T7^14 - 6705282352769742483302931*T7^13 - 2253600255651920381695365*T7^12 + 3012998063065418335913487*T7^11 - 860608049892251158875762*T7^10 - 280747598305240787659434*T7^9 + 370061000273902912962165*T7^8 + 17741052683949435864714*T7^7 - 32535230242491851456241*T7^6 - 4840075917891514862676*T7^5 + 2146197082507641799542*T7^4 + 201754414532399626854*T7^3 - 93128571978371605764*T7^2 + 1921471987139275824*T7 + 2688029375043408561
acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\).