Properties

Label 99.6.a.c.1.1
Level $99$
Weight $6$
Character 99.1
Self dual yes
Analytic conductor $15.878$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [99,6,Mod(1,99)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("99.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(99, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 99.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8779981615\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -16.0000 q^{4} +19.0000 q^{5} +10.0000 q^{7} -192.000 q^{8} +76.0000 q^{10} +121.000 q^{11} -1148.00 q^{13} +40.0000 q^{14} -256.000 q^{16} -686.000 q^{17} -384.000 q^{19} -304.000 q^{20} +484.000 q^{22} -3709.00 q^{23} -2764.00 q^{25} -4592.00 q^{26} -160.000 q^{28} +5424.00 q^{29} -6443.00 q^{31} +5120.00 q^{32} -2744.00 q^{34} +190.000 q^{35} +12063.0 q^{37} -1536.00 q^{38} -3648.00 q^{40} +1528.00 q^{41} -4026.00 q^{43} -1936.00 q^{44} -14836.0 q^{46} -7168.00 q^{47} -16707.0 q^{49} -11056.0 q^{50} +18368.0 q^{52} +29862.0 q^{53} +2299.00 q^{55} -1920.00 q^{56} +21696.0 q^{58} +6461.00 q^{59} -16980.0 q^{61} -25772.0 q^{62} +28672.0 q^{64} -21812.0 q^{65} +29999.0 q^{67} +10976.0 q^{68} +760.000 q^{70} -31023.0 q^{71} +1924.00 q^{73} +48252.0 q^{74} +6144.00 q^{76} +1210.00 q^{77} +65138.0 q^{79} -4864.00 q^{80} +6112.00 q^{82} +102714. q^{83} -13034.0 q^{85} -16104.0 q^{86} -23232.0 q^{88} -17415.0 q^{89} -11480.0 q^{91} +59344.0 q^{92} -28672.0 q^{94} -7296.00 q^{95} +66905.0 q^{97} -66828.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) 19.0000 0.339882 0.169941 0.985454i \(-0.445642\pi\)
0.169941 + 0.985454i \(0.445642\pi\)
\(6\) 0 0
\(7\) 10.0000 0.0771356 0.0385678 0.999256i \(-0.487720\pi\)
0.0385678 + 0.999256i \(0.487720\pi\)
\(8\) −192.000 −1.06066
\(9\) 0 0
\(10\) 76.0000 0.240333
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) −1148.00 −1.88401 −0.942006 0.335597i \(-0.891062\pi\)
−0.942006 + 0.335597i \(0.891062\pi\)
\(14\) 40.0000 0.0545431
\(15\) 0 0
\(16\) −256.000 −0.250000
\(17\) −686.000 −0.575707 −0.287854 0.957674i \(-0.592942\pi\)
−0.287854 + 0.957674i \(0.592942\pi\)
\(18\) 0 0
\(19\) −384.000 −0.244032 −0.122016 0.992528i \(-0.538936\pi\)
−0.122016 + 0.992528i \(0.538936\pi\)
\(20\) −304.000 −0.169941
\(21\) 0 0
\(22\) 484.000 0.213201
\(23\) −3709.00 −1.46197 −0.730983 0.682396i \(-0.760938\pi\)
−0.730983 + 0.682396i \(0.760938\pi\)
\(24\) 0 0
\(25\) −2764.00 −0.884480
\(26\) −4592.00 −1.33220
\(27\) 0 0
\(28\) −160.000 −0.0385678
\(29\) 5424.00 1.19764 0.598818 0.800885i \(-0.295637\pi\)
0.598818 + 0.800885i \(0.295637\pi\)
\(30\) 0 0
\(31\) −6443.00 −1.20416 −0.602080 0.798436i \(-0.705661\pi\)
−0.602080 + 0.798436i \(0.705661\pi\)
\(32\) 5120.00 0.883883
\(33\) 0 0
\(34\) −2744.00 −0.407087
\(35\) 190.000 0.0262170
\(36\) 0 0
\(37\) 12063.0 1.44861 0.724304 0.689481i \(-0.242161\pi\)
0.724304 + 0.689481i \(0.242161\pi\)
\(38\) −1536.00 −0.172557
\(39\) 0 0
\(40\) −3648.00 −0.360500
\(41\) 1528.00 0.141959 0.0709796 0.997478i \(-0.477387\pi\)
0.0709796 + 0.997478i \(0.477387\pi\)
\(42\) 0 0
\(43\) −4026.00 −0.332049 −0.166025 0.986122i \(-0.553093\pi\)
−0.166025 + 0.986122i \(0.553093\pi\)
\(44\) −1936.00 −0.150756
\(45\) 0 0
\(46\) −14836.0 −1.03377
\(47\) −7168.00 −0.473318 −0.236659 0.971593i \(-0.576052\pi\)
−0.236659 + 0.971593i \(0.576052\pi\)
\(48\) 0 0
\(49\) −16707.0 −0.994050
\(50\) −11056.0 −0.625422
\(51\) 0 0
\(52\) 18368.0 0.942006
\(53\) 29862.0 1.46026 0.730128 0.683310i \(-0.239460\pi\)
0.730128 + 0.683310i \(0.239460\pi\)
\(54\) 0 0
\(55\) 2299.00 0.102478
\(56\) −1920.00 −0.0818147
\(57\) 0 0
\(58\) 21696.0 0.846856
\(59\) 6461.00 0.241640 0.120820 0.992674i \(-0.461448\pi\)
0.120820 + 0.992674i \(0.461448\pi\)
\(60\) 0 0
\(61\) −16980.0 −0.584269 −0.292135 0.956377i \(-0.594366\pi\)
−0.292135 + 0.956377i \(0.594366\pi\)
\(62\) −25772.0 −0.851469
\(63\) 0 0
\(64\) 28672.0 0.875000
\(65\) −21812.0 −0.640342
\(66\) 0 0
\(67\) 29999.0 0.816432 0.408216 0.912885i \(-0.366151\pi\)
0.408216 + 0.912885i \(0.366151\pi\)
\(68\) 10976.0 0.287854
\(69\) 0 0
\(70\) 760.000 0.0185382
\(71\) −31023.0 −0.730362 −0.365181 0.930937i \(-0.618993\pi\)
−0.365181 + 0.930937i \(0.618993\pi\)
\(72\) 0 0
\(73\) 1924.00 0.0422569 0.0211285 0.999777i \(-0.493274\pi\)
0.0211285 + 0.999777i \(0.493274\pi\)
\(74\) 48252.0 1.02432
\(75\) 0 0
\(76\) 6144.00 0.122016
\(77\) 1210.00 0.0232573
\(78\) 0 0
\(79\) 65138.0 1.17427 0.587133 0.809490i \(-0.300256\pi\)
0.587133 + 0.809490i \(0.300256\pi\)
\(80\) −4864.00 −0.0849706
\(81\) 0 0
\(82\) 6112.00 0.100380
\(83\) 102714. 1.63657 0.818285 0.574813i \(-0.194925\pi\)
0.818285 + 0.574813i \(0.194925\pi\)
\(84\) 0 0
\(85\) −13034.0 −0.195673
\(86\) −16104.0 −0.234794
\(87\) 0 0
\(88\) −23232.0 −0.319801
\(89\) −17415.0 −0.233050 −0.116525 0.993188i \(-0.537175\pi\)
−0.116525 + 0.993188i \(0.537175\pi\)
\(90\) 0 0
\(91\) −11480.0 −0.145324
\(92\) 59344.0 0.730983
\(93\) 0 0
\(94\) −28672.0 −0.334687
\(95\) −7296.00 −0.0829422
\(96\) 0 0
\(97\) 66905.0 0.721987 0.360993 0.932568i \(-0.382438\pi\)
0.360993 + 0.932568i \(0.382438\pi\)
\(98\) −66828.0 −0.702900
\(99\) 0 0
\(100\) 44224.0 0.442240
\(101\) −96730.0 −0.943534 −0.471767 0.881723i \(-0.656384\pi\)
−0.471767 + 0.881723i \(0.656384\pi\)
\(102\) 0 0
\(103\) −95704.0 −0.888868 −0.444434 0.895812i \(-0.646595\pi\)
−0.444434 + 0.895812i \(0.646595\pi\)
\(104\) 220416. 1.99830
\(105\) 0 0
\(106\) 119448. 1.03256
\(107\) 32658.0 0.275759 0.137880 0.990449i \(-0.455971\pi\)
0.137880 + 0.990449i \(0.455971\pi\)
\(108\) 0 0
\(109\) −185438. −1.49497 −0.747485 0.664279i \(-0.768739\pi\)
−0.747485 + 0.664279i \(0.768739\pi\)
\(110\) 9196.00 0.0724632
\(111\) 0 0
\(112\) −2560.00 −0.0192839
\(113\) −72849.0 −0.536695 −0.268347 0.963322i \(-0.586478\pi\)
−0.268347 + 0.963322i \(0.586478\pi\)
\(114\) 0 0
\(115\) −70471.0 −0.496896
\(116\) −86784.0 −0.598818
\(117\) 0 0
\(118\) 25844.0 0.170866
\(119\) −6860.00 −0.0444075
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) −67920.0 −0.413141
\(123\) 0 0
\(124\) 103088. 0.602080
\(125\) −111891. −0.640501
\(126\) 0 0
\(127\) −78184.0 −0.430139 −0.215069 0.976599i \(-0.568998\pi\)
−0.215069 + 0.976599i \(0.568998\pi\)
\(128\) −49152.0 −0.265165
\(129\) 0 0
\(130\) −87248.0 −0.452790
\(131\) 462.000 0.00235214 0.00117607 0.999999i \(-0.499626\pi\)
0.00117607 + 0.999999i \(0.499626\pi\)
\(132\) 0 0
\(133\) −3840.00 −0.0188236
\(134\) 119996. 0.577304
\(135\) 0 0
\(136\) 131712. 0.610630
\(137\) −296233. −1.34844 −0.674221 0.738530i \(-0.735520\pi\)
−0.674221 + 0.738530i \(0.735520\pi\)
\(138\) 0 0
\(139\) −399818. −1.75519 −0.877597 0.479398i \(-0.840855\pi\)
−0.877597 + 0.479398i \(0.840855\pi\)
\(140\) −3040.00 −0.0131085
\(141\) 0 0
\(142\) −124092. −0.516444
\(143\) −138908. −0.568051
\(144\) 0 0
\(145\) 103056. 0.407055
\(146\) 7696.00 0.0298802
\(147\) 0 0
\(148\) −193008. −0.724304
\(149\) −72670.0 −0.268157 −0.134079 0.990971i \(-0.542807\pi\)
−0.134079 + 0.990971i \(0.542807\pi\)
\(150\) 0 0
\(151\) −303082. −1.08173 −0.540864 0.841110i \(-0.681902\pi\)
−0.540864 + 0.841110i \(0.681902\pi\)
\(152\) 73728.0 0.258835
\(153\) 0 0
\(154\) 4840.00 0.0164454
\(155\) −122417. −0.409272
\(156\) 0 0
\(157\) −532987. −1.72571 −0.862854 0.505453i \(-0.831326\pi\)
−0.862854 + 0.505453i \(0.831326\pi\)
\(158\) 260552. 0.830332
\(159\) 0 0
\(160\) 97280.0 0.300416
\(161\) −37090.0 −0.112770
\(162\) 0 0
\(163\) 282076. 0.831567 0.415783 0.909464i \(-0.363507\pi\)
0.415783 + 0.909464i \(0.363507\pi\)
\(164\) −24448.0 −0.0709796
\(165\) 0 0
\(166\) 410856. 1.15723
\(167\) 573588. 1.59151 0.795754 0.605620i \(-0.207075\pi\)
0.795754 + 0.605620i \(0.207075\pi\)
\(168\) 0 0
\(169\) 946611. 2.54950
\(170\) −52136.0 −0.138362
\(171\) 0 0
\(172\) 64416.0 0.166025
\(173\) 386286. 0.981282 0.490641 0.871362i \(-0.336763\pi\)
0.490641 + 0.871362i \(0.336763\pi\)
\(174\) 0 0
\(175\) −27640.0 −0.0682249
\(176\) −30976.0 −0.0753778
\(177\) 0 0
\(178\) −69660.0 −0.164791
\(179\) −545079. −1.27153 −0.635765 0.771882i \(-0.719315\pi\)
−0.635765 + 0.771882i \(0.719315\pi\)
\(180\) 0 0
\(181\) −279485. −0.634106 −0.317053 0.948408i \(-0.602693\pi\)
−0.317053 + 0.948408i \(0.602693\pi\)
\(182\) −45920.0 −0.102760
\(183\) 0 0
\(184\) 712128. 1.55065
\(185\) 229197. 0.492356
\(186\) 0 0
\(187\) −83006.0 −0.173582
\(188\) 114688. 0.236659
\(189\) 0 0
\(190\) −29184.0 −0.0586490
\(191\) 444437. 0.881509 0.440755 0.897628i \(-0.354711\pi\)
0.440755 + 0.897628i \(0.354711\pi\)
\(192\) 0 0
\(193\) −18476.0 −0.0357038 −0.0178519 0.999841i \(-0.505683\pi\)
−0.0178519 + 0.999841i \(0.505683\pi\)
\(194\) 267620. 0.510522
\(195\) 0 0
\(196\) 267312. 0.497025
\(197\) −270182. −0.496010 −0.248005 0.968759i \(-0.579775\pi\)
−0.248005 + 0.968759i \(0.579775\pi\)
\(198\) 0 0
\(199\) 43320.0 0.0775453 0.0387727 0.999248i \(-0.487655\pi\)
0.0387727 + 0.999248i \(0.487655\pi\)
\(200\) 530688. 0.938133
\(201\) 0 0
\(202\) −386920. −0.667180
\(203\) 54240.0 0.0923803
\(204\) 0 0
\(205\) 29032.0 0.0482494
\(206\) −382816. −0.628524
\(207\) 0 0
\(208\) 293888. 0.471003
\(209\) −46464.0 −0.0735785
\(210\) 0 0
\(211\) 1.02968e6 1.59220 0.796100 0.605165i \(-0.206893\pi\)
0.796100 + 0.605165i \(0.206893\pi\)
\(212\) −477792. −0.730128
\(213\) 0 0
\(214\) 130632. 0.194991
\(215\) −76494.0 −0.112858
\(216\) 0 0
\(217\) −64430.0 −0.0928835
\(218\) −741752. −1.05710
\(219\) 0 0
\(220\) −36784.0 −0.0512392
\(221\) 787528. 1.08464
\(222\) 0 0
\(223\) 461281. 0.621160 0.310580 0.950547i \(-0.399477\pi\)
0.310580 + 0.950547i \(0.399477\pi\)
\(224\) 51200.0 0.0681789
\(225\) 0 0
\(226\) −291396. −0.379501
\(227\) 855570. 1.10202 0.551012 0.834497i \(-0.314242\pi\)
0.551012 + 0.834497i \(0.314242\pi\)
\(228\) 0 0
\(229\) −665805. −0.838993 −0.419497 0.907757i \(-0.637793\pi\)
−0.419497 + 0.907757i \(0.637793\pi\)
\(230\) −281884. −0.351359
\(231\) 0 0
\(232\) −1.04141e6 −1.27028
\(233\) −1.20934e6 −1.45934 −0.729671 0.683798i \(-0.760327\pi\)
−0.729671 + 0.683798i \(0.760327\pi\)
\(234\) 0 0
\(235\) −136192. −0.160873
\(236\) −103376. −0.120820
\(237\) 0 0
\(238\) −27440.0 −0.0314009
\(239\) 571482. 0.647154 0.323577 0.946202i \(-0.395114\pi\)
0.323577 + 0.946202i \(0.395114\pi\)
\(240\) 0 0
\(241\) −267080. −0.296209 −0.148105 0.988972i \(-0.547317\pi\)
−0.148105 + 0.988972i \(0.547317\pi\)
\(242\) 58564.0 0.0642824
\(243\) 0 0
\(244\) 271680. 0.292135
\(245\) −317433. −0.337860
\(246\) 0 0
\(247\) 440832. 0.459760
\(248\) 1.23706e6 1.27720
\(249\) 0 0
\(250\) −447564. −0.452903
\(251\) −1.38737e6 −1.38998 −0.694988 0.719022i \(-0.744590\pi\)
−0.694988 + 0.719022i \(0.744590\pi\)
\(252\) 0 0
\(253\) −448789. −0.440799
\(254\) −312736. −0.304154
\(255\) 0 0
\(256\) −1.11411e6 −1.06250
\(257\) 885922. 0.836686 0.418343 0.908289i \(-0.362611\pi\)
0.418343 + 0.908289i \(0.362611\pi\)
\(258\) 0 0
\(259\) 120630. 0.111739
\(260\) 348992. 0.320171
\(261\) 0 0
\(262\) 1848.00 0.00166322
\(263\) −1.44687e6 −1.28986 −0.644928 0.764243i \(-0.723113\pi\)
−0.644928 + 0.764243i \(0.723113\pi\)
\(264\) 0 0
\(265\) 567378. 0.496315
\(266\) −15360.0 −0.0133103
\(267\) 0 0
\(268\) −479984. −0.408216
\(269\) 353878. 0.298176 0.149088 0.988824i \(-0.452366\pi\)
0.149088 + 0.988824i \(0.452366\pi\)
\(270\) 0 0
\(271\) 525260. 0.434461 0.217231 0.976120i \(-0.430298\pi\)
0.217231 + 0.976120i \(0.430298\pi\)
\(272\) 175616. 0.143927
\(273\) 0 0
\(274\) −1.18493e6 −0.953492
\(275\) −334444. −0.266681
\(276\) 0 0
\(277\) −595610. −0.466404 −0.233202 0.972428i \(-0.574920\pi\)
−0.233202 + 0.972428i \(0.574920\pi\)
\(278\) −1.59927e6 −1.24111
\(279\) 0 0
\(280\) −36480.0 −0.0278074
\(281\) −732318. −0.553266 −0.276633 0.960976i \(-0.589219\pi\)
−0.276633 + 0.960976i \(0.589219\pi\)
\(282\) 0 0
\(283\) 2.23380e6 1.65798 0.828989 0.559264i \(-0.188916\pi\)
0.828989 + 0.559264i \(0.188916\pi\)
\(284\) 496368. 0.365181
\(285\) 0 0
\(286\) −555632. −0.401673
\(287\) 15280.0 0.0109501
\(288\) 0 0
\(289\) −949261. −0.668561
\(290\) 412224. 0.287831
\(291\) 0 0
\(292\) −30784.0 −0.0211285
\(293\) 1.53108e6 1.04191 0.520953 0.853585i \(-0.325577\pi\)
0.520953 + 0.853585i \(0.325577\pi\)
\(294\) 0 0
\(295\) 122759. 0.0821293
\(296\) −2.31610e6 −1.53648
\(297\) 0 0
\(298\) −290680. −0.189616
\(299\) 4.25793e6 2.75436
\(300\) 0 0
\(301\) −40260.0 −0.0256128
\(302\) −1.21233e6 −0.764897
\(303\) 0 0
\(304\) 98304.0 0.0610081
\(305\) −322620. −0.198583
\(306\) 0 0
\(307\) −1.14268e6 −0.691956 −0.345978 0.938243i \(-0.612453\pi\)
−0.345978 + 0.938243i \(0.612453\pi\)
\(308\) −19360.0 −0.0116286
\(309\) 0 0
\(310\) −489668. −0.289399
\(311\) −586956. −0.344116 −0.172058 0.985087i \(-0.555042\pi\)
−0.172058 + 0.985087i \(0.555042\pi\)
\(312\) 0 0
\(313\) −233857. −0.134924 −0.0674621 0.997722i \(-0.521490\pi\)
−0.0674621 + 0.997722i \(0.521490\pi\)
\(314\) −2.13195e6 −1.22026
\(315\) 0 0
\(316\) −1.04221e6 −0.587133
\(317\) 935503. 0.522874 0.261437 0.965221i \(-0.415804\pi\)
0.261437 + 0.965221i \(0.415804\pi\)
\(318\) 0 0
\(319\) 656304. 0.361101
\(320\) 544768. 0.297397
\(321\) 0 0
\(322\) −148360. −0.0797402
\(323\) 263424. 0.140491
\(324\) 0 0
\(325\) 3.17307e6 1.66637
\(326\) 1.12830e6 0.588007
\(327\) 0 0
\(328\) −293376. −0.150571
\(329\) −71680.0 −0.0365097
\(330\) 0 0
\(331\) −1.05823e6 −0.530897 −0.265449 0.964125i \(-0.585520\pi\)
−0.265449 + 0.964125i \(0.585520\pi\)
\(332\) −1.64342e6 −0.818285
\(333\) 0 0
\(334\) 2.29435e6 1.12537
\(335\) 569981. 0.277491
\(336\) 0 0
\(337\) 506186. 0.242793 0.121396 0.992604i \(-0.461263\pi\)
0.121396 + 0.992604i \(0.461263\pi\)
\(338\) 3.78644e6 1.80277
\(339\) 0 0
\(340\) 208544. 0.0978364
\(341\) −779603. −0.363068
\(342\) 0 0
\(343\) −335140. −0.153812
\(344\) 772992. 0.352192
\(345\) 0 0
\(346\) 1.54514e6 0.693871
\(347\) −467636. −0.208490 −0.104245 0.994552i \(-0.533243\pi\)
−0.104245 + 0.994552i \(0.533243\pi\)
\(348\) 0 0
\(349\) 304470. 0.133808 0.0669038 0.997759i \(-0.478688\pi\)
0.0669038 + 0.997759i \(0.478688\pi\)
\(350\) −110560. −0.0482423
\(351\) 0 0
\(352\) 619520. 0.266501
\(353\) −2.51868e6 −1.07581 −0.537906 0.843005i \(-0.680785\pi\)
−0.537906 + 0.843005i \(0.680785\pi\)
\(354\) 0 0
\(355\) −589437. −0.248237
\(356\) 278640. 0.116525
\(357\) 0 0
\(358\) −2.18032e6 −0.899108
\(359\) 3.01841e6 1.23607 0.618034 0.786151i \(-0.287929\pi\)
0.618034 + 0.786151i \(0.287929\pi\)
\(360\) 0 0
\(361\) −2.32864e6 −0.940448
\(362\) −1.11794e6 −0.448381
\(363\) 0 0
\(364\) 183680. 0.0726622
\(365\) 36556.0 0.0143624
\(366\) 0 0
\(367\) 994429. 0.385397 0.192699 0.981258i \(-0.438276\pi\)
0.192699 + 0.981258i \(0.438276\pi\)
\(368\) 949504. 0.365491
\(369\) 0 0
\(370\) 916788. 0.348149
\(371\) 298620. 0.112638
\(372\) 0 0
\(373\) 1.72896e6 0.643446 0.321723 0.946834i \(-0.395738\pi\)
0.321723 + 0.946834i \(0.395738\pi\)
\(374\) −332024. −0.122741
\(375\) 0 0
\(376\) 1.37626e6 0.502030
\(377\) −6.22675e6 −2.25636
\(378\) 0 0
\(379\) 454765. 0.162626 0.0813128 0.996689i \(-0.474089\pi\)
0.0813128 + 0.996689i \(0.474089\pi\)
\(380\) 116736. 0.0414711
\(381\) 0 0
\(382\) 1.77775e6 0.623321
\(383\) −2.27557e6 −0.792673 −0.396336 0.918105i \(-0.629719\pi\)
−0.396336 + 0.918105i \(0.629719\pi\)
\(384\) 0 0
\(385\) 22990.0 0.00790473
\(386\) −73904.0 −0.0252464
\(387\) 0 0
\(388\) −1.07048e6 −0.360993
\(389\) −389781. −0.130601 −0.0653005 0.997866i \(-0.520801\pi\)
−0.0653005 + 0.997866i \(0.520801\pi\)
\(390\) 0 0
\(391\) 2.54437e6 0.841665
\(392\) 3.20774e6 1.05435
\(393\) 0 0
\(394\) −1.08073e6 −0.350732
\(395\) 1.23762e6 0.399112
\(396\) 0 0
\(397\) −1.61933e6 −0.515655 −0.257827 0.966191i \(-0.583007\pi\)
−0.257827 + 0.966191i \(0.583007\pi\)
\(398\) 173280. 0.0548328
\(399\) 0 0
\(400\) 707584. 0.221120
\(401\) 5.54368e6 1.72162 0.860810 0.508927i \(-0.169958\pi\)
0.860810 + 0.508927i \(0.169958\pi\)
\(402\) 0 0
\(403\) 7.39656e6 2.26865
\(404\) 1.54768e6 0.471767
\(405\) 0 0
\(406\) 216960. 0.0653228
\(407\) 1.45962e6 0.436772
\(408\) 0 0
\(409\) −2.70493e6 −0.799553 −0.399776 0.916613i \(-0.630912\pi\)
−0.399776 + 0.916613i \(0.630912\pi\)
\(410\) 116128. 0.0341175
\(411\) 0 0
\(412\) 1.53126e6 0.444434
\(413\) 64610.0 0.0186391
\(414\) 0 0
\(415\) 1.95157e6 0.556241
\(416\) −5.87776e6 −1.66525
\(417\) 0 0
\(418\) −185856. −0.0520279
\(419\) −3.37337e6 −0.938705 −0.469353 0.883011i \(-0.655513\pi\)
−0.469353 + 0.883011i \(0.655513\pi\)
\(420\) 0 0
\(421\) −4.52551e6 −1.24441 −0.622204 0.782855i \(-0.713762\pi\)
−0.622204 + 0.782855i \(0.713762\pi\)
\(422\) 4.11874e6 1.12586
\(423\) 0 0
\(424\) −5.73350e6 −1.54884
\(425\) 1.89610e6 0.509202
\(426\) 0 0
\(427\) −169800. −0.0450680
\(428\) −522528. −0.137880
\(429\) 0 0
\(430\) −305976. −0.0798024
\(431\) 684534. 0.177501 0.0887507 0.996054i \(-0.471713\pi\)
0.0887507 + 0.996054i \(0.471713\pi\)
\(432\) 0 0
\(433\) −4.22591e6 −1.08318 −0.541589 0.840643i \(-0.682177\pi\)
−0.541589 + 0.840643i \(0.682177\pi\)
\(434\) −257720. −0.0656786
\(435\) 0 0
\(436\) 2.96701e6 0.747485
\(437\) 1.42426e6 0.356767
\(438\) 0 0
\(439\) −2.09185e6 −0.518047 −0.259023 0.965871i \(-0.583401\pi\)
−0.259023 + 0.965871i \(0.583401\pi\)
\(440\) −441408. −0.108695
\(441\) 0 0
\(442\) 3.15011e6 0.766956
\(443\) −1.56284e6 −0.378361 −0.189180 0.981942i \(-0.560583\pi\)
−0.189180 + 0.981942i \(0.560583\pi\)
\(444\) 0 0
\(445\) −330885. −0.0792095
\(446\) 1.84512e6 0.439226
\(447\) 0 0
\(448\) 286720. 0.0674937
\(449\) 3.00449e6 0.703324 0.351662 0.936127i \(-0.385617\pi\)
0.351662 + 0.936127i \(0.385617\pi\)
\(450\) 0 0
\(451\) 184888. 0.0428023
\(452\) 1.16558e6 0.268347
\(453\) 0 0
\(454\) 3.42228e6 0.779248
\(455\) −218120. −0.0493932
\(456\) 0 0
\(457\) −2.44552e6 −0.547747 −0.273874 0.961766i \(-0.588305\pi\)
−0.273874 + 0.961766i \(0.588305\pi\)
\(458\) −2.66322e6 −0.593258
\(459\) 0 0
\(460\) 1.12754e6 0.248448
\(461\) −7.79104e6 −1.70743 −0.853715 0.520741i \(-0.825656\pi\)
−0.853715 + 0.520741i \(0.825656\pi\)
\(462\) 0 0
\(463\) −1.05196e6 −0.228059 −0.114029 0.993477i \(-0.536376\pi\)
−0.114029 + 0.993477i \(0.536376\pi\)
\(464\) −1.38854e6 −0.299409
\(465\) 0 0
\(466\) −4.83734e6 −1.03191
\(467\) −3.97003e6 −0.842369 −0.421184 0.906975i \(-0.638385\pi\)
−0.421184 + 0.906975i \(0.638385\pi\)
\(468\) 0 0
\(469\) 299990. 0.0629759
\(470\) −544768. −0.113754
\(471\) 0 0
\(472\) −1.24051e6 −0.256298
\(473\) −487146. −0.100117
\(474\) 0 0
\(475\) 1.06138e6 0.215842
\(476\) 109760. 0.0222038
\(477\) 0 0
\(478\) 2.28593e6 0.457607
\(479\) 8.53908e6 1.70048 0.850241 0.526393i \(-0.176456\pi\)
0.850241 + 0.526393i \(0.176456\pi\)
\(480\) 0 0
\(481\) −1.38483e7 −2.72919
\(482\) −1.06832e6 −0.209452
\(483\) 0 0
\(484\) −234256. −0.0454545
\(485\) 1.27120e6 0.245391
\(486\) 0 0
\(487\) −1.86487e6 −0.356308 −0.178154 0.984003i \(-0.557013\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(488\) 3.26016e6 0.619711
\(489\) 0 0
\(490\) −1.26973e6 −0.238903
\(491\) −5.15727e6 −0.965420 −0.482710 0.875780i \(-0.660347\pi\)
−0.482710 + 0.875780i \(0.660347\pi\)
\(492\) 0 0
\(493\) −3.72086e6 −0.689488
\(494\) 1.76333e6 0.325099
\(495\) 0 0
\(496\) 1.64941e6 0.301040
\(497\) −310230. −0.0563369
\(498\) 0 0
\(499\) 4.53340e6 0.815029 0.407514 0.913199i \(-0.366396\pi\)
0.407514 + 0.913199i \(0.366396\pi\)
\(500\) 1.79026e6 0.320251
\(501\) 0 0
\(502\) −5.54947e6 −0.982861
\(503\) −1.71163e6 −0.301641 −0.150821 0.988561i \(-0.548192\pi\)
−0.150821 + 0.988561i \(0.548192\pi\)
\(504\) 0 0
\(505\) −1.83787e6 −0.320691
\(506\) −1.79516e6 −0.311692
\(507\) 0 0
\(508\) 1.25094e6 0.215069
\(509\) −9.73822e6 −1.66604 −0.833019 0.553244i \(-0.813390\pi\)
−0.833019 + 0.553244i \(0.813390\pi\)
\(510\) 0 0
\(511\) 19240.0 0.00325951
\(512\) −2.88358e6 −0.486136
\(513\) 0 0
\(514\) 3.54369e6 0.591627
\(515\) −1.81838e6 −0.302110
\(516\) 0 0
\(517\) −867328. −0.142711
\(518\) 482520. 0.0790116
\(519\) 0 0
\(520\) 4.18790e6 0.679185
\(521\) −4.30279e6 −0.694474 −0.347237 0.937777i \(-0.612880\pi\)
−0.347237 + 0.937777i \(0.612880\pi\)
\(522\) 0 0
\(523\) 2.62280e6 0.419287 0.209643 0.977778i \(-0.432770\pi\)
0.209643 + 0.977778i \(0.432770\pi\)
\(524\) −7392.00 −0.00117607
\(525\) 0 0
\(526\) −5.78750e6 −0.912066
\(527\) 4.41990e6 0.693243
\(528\) 0 0
\(529\) 7.32034e6 1.13734
\(530\) 2.26951e6 0.350948
\(531\) 0 0
\(532\) 61440.0 0.00941179
\(533\) −1.75414e6 −0.267453
\(534\) 0 0
\(535\) 620502. 0.0937257
\(536\) −5.75981e6 −0.865956
\(537\) 0 0
\(538\) 1.41551e6 0.210842
\(539\) −2.02155e6 −0.299717
\(540\) 0 0
\(541\) −2.49634e6 −0.366700 −0.183350 0.983048i \(-0.558694\pi\)
−0.183350 + 0.983048i \(0.558694\pi\)
\(542\) 2.10104e6 0.307211
\(543\) 0 0
\(544\) −3.51232e6 −0.508858
\(545\) −3.52332e6 −0.508114
\(546\) 0 0
\(547\) 1.14323e7 1.63368 0.816838 0.576868i \(-0.195725\pi\)
0.816838 + 0.576868i \(0.195725\pi\)
\(548\) 4.73973e6 0.674221
\(549\) 0 0
\(550\) −1.33778e6 −0.188572
\(551\) −2.08282e6 −0.292262
\(552\) 0 0
\(553\) 651380. 0.0905778
\(554\) −2.38244e6 −0.329798
\(555\) 0 0
\(556\) 6.39709e6 0.877597
\(557\) 9.81529e6 1.34049 0.670247 0.742138i \(-0.266188\pi\)
0.670247 + 0.742138i \(0.266188\pi\)
\(558\) 0 0
\(559\) 4.62185e6 0.625585
\(560\) −48640.0 −0.00655426
\(561\) 0 0
\(562\) −2.92927e6 −0.391218
\(563\) 8.19192e6 1.08922 0.544609 0.838690i \(-0.316678\pi\)
0.544609 + 0.838690i \(0.316678\pi\)
\(564\) 0 0
\(565\) −1.38413e6 −0.182413
\(566\) 8.93522e6 1.17237
\(567\) 0 0
\(568\) 5.95642e6 0.774665
\(569\) 7.54286e6 0.976687 0.488344 0.872651i \(-0.337601\pi\)
0.488344 + 0.872651i \(0.337601\pi\)
\(570\) 0 0
\(571\) −8.69400e6 −1.11591 −0.557956 0.829871i \(-0.688414\pi\)
−0.557956 + 0.829871i \(0.688414\pi\)
\(572\) 2.22253e6 0.284025
\(573\) 0 0
\(574\) 61120.0 0.00774290
\(575\) 1.02517e7 1.29308
\(576\) 0 0
\(577\) 2.03379e6 0.254312 0.127156 0.991883i \(-0.459415\pi\)
0.127156 + 0.991883i \(0.459415\pi\)
\(578\) −3.79704e6 −0.472744
\(579\) 0 0
\(580\) −1.64890e6 −0.203528
\(581\) 1.02714e6 0.126238
\(582\) 0 0
\(583\) 3.61330e6 0.440284
\(584\) −369408. −0.0448202
\(585\) 0 0
\(586\) 6.12432e6 0.736739
\(587\) −3.51780e6 −0.421381 −0.210691 0.977553i \(-0.567571\pi\)
−0.210691 + 0.977553i \(0.567571\pi\)
\(588\) 0 0
\(589\) 2.47411e6 0.293854
\(590\) 491036. 0.0580742
\(591\) 0 0
\(592\) −3.08813e6 −0.362152
\(593\) 8.34535e6 0.974558 0.487279 0.873246i \(-0.337989\pi\)
0.487279 + 0.873246i \(0.337989\pi\)
\(594\) 0 0
\(595\) −130340. −0.0150933
\(596\) 1.16272e6 0.134079
\(597\) 0 0
\(598\) 1.70317e7 1.94763
\(599\) −6.15022e6 −0.700364 −0.350182 0.936682i \(-0.613880\pi\)
−0.350182 + 0.936682i \(0.613880\pi\)
\(600\) 0 0
\(601\) −6.86232e6 −0.774970 −0.387485 0.921876i \(-0.626656\pi\)
−0.387485 + 0.921876i \(0.626656\pi\)
\(602\) −161040. −0.0181110
\(603\) 0 0
\(604\) 4.84931e6 0.540864
\(605\) 278179. 0.0308984
\(606\) 0 0
\(607\) −9.45536e6 −1.04161 −0.520807 0.853675i \(-0.674369\pi\)
−0.520807 + 0.853675i \(0.674369\pi\)
\(608\) −1.96608e6 −0.215696
\(609\) 0 0
\(610\) −1.29048e6 −0.140419
\(611\) 8.22886e6 0.891737
\(612\) 0 0
\(613\) −4.63658e6 −0.498363 −0.249182 0.968457i \(-0.580162\pi\)
−0.249182 + 0.968457i \(0.580162\pi\)
\(614\) −4.57072e6 −0.489287
\(615\) 0 0
\(616\) −232320. −0.0246680
\(617\) −6.05704e6 −0.640542 −0.320271 0.947326i \(-0.603774\pi\)
−0.320271 + 0.947326i \(0.603774\pi\)
\(618\) 0 0
\(619\) −5.63994e6 −0.591626 −0.295813 0.955246i \(-0.595591\pi\)
−0.295813 + 0.955246i \(0.595591\pi\)
\(620\) 1.95867e6 0.204636
\(621\) 0 0
\(622\) −2.34782e6 −0.243327
\(623\) −174150. −0.0179764
\(624\) 0 0
\(625\) 6.51157e6 0.666785
\(626\) −935428. −0.0954057
\(627\) 0 0
\(628\) 8.52779e6 0.862854
\(629\) −8.27522e6 −0.833975
\(630\) 0 0
\(631\) 1.12616e6 0.112597 0.0562987 0.998414i \(-0.482070\pi\)
0.0562987 + 0.998414i \(0.482070\pi\)
\(632\) −1.25065e7 −1.24550
\(633\) 0 0
\(634\) 3.74201e6 0.369728
\(635\) −1.48550e6 −0.146197
\(636\) 0 0
\(637\) 1.91796e7 1.87280
\(638\) 2.62522e6 0.255337
\(639\) 0 0
\(640\) −933888. −0.0901249
\(641\) 1.42020e7 1.36522 0.682611 0.730782i \(-0.260844\pi\)
0.682611 + 0.730782i \(0.260844\pi\)
\(642\) 0 0
\(643\) 1.60794e6 0.153371 0.0766853 0.997055i \(-0.475566\pi\)
0.0766853 + 0.997055i \(0.475566\pi\)
\(644\) 593440. 0.0563848
\(645\) 0 0
\(646\) 1.05370e6 0.0993423
\(647\) −3.10236e6 −0.291361 −0.145680 0.989332i \(-0.546537\pi\)
−0.145680 + 0.989332i \(0.546537\pi\)
\(648\) 0 0
\(649\) 781781. 0.0728573
\(650\) 1.26923e7 1.17830
\(651\) 0 0
\(652\) −4.51322e6 −0.415783
\(653\) −6.88852e6 −0.632183 −0.316091 0.948729i \(-0.602371\pi\)
−0.316091 + 0.948729i \(0.602371\pi\)
\(654\) 0 0
\(655\) 8778.00 0.000799452 0
\(656\) −391168. −0.0354898
\(657\) 0 0
\(658\) −286720. −0.0258163
\(659\) 1.24134e7 1.11347 0.556735 0.830690i \(-0.312054\pi\)
0.556735 + 0.830690i \(0.312054\pi\)
\(660\) 0 0
\(661\) −8.10994e6 −0.721961 −0.360980 0.932573i \(-0.617558\pi\)
−0.360980 + 0.932573i \(0.617558\pi\)
\(662\) −4.23292e6 −0.375401
\(663\) 0 0
\(664\) −1.97211e7 −1.73584
\(665\) −72960.0 −0.00639780
\(666\) 0 0
\(667\) −2.01176e7 −1.75090
\(668\) −9.17741e6 −0.795754
\(669\) 0 0
\(670\) 2.27992e6 0.196216
\(671\) −2.05458e6 −0.176164
\(672\) 0 0
\(673\) 1.78063e7 1.51543 0.757717 0.652584i \(-0.226315\pi\)
0.757717 + 0.652584i \(0.226315\pi\)
\(674\) 2.02474e6 0.171680
\(675\) 0 0
\(676\) −1.51458e7 −1.27475
\(677\) −1.55179e7 −1.30125 −0.650626 0.759398i \(-0.725493\pi\)
−0.650626 + 0.759398i \(0.725493\pi\)
\(678\) 0 0
\(679\) 669050. 0.0556909
\(680\) 2.50253e6 0.207542
\(681\) 0 0
\(682\) −3.11841e6 −0.256728
\(683\) 2.18106e6 0.178902 0.0894510 0.995991i \(-0.471489\pi\)
0.0894510 + 0.995991i \(0.471489\pi\)
\(684\) 0 0
\(685\) −5.62843e6 −0.458311
\(686\) −1.34056e6 −0.108762
\(687\) 0 0
\(688\) 1.03066e6 0.0830123
\(689\) −3.42816e7 −2.75114
\(690\) 0 0
\(691\) 2.29892e7 1.83159 0.915795 0.401647i \(-0.131562\pi\)
0.915795 + 0.401647i \(0.131562\pi\)
\(692\) −6.18058e6 −0.490641
\(693\) 0 0
\(694\) −1.87054e6 −0.147424
\(695\) −7.59654e6 −0.596560
\(696\) 0 0
\(697\) −1.04821e6 −0.0817270
\(698\) 1.21788e6 0.0946163
\(699\) 0 0
\(700\) 442240. 0.0341125
\(701\) −2.34092e6 −0.179925 −0.0899626 0.995945i \(-0.528675\pi\)
−0.0899626 + 0.995945i \(0.528675\pi\)
\(702\) 0 0
\(703\) −4.63219e6 −0.353507
\(704\) 3.46931e6 0.263822
\(705\) 0 0
\(706\) −1.00747e7 −0.760715
\(707\) −967300. −0.0727801
\(708\) 0 0
\(709\) −1.92694e7 −1.43964 −0.719820 0.694161i \(-0.755775\pi\)
−0.719820 + 0.694161i \(0.755775\pi\)
\(710\) −2.35775e6 −0.175530
\(711\) 0 0
\(712\) 3.34368e6 0.247186
\(713\) 2.38971e7 1.76044
\(714\) 0 0
\(715\) −2.63925e6 −0.193070
\(716\) 8.72126e6 0.635765
\(717\) 0 0
\(718\) 1.20736e7 0.874032
\(719\) 2.14665e7 1.54860 0.774300 0.632819i \(-0.218102\pi\)
0.774300 + 0.632819i \(0.218102\pi\)
\(720\) 0 0
\(721\) −957040. −0.0685633
\(722\) −9.31457e6 −0.664997
\(723\) 0 0
\(724\) 4.47176e6 0.317053
\(725\) −1.49919e7 −1.05928
\(726\) 0 0
\(727\) −1.67705e7 −1.17682 −0.588411 0.808562i \(-0.700246\pi\)
−0.588411 + 0.808562i \(0.700246\pi\)
\(728\) 2.20416e6 0.154140
\(729\) 0 0
\(730\) 146224. 0.0101557
\(731\) 2.76184e6 0.191163
\(732\) 0 0
\(733\) −1.75373e7 −1.20560 −0.602798 0.797894i \(-0.705948\pi\)
−0.602798 + 0.797894i \(0.705948\pi\)
\(734\) 3.97772e6 0.272517
\(735\) 0 0
\(736\) −1.89901e7 −1.29221
\(737\) 3.62988e6 0.246163
\(738\) 0 0
\(739\) 1.47387e7 0.992766 0.496383 0.868104i \(-0.334661\pi\)
0.496383 + 0.868104i \(0.334661\pi\)
\(740\) −3.66715e6 −0.246178
\(741\) 0 0
\(742\) 1.19448e6 0.0796469
\(743\) 4.80946e6 0.319613 0.159806 0.987148i \(-0.448913\pi\)
0.159806 + 0.987148i \(0.448913\pi\)
\(744\) 0 0
\(745\) −1.38073e6 −0.0911419
\(746\) 6.91583e6 0.454985
\(747\) 0 0
\(748\) 1.32810e6 0.0867912
\(749\) 326580. 0.0212709
\(750\) 0 0
\(751\) 8.29317e6 0.536563 0.268282 0.963341i \(-0.413544\pi\)
0.268282 + 0.963341i \(0.413544\pi\)
\(752\) 1.83501e6 0.118330
\(753\) 0 0
\(754\) −2.49070e7 −1.59549
\(755\) −5.75856e6 −0.367660
\(756\) 0 0
\(757\) −352294. −0.0223442 −0.0111721 0.999938i \(-0.503556\pi\)
−0.0111721 + 0.999938i \(0.503556\pi\)
\(758\) 1.81906e6 0.114994
\(759\) 0 0
\(760\) 1.40083e6 0.0879735
\(761\) −1.68985e7 −1.05776 −0.528878 0.848698i \(-0.677387\pi\)
−0.528878 + 0.848698i \(0.677387\pi\)
\(762\) 0 0
\(763\) −1.85438e6 −0.115315
\(764\) −7.11099e6 −0.440755
\(765\) 0 0
\(766\) −9.10229e6 −0.560504
\(767\) −7.41723e6 −0.455253
\(768\) 0 0
\(769\) −36652.0 −0.00223502 −0.00111751 0.999999i \(-0.500356\pi\)
−0.00111751 + 0.999999i \(0.500356\pi\)
\(770\) 91960.0 0.00558949
\(771\) 0 0
\(772\) 295616. 0.0178519
\(773\) 3.17462e7 1.91093 0.955463 0.295113i \(-0.0953571\pi\)
0.955463 + 0.295113i \(0.0953571\pi\)
\(774\) 0 0
\(775\) 1.78085e7 1.06505
\(776\) −1.28458e7 −0.765783
\(777\) 0 0
\(778\) −1.55912e6 −0.0923489
\(779\) −586752. −0.0346426
\(780\) 0 0
\(781\) −3.75378e6 −0.220212
\(782\) 1.01775e7 0.595147
\(783\) 0 0
\(784\) 4.27699e6 0.248513
\(785\) −1.01268e7 −0.586538
\(786\) 0 0
\(787\) 2.01985e7 1.16247 0.581236 0.813735i \(-0.302569\pi\)
0.581236 + 0.813735i \(0.302569\pi\)
\(788\) 4.32291e6 0.248005
\(789\) 0 0
\(790\) 4.95049e6 0.282215
\(791\) −728490. −0.0413983
\(792\) 0 0
\(793\) 1.94930e7 1.10077
\(794\) −6.47732e6 −0.364623
\(795\) 0 0
\(796\) −693120. −0.0387727
\(797\) −1.55660e7 −0.868023 −0.434011 0.900907i \(-0.642902\pi\)
−0.434011 + 0.900907i \(0.642902\pi\)
\(798\) 0 0
\(799\) 4.91725e6 0.272493
\(800\) −1.41517e7 −0.781777
\(801\) 0 0
\(802\) 2.21747e7 1.21737
\(803\) 232804. 0.0127409
\(804\) 0 0
\(805\) −704710. −0.0383284
\(806\) 2.95863e7 1.60418
\(807\) 0 0
\(808\) 1.85722e7 1.00077
\(809\) 2.91667e7 1.56681 0.783404 0.621513i \(-0.213482\pi\)
0.783404 + 0.621513i \(0.213482\pi\)
\(810\) 0 0
\(811\) −1.65215e7 −0.882057 −0.441029 0.897493i \(-0.645386\pi\)
−0.441029 + 0.897493i \(0.645386\pi\)
\(812\) −867840. −0.0461902
\(813\) 0 0
\(814\) 5.83849e6 0.308844
\(815\) 5.35944e6 0.282635
\(816\) 0 0
\(817\) 1.54598e6 0.0810307
\(818\) −1.08197e7 −0.565369
\(819\) 0 0
\(820\) −464512. −0.0241247
\(821\) −5.56614e6 −0.288202 −0.144101 0.989563i \(-0.546029\pi\)
−0.144101 + 0.989563i \(0.546029\pi\)
\(822\) 0 0
\(823\) 1.18801e7 0.611391 0.305696 0.952129i \(-0.401111\pi\)
0.305696 + 0.952129i \(0.401111\pi\)
\(824\) 1.83752e7 0.942786
\(825\) 0 0
\(826\) 258440. 0.0131798
\(827\) 1.32856e7 0.675489 0.337745 0.941238i \(-0.390336\pi\)
0.337745 + 0.941238i \(0.390336\pi\)
\(828\) 0 0
\(829\) −653987. −0.0330509 −0.0165254 0.999863i \(-0.505260\pi\)
−0.0165254 + 0.999863i \(0.505260\pi\)
\(830\) 7.80626e6 0.393322
\(831\) 0 0
\(832\) −3.29155e7 −1.64851
\(833\) 1.14610e7 0.572282
\(834\) 0 0
\(835\) 1.08982e7 0.540926
\(836\) 743424. 0.0367892
\(837\) 0 0
\(838\) −1.34935e7 −0.663765
\(839\) −2.47747e7 −1.21508 −0.607538 0.794290i \(-0.707843\pi\)
−0.607538 + 0.794290i \(0.707843\pi\)
\(840\) 0 0
\(841\) 8.90863e6 0.434331
\(842\) −1.81021e7 −0.879929
\(843\) 0 0
\(844\) −1.64749e7 −0.796100
\(845\) 1.79856e7 0.866530
\(846\) 0 0
\(847\) 146410. 0.00701233
\(848\) −7.64467e6 −0.365064
\(849\) 0 0
\(850\) 7.58442e6 0.360060
\(851\) −4.47417e7 −2.11782
\(852\) 0 0
\(853\) 2.71291e7 1.27662 0.638311 0.769779i \(-0.279633\pi\)
0.638311 + 0.769779i \(0.279633\pi\)
\(854\) −679200. −0.0318679
\(855\) 0 0
\(856\) −6.27034e6 −0.292487
\(857\) 2.84232e7 1.32197 0.660984 0.750400i \(-0.270139\pi\)
0.660984 + 0.750400i \(0.270139\pi\)
\(858\) 0 0
\(859\) 2.65922e7 1.22962 0.614810 0.788675i \(-0.289233\pi\)
0.614810 + 0.788675i \(0.289233\pi\)
\(860\) 1.22390e6 0.0564289
\(861\) 0 0
\(862\) 2.73814e6 0.125512
\(863\) 2.22500e7 1.01696 0.508479 0.861074i \(-0.330208\pi\)
0.508479 + 0.861074i \(0.330208\pi\)
\(864\) 0 0
\(865\) 7.33943e6 0.333520
\(866\) −1.69036e7 −0.765923
\(867\) 0 0
\(868\) 1.03088e6 0.0464418
\(869\) 7.88170e6 0.354055
\(870\) 0 0
\(871\) −3.44389e7 −1.53817
\(872\) 3.56041e7 1.58566
\(873\) 0 0
\(874\) 5.69702e6 0.252272
\(875\) −1.11891e6 −0.0494055
\(876\) 0 0
\(877\) 2.83428e7 1.24435 0.622176 0.782877i \(-0.286249\pi\)
0.622176 + 0.782877i \(0.286249\pi\)
\(878\) −8.36739e6 −0.366314
\(879\) 0 0
\(880\) −588544. −0.0256196
\(881\) −3.66445e7 −1.59063 −0.795315 0.606196i \(-0.792695\pi\)
−0.795315 + 0.606196i \(0.792695\pi\)
\(882\) 0 0
\(883\) 1.68772e7 0.728447 0.364223 0.931312i \(-0.381334\pi\)
0.364223 + 0.931312i \(0.381334\pi\)
\(884\) −1.26004e7 −0.542320
\(885\) 0 0
\(886\) −6.25137e6 −0.267541
\(887\) −2.73941e6 −0.116909 −0.0584544 0.998290i \(-0.518617\pi\)
−0.0584544 + 0.998290i \(0.518617\pi\)
\(888\) 0 0
\(889\) −781840. −0.0331790
\(890\) −1.32354e6 −0.0560095
\(891\) 0 0
\(892\) −7.38050e6 −0.310580
\(893\) 2.75251e6 0.115505
\(894\) 0 0
\(895\) −1.03565e7 −0.432171
\(896\) −491520. −0.0204537
\(897\) 0 0
\(898\) 1.20180e7 0.497325
\(899\) −3.49468e7 −1.44214
\(900\) 0 0
\(901\) −2.04853e7 −0.840681
\(902\) 739552. 0.0302658
\(903\) 0 0
\(904\) 1.39870e7 0.569251
\(905\) −5.31022e6 −0.215522
\(906\) 0 0
\(907\) −3.13286e7 −1.26451 −0.632255 0.774760i \(-0.717871\pi\)
−0.632255 + 0.774760i \(0.717871\pi\)
\(908\) −1.36891e7 −0.551012
\(909\) 0 0
\(910\) −872480. −0.0349263
\(911\) 2.49762e7 0.997081 0.498541 0.866866i \(-0.333869\pi\)
0.498541 + 0.866866i \(0.333869\pi\)
\(912\) 0 0
\(913\) 1.24284e7 0.493444
\(914\) −9.78206e6 −0.387316
\(915\) 0 0
\(916\) 1.06529e7 0.419497
\(917\) 4620.00 0.000181434 0
\(918\) 0 0
\(919\) −1.10613e7 −0.432032 −0.216016 0.976390i \(-0.569306\pi\)
−0.216016 + 0.976390i \(0.569306\pi\)
\(920\) 1.35304e7 0.527038
\(921\) 0 0
\(922\) −3.11641e7 −1.20734
\(923\) 3.56144e7 1.37601
\(924\) 0 0
\(925\) −3.33421e7 −1.28127
\(926\) −4.20784e6 −0.161262
\(927\) 0 0
\(928\) 2.77709e7 1.05857
\(929\) 2.01739e7 0.766919 0.383460 0.923558i \(-0.374733\pi\)
0.383460 + 0.923558i \(0.374733\pi\)
\(930\) 0 0
\(931\) 6.41549e6 0.242580
\(932\) 1.93494e7 0.729671
\(933\) 0 0
\(934\) −1.58801e7 −0.595645
\(935\) −1.57711e6 −0.0589976
\(936\) 0 0
\(937\) 9.10734e6 0.338877 0.169439 0.985541i \(-0.445805\pi\)
0.169439 + 0.985541i \(0.445805\pi\)
\(938\) 1.19996e6 0.0445307
\(939\) 0 0
\(940\) 2.17907e6 0.0804363
\(941\) 3.67709e7 1.35372 0.676861 0.736110i \(-0.263340\pi\)
0.676861 + 0.736110i \(0.263340\pi\)
\(942\) 0 0
\(943\) −5.66735e6 −0.207540
\(944\) −1.65402e6 −0.0604101
\(945\) 0 0
\(946\) −1.94858e6 −0.0707932
\(947\) 4.95743e7 1.79631 0.898156 0.439677i \(-0.144907\pi\)
0.898156 + 0.439677i \(0.144907\pi\)
\(948\) 0 0
\(949\) −2.20875e6 −0.0796125
\(950\) 4.24550e6 0.152623
\(951\) 0 0
\(952\) 1.31712e6 0.0471013
\(953\) −3.53787e7 −1.26186 −0.630928 0.775841i \(-0.717326\pi\)
−0.630928 + 0.775841i \(0.717326\pi\)
\(954\) 0 0
\(955\) 8.44430e6 0.299609
\(956\) −9.14371e6 −0.323577
\(957\) 0 0
\(958\) 3.41563e7 1.20242
\(959\) −2.96233e6 −0.104013
\(960\) 0 0
\(961\) 1.28831e7 0.449999
\(962\) −5.53933e7 −1.92983
\(963\) 0 0
\(964\) 4.27328e6 0.148105
\(965\) −351044. −0.0121351
\(966\) 0 0
\(967\) 2.78059e7 0.956248 0.478124 0.878292i \(-0.341317\pi\)
0.478124 + 0.878292i \(0.341317\pi\)
\(968\) −2.81107e6 −0.0964237
\(969\) 0 0
\(970\) 5.08478e6 0.173517
\(971\) −1.56835e7 −0.533821 −0.266910 0.963721i \(-0.586003\pi\)
−0.266910 + 0.963721i \(0.586003\pi\)
\(972\) 0 0
\(973\) −3.99818e6 −0.135388
\(974\) −7.45947e6 −0.251948
\(975\) 0 0
\(976\) 4.34688e6 0.146067
\(977\) −2.01140e7 −0.674157 −0.337079 0.941476i \(-0.609439\pi\)
−0.337079 + 0.941476i \(0.609439\pi\)
\(978\) 0 0
\(979\) −2.10722e6 −0.0702671
\(980\) 5.07893e6 0.168930
\(981\) 0 0
\(982\) −2.06291e7 −0.682655
\(983\) 2.09269e7 0.690750 0.345375 0.938465i \(-0.387752\pi\)
0.345375 + 0.938465i \(0.387752\pi\)
\(984\) 0 0
\(985\) −5.13346e6 −0.168585
\(986\) −1.48835e7 −0.487541
\(987\) 0 0
\(988\) −7.05331e6 −0.229880
\(989\) 1.49324e7 0.485445
\(990\) 0 0
\(991\) −3.18663e7 −1.03074 −0.515368 0.856969i \(-0.672345\pi\)
−0.515368 + 0.856969i \(0.672345\pi\)
\(992\) −3.29882e7 −1.06434
\(993\) 0 0
\(994\) −1.24092e6 −0.0398362
\(995\) 823080. 0.0263563
\(996\) 0 0
\(997\) 1.38913e6 0.0442595 0.0221297 0.999755i \(-0.492955\pi\)
0.0221297 + 0.999755i \(0.492955\pi\)
\(998\) 1.81336e7 0.576313
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.6.a.c.1.1 1
3.2 odd 2 11.6.a.a.1.1 1
11.10 odd 2 1089.6.a.c.1.1 1
12.11 even 2 176.6.a.c.1.1 1
15.2 even 4 275.6.b.a.199.1 2
15.8 even 4 275.6.b.a.199.2 2
15.14 odd 2 275.6.a.a.1.1 1
21.20 even 2 539.6.a.c.1.1 1
24.5 odd 2 704.6.a.h.1.1 1
24.11 even 2 704.6.a.c.1.1 1
33.32 even 2 121.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.6.a.a.1.1 1 3.2 odd 2
99.6.a.c.1.1 1 1.1 even 1 trivial
121.6.a.b.1.1 1 33.32 even 2
176.6.a.c.1.1 1 12.11 even 2
275.6.a.a.1.1 1 15.14 odd 2
275.6.b.a.199.1 2 15.2 even 4
275.6.b.a.199.2 2 15.8 even 4
539.6.a.c.1.1 1 21.20 even 2
704.6.a.c.1.1 1 24.11 even 2
704.6.a.h.1.1 1 24.5 odd 2
1089.6.a.c.1.1 1 11.10 odd 2