Defining parameters
| Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 99.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(99))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 64 | 22 | 42 |
| Cusp forms | 56 | 22 | 34 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(14\) | \(5\) | \(9\) | \(12\) | \(5\) | \(7\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(18\) | \(5\) | \(13\) | \(16\) | \(5\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(16\) | \(7\) | \(9\) | \(14\) | \(7\) | \(7\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(16\) | \(5\) | \(11\) | \(14\) | \(5\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(30\) | \(10\) | \(20\) | \(26\) | \(10\) | \(16\) | \(4\) | \(0\) | \(4\) | ||||
| Minus space | \(-\) | \(34\) | \(12\) | \(22\) | \(30\) | \(12\) | \(18\) | \(4\) | \(0\) | \(4\) | ||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(99))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(99))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(99)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)