Properties

Label 99.4.f.d.64.1
Level $99$
Weight $4$
Character 99.64
Analytic conductor $5.841$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 21 x^{10} - 26 x^{9} + 281 x^{8} + 486 x^{7} + 3506 x^{6} + 15102 x^{5} + \cdots + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 64.1
Root \(1.27457 + 3.92271i\) of defining polynomial
Character \(\chi\) \(=\) 99.64
Dual form 99.4.f.d.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58358 + 4.87376i) q^{2} +(-14.7737 - 10.7337i) q^{4} +(-4.61569 - 14.2056i) q^{5} +(9.98349 + 7.25343i) q^{7} +(42.5421 - 30.9086i) q^{8} +76.5442 q^{10} +(31.7200 + 18.0234i) q^{11} +(9.43188 - 29.0283i) q^{13} +(-51.1612 + 37.1708i) q^{14} +(38.1281 + 117.346i) q^{16} +(-40.8103 - 125.601i) q^{17} +(18.0466 - 13.1116i) q^{19} +(-84.2885 + 259.413i) q^{20} +(-138.073 + 126.054i) q^{22} +158.801 q^{23} +(-79.3681 + 57.6643i) q^{25} +(126.541 + 91.9375i) q^{26} +(-69.6368 - 214.320i) q^{28} +(-38.6035 - 28.0471i) q^{29} +(21.0238 - 64.7045i) q^{31} -211.617 q^{32} +676.778 q^{34} +(56.9588 - 175.301i) q^{35} +(-128.156 - 93.1106i) q^{37} +(35.3247 + 108.718i) q^{38} +(-635.437 - 461.672i) q^{40} +(231.508 - 168.200i) q^{41} +103.549 q^{43} +(-275.164 - 606.746i) q^{44} +(-251.475 + 773.960i) q^{46} +(-375.576 + 272.872i) q^{47} +(-58.9350 - 181.383i) q^{49} +(-155.356 - 478.138i) q^{50} +(-450.926 + 327.617i) q^{52} +(1.86904 - 5.75232i) q^{53} +(109.624 - 533.793i) q^{55} +648.912 q^{56} +(197.827 - 143.729i) q^{58} +(-179.294 - 130.264i) q^{59} +(-84.7750 - 260.911i) q^{61} +(282.061 + 204.930i) q^{62} +(30.0884 - 92.6027i) q^{64} -455.900 q^{65} +187.178 q^{67} +(-745.250 + 2293.64i) q^{68} +(764.178 + 555.208i) q^{70} +(141.442 + 435.312i) q^{71} +(218.703 + 158.897i) q^{73} +(656.744 - 477.153i) q^{74} -407.352 q^{76} +(185.945 + 410.015i) q^{77} +(152.545 - 469.486i) q^{79} +(1490.99 - 1083.27i) q^{80} +(453.157 + 1394.67i) q^{82} +(83.7540 + 257.768i) q^{83} +(-1595.88 + 1159.47i) q^{85} +(-163.979 + 504.674i) q^{86} +(1906.51 - 213.670i) q^{88} +77.4891 q^{89} +(304.718 - 221.391i) q^{91} +(-2346.08 - 1704.53i) q^{92} +(-735.158 - 2262.58i) q^{94} +(-269.556 - 195.844i) q^{95} +(-392.262 + 1207.26i) q^{97} +977.348 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 28 q^{5} + 12 q^{7} + 112 q^{8} + 100 q^{10} + 54 q^{11} - 18 q^{13} - 156 q^{14} + 308 q^{16} + 80 q^{17} - 280 q^{19} + 15 q^{20} - 193 q^{22} + 392 q^{23} + 77 q^{25} - 406 q^{26} - 429 q^{28}+ \cdots - 2810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58358 + 4.87376i −0.559881 + 1.72314i 0.122812 + 0.992430i \(0.460809\pi\)
−0.682692 + 0.730706i \(0.739191\pi\)
\(3\) 0 0
\(4\) −14.7737 10.7337i −1.84671 1.34172i
\(5\) −4.61569 14.2056i −0.412840 1.27059i −0.914169 0.405333i \(-0.867155\pi\)
0.501329 0.865257i \(-0.332845\pi\)
\(6\) 0 0
\(7\) 9.98349 + 7.25343i 0.539058 + 0.391648i 0.823735 0.566975i \(-0.191886\pi\)
−0.284677 + 0.958623i \(0.591886\pi\)
\(8\) 42.5421 30.9086i 1.88011 1.36598i
\(9\) 0 0
\(10\) 76.5442 2.42054
\(11\) 31.7200 + 18.0234i 0.869449 + 0.494023i
\(12\) 0 0
\(13\) 9.43188 29.0283i 0.201226 0.619308i −0.798622 0.601833i \(-0.794437\pi\)
0.999847 0.0174752i \(-0.00556282\pi\)
\(14\) −51.1612 + 37.1708i −0.976671 + 0.709593i
\(15\) 0 0
\(16\) 38.1281 + 117.346i 0.595751 + 1.83353i
\(17\) −40.8103 125.601i −0.582233 1.79193i −0.610109 0.792317i \(-0.708874\pi\)
0.0278760 0.999611i \(-0.491126\pi\)
\(18\) 0 0
\(19\) 18.0466 13.1116i 0.217904 0.158316i −0.473479 0.880805i \(-0.657002\pi\)
0.691383 + 0.722489i \(0.257002\pi\)
\(20\) −84.2885 + 259.413i −0.942374 + 2.90033i
\(21\) 0 0
\(22\) −138.073 + 126.054i −1.33806 + 1.22158i
\(23\) 158.801 1.43967 0.719834 0.694147i \(-0.244218\pi\)
0.719834 + 0.694147i \(0.244218\pi\)
\(24\) 0 0
\(25\) −79.3681 + 57.6643i −0.634945 + 0.461314i
\(26\) 126.541 + 91.9375i 0.954490 + 0.693478i
\(27\) 0 0
\(28\) −69.6368 214.320i −0.470004 1.44652i
\(29\) −38.6035 28.0471i −0.247189 0.179594i 0.457291 0.889317i \(-0.348820\pi\)
−0.704480 + 0.709724i \(0.748820\pi\)
\(30\) 0 0
\(31\) 21.0238 64.7045i 0.121806 0.374880i −0.871500 0.490396i \(-0.836852\pi\)
0.993306 + 0.115516i \(0.0368522\pi\)
\(32\) −211.617 −1.16903
\(33\) 0 0
\(34\) 676.778 3.41372
\(35\) 56.9588 175.301i 0.275080 0.846609i
\(36\) 0 0
\(37\) −128.156 93.1106i −0.569424 0.413710i 0.265472 0.964119i \(-0.414472\pi\)
−0.834896 + 0.550408i \(0.814472\pi\)
\(38\) 35.3247 + 108.718i 0.150801 + 0.464116i
\(39\) 0 0
\(40\) −635.437 461.672i −2.51179 1.82492i
\(41\) 231.508 168.200i 0.881839 0.640694i −0.0518980 0.998652i \(-0.516527\pi\)
0.933737 + 0.357959i \(0.116527\pi\)
\(42\) 0 0
\(43\) 103.549 0.367235 0.183617 0.982998i \(-0.441219\pi\)
0.183617 + 0.982998i \(0.441219\pi\)
\(44\) −275.164 606.746i −0.942785 2.07887i
\(45\) 0 0
\(46\) −251.475 + 773.960i −0.806042 + 2.48074i
\(47\) −375.576 + 272.872i −1.16560 + 0.846861i −0.990476 0.137684i \(-0.956034\pi\)
−0.175128 + 0.984546i \(0.556034\pi\)
\(48\) 0 0
\(49\) −58.9350 181.383i −0.171822 0.528815i
\(50\) −155.356 478.138i −0.439414 1.35238i
\(51\) 0 0
\(52\) −450.926 + 327.617i −1.20254 + 0.873698i
\(53\) 1.86904 5.75232i 0.00484402 0.0149084i −0.948605 0.316462i \(-0.897505\pi\)
0.953449 + 0.301553i \(0.0975051\pi\)
\(54\) 0 0
\(55\) 109.624 533.793i 0.268758 1.30867i
\(56\) 648.912 1.54847
\(57\) 0 0
\(58\) 197.827 143.729i 0.447861 0.325390i
\(59\) −179.294 130.264i −0.395628 0.287440i 0.372130 0.928181i \(-0.378628\pi\)
−0.767758 + 0.640740i \(0.778628\pi\)
\(60\) 0 0
\(61\) −84.7750 260.911i −0.177940 0.547642i 0.821816 0.569753i \(-0.192961\pi\)
−0.999756 + 0.0221111i \(0.992961\pi\)
\(62\) 282.061 + 204.930i 0.577772 + 0.419776i
\(63\) 0 0
\(64\) 30.0884 92.6027i 0.0587665 0.180865i
\(65\) −455.900 −0.869961
\(66\) 0 0
\(67\) 187.178 0.341304 0.170652 0.985331i \(-0.445413\pi\)
0.170652 + 0.985331i \(0.445413\pi\)
\(68\) −745.250 + 2293.64i −1.32904 + 4.09037i
\(69\) 0 0
\(70\) 764.178 + 555.208i 1.30481 + 0.948000i
\(71\) 141.442 + 435.312i 0.236423 + 0.727635i 0.996929 + 0.0783045i \(0.0249506\pi\)
−0.760507 + 0.649330i \(0.775049\pi\)
\(72\) 0 0
\(73\) 218.703 + 158.897i 0.350647 + 0.254760i 0.749141 0.662411i \(-0.230467\pi\)
−0.398493 + 0.917171i \(0.630467\pi\)
\(74\) 656.744 477.153i 1.03169 0.749566i
\(75\) 0 0
\(76\) −407.352 −0.614822
\(77\) 185.945 + 410.015i 0.275200 + 0.606825i
\(78\) 0 0
\(79\) 152.545 469.486i 0.217249 0.668624i −0.781737 0.623608i \(-0.785666\pi\)
0.998986 0.0450161i \(-0.0143339\pi\)
\(80\) 1490.99 1083.27i 2.08372 1.51391i
\(81\) 0 0
\(82\) 453.157 + 1394.67i 0.610278 + 1.87824i
\(83\) 83.7540 + 257.768i 0.110761 + 0.340888i 0.991039 0.133570i \(-0.0426440\pi\)
−0.880278 + 0.474458i \(0.842644\pi\)
\(84\) 0 0
\(85\) −1595.88 + 1159.47i −2.03644 + 1.47956i
\(86\) −163.979 + 504.674i −0.205608 + 0.632795i
\(87\) 0 0
\(88\) 1906.51 213.670i 2.30949 0.258833i
\(89\) 77.4891 0.0922902 0.0461451 0.998935i \(-0.485306\pi\)
0.0461451 + 0.998935i \(0.485306\pi\)
\(90\) 0 0
\(91\) 304.718 221.391i 0.351023 0.255033i
\(92\) −2346.08 1704.53i −2.65865 1.93163i
\(93\) 0 0
\(94\) −735.158 2262.58i −0.806657 2.48264i
\(95\) −269.556 195.844i −0.291115 0.211507i
\(96\) 0 0
\(97\) −392.262 + 1207.26i −0.410600 + 1.26370i 0.505528 + 0.862810i \(0.331298\pi\)
−0.916128 + 0.400886i \(0.868702\pi\)
\(98\) 977.348 1.00742
\(99\) 0 0
\(100\) 1791.51 1.79151
\(101\) 382.582 1177.46i 0.376914 1.16002i −0.565265 0.824910i \(-0.691226\pi\)
0.942178 0.335112i \(-0.108774\pi\)
\(102\) 0 0
\(103\) −737.795 536.039i −0.705797 0.512791i 0.176018 0.984387i \(-0.443678\pi\)
−0.881815 + 0.471595i \(0.843678\pi\)
\(104\) −495.974 1526.45i −0.467637 1.43924i
\(105\) 0 0
\(106\) 25.0757 + 18.2186i 0.0229770 + 0.0166938i
\(107\) −1280.95 + 930.666i −1.15733 + 0.840849i −0.989438 0.144956i \(-0.953696\pi\)
−0.167892 + 0.985805i \(0.553696\pi\)
\(108\) 0 0
\(109\) 296.898 0.260896 0.130448 0.991455i \(-0.458358\pi\)
0.130448 + 0.991455i \(0.458358\pi\)
\(110\) 2427.98 + 1379.58i 2.10454 + 1.19580i
\(111\) 0 0
\(112\) −470.511 + 1448.08i −0.396956 + 1.22170i
\(113\) −88.5099 + 64.3062i −0.0736842 + 0.0535347i −0.624018 0.781410i \(-0.714501\pi\)
0.550333 + 0.834945i \(0.314501\pi\)
\(114\) 0 0
\(115\) −732.977 2255.87i −0.594352 1.82923i
\(116\) 269.267 + 828.719i 0.215524 + 0.663316i
\(117\) 0 0
\(118\) 918.804 667.550i 0.716803 0.520788i
\(119\) 503.610 1549.95i 0.387949 1.19398i
\(120\) 0 0
\(121\) 681.316 + 1143.40i 0.511883 + 0.859055i
\(122\) 1405.86 1.04329
\(123\) 0 0
\(124\) −1005.12 + 730.262i −0.727922 + 0.528867i
\(125\) −325.007 236.132i −0.232556 0.168962i
\(126\) 0 0
\(127\) 428.722 + 1319.47i 0.299550 + 0.921921i 0.981655 + 0.190667i \(0.0610649\pi\)
−0.682104 + 0.731255i \(0.738935\pi\)
\(128\) −965.938 701.795i −0.667013 0.484613i
\(129\) 0 0
\(130\) 721.955 2221.95i 0.487074 1.49906i
\(131\) −1515.23 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(132\) 0 0
\(133\) 275.272 0.179467
\(134\) −296.411 + 912.260i −0.191090 + 0.588114i
\(135\) 0 0
\(136\) −5618.32 4081.95i −3.54240 2.57371i
\(137\) 917.808 + 2824.72i 0.572362 + 1.76155i 0.644991 + 0.764190i \(0.276861\pi\)
−0.0726287 + 0.997359i \(0.523139\pi\)
\(138\) 0 0
\(139\) 1741.07 + 1264.96i 1.06241 + 0.771890i 0.974534 0.224241i \(-0.0719904\pi\)
0.0878812 + 0.996131i \(0.471990\pi\)
\(140\) −2723.13 + 1978.47i −1.64390 + 1.19437i
\(141\) 0 0
\(142\) −2345.59 −1.38618
\(143\) 822.368 750.784i 0.480908 0.439047i
\(144\) 0 0
\(145\) −220.245 + 677.843i −0.126140 + 0.388220i
\(146\) −1120.76 + 814.281i −0.635307 + 0.461578i
\(147\) 0 0
\(148\) 893.912 + 2751.18i 0.496480 + 1.52801i
\(149\) 41.0610 + 126.373i 0.0225761 + 0.0694822i 0.961710 0.274070i \(-0.0883699\pi\)
−0.939134 + 0.343552i \(0.888370\pi\)
\(150\) 0 0
\(151\) −172.306 + 125.188i −0.0928613 + 0.0674677i −0.633247 0.773950i \(-0.718278\pi\)
0.540386 + 0.841417i \(0.318278\pi\)
\(152\) 362.478 1115.59i 0.193426 0.595305i
\(153\) 0 0
\(154\) −2292.77 + 256.959i −1.19972 + 0.134457i
\(155\) −1016.21 −0.526604
\(156\) 0 0
\(157\) 2366.45 1719.32i 1.20295 0.873994i 0.208378 0.978048i \(-0.433182\pi\)
0.994572 + 0.104055i \(0.0331817\pi\)
\(158\) 2046.60 + 1486.94i 1.03050 + 0.748700i
\(159\) 0 0
\(160\) 976.758 + 3006.15i 0.482622 + 1.48536i
\(161\) 1585.39 + 1151.85i 0.776064 + 0.563843i
\(162\) 0 0
\(163\) −195.690 + 602.273i −0.0940346 + 0.289409i −0.987001 0.160715i \(-0.948620\pi\)
0.892966 + 0.450124i \(0.148620\pi\)
\(164\) −5225.64 −2.48813
\(165\) 0 0
\(166\) −1388.93 −0.649410
\(167\) 473.826 1458.29i 0.219555 0.675722i −0.779243 0.626722i \(-0.784396\pi\)
0.998799 0.0490007i \(-0.0156036\pi\)
\(168\) 0 0
\(169\) 1023.73 + 743.781i 0.465966 + 0.338544i
\(170\) −3123.79 9614.05i −1.40932 4.33744i
\(171\) 0 0
\(172\) −1529.81 1111.47i −0.678178 0.492725i
\(173\) 2691.34 1955.37i 1.18277 0.859331i 0.190286 0.981729i \(-0.439058\pi\)
0.992481 + 0.122398i \(0.0390583\pi\)
\(174\) 0 0
\(175\) −1210.63 −0.522945
\(176\) −905.551 + 4409.41i −0.387832 + 1.88848i
\(177\) 0 0
\(178\) −122.710 + 377.663i −0.0516715 + 0.159028i
\(179\) 3447.54 2504.79i 1.43956 1.04590i 0.451428 0.892307i \(-0.350915\pi\)
0.988134 0.153595i \(-0.0490853\pi\)
\(180\) 0 0
\(181\) 229.269 + 705.618i 0.0941516 + 0.289769i 0.987032 0.160526i \(-0.0513190\pi\)
−0.892880 + 0.450295i \(0.851319\pi\)
\(182\) 596.459 + 1835.71i 0.242926 + 0.747649i
\(183\) 0 0
\(184\) 6755.74 4908.33i 2.70674 1.96656i
\(185\) −731.167 + 2250.30i −0.290576 + 0.894300i
\(186\) 0 0
\(187\) 969.256 4719.61i 0.379032 1.84563i
\(188\) 8477.59 3.28879
\(189\) 0 0
\(190\) 1381.36 1003.62i 0.527445 0.383211i
\(191\) 3342.99 + 2428.82i 1.26644 + 0.920124i 0.999055 0.0434658i \(-0.0138400\pi\)
0.267386 + 0.963589i \(0.413840\pi\)
\(192\) 0 0
\(193\) 952.321 + 2930.94i 0.355179 + 1.09313i 0.955906 + 0.293674i \(0.0948781\pi\)
−0.600726 + 0.799455i \(0.705122\pi\)
\(194\) −5262.71 3823.58i −1.94763 1.41504i
\(195\) 0 0
\(196\) −1076.23 + 3312.30i −0.392213 + 1.20711i
\(197\) −3059.84 −1.10662 −0.553310 0.832975i \(-0.686636\pi\)
−0.553310 + 0.832975i \(0.686636\pi\)
\(198\) 0 0
\(199\) −971.928 −0.346222 −0.173111 0.984902i \(-0.555382\pi\)
−0.173111 + 0.984902i \(0.555382\pi\)
\(200\) −1594.16 + 4906.32i −0.563621 + 1.73465i
\(201\) 0 0
\(202\) 5132.84 + 3729.22i 1.78785 + 1.29895i
\(203\) −181.960 560.015i −0.0629118 0.193623i
\(204\) 0 0
\(205\) −3457.96 2512.35i −1.17812 0.855952i
\(206\) 3780.89 2746.98i 1.27877 0.929082i
\(207\) 0 0
\(208\) 3765.98 1.25540
\(209\) 808.754 90.6399i 0.267668 0.0299985i
\(210\) 0 0
\(211\) 1028.15 3164.32i 0.335453 1.03242i −0.631045 0.775746i \(-0.717374\pi\)
0.966498 0.256673i \(-0.0826264\pi\)
\(212\) −89.3566 + 64.9214i −0.0289483 + 0.0210322i
\(213\) 0 0
\(214\) −2507.35 7716.84i −0.800931 2.46501i
\(215\) −477.950 1470.98i −0.151609 0.466605i
\(216\) 0 0
\(217\) 679.220 493.482i 0.212481 0.154377i
\(218\) −470.162 + 1447.01i −0.146071 + 0.449559i
\(219\) 0 0
\(220\) −7349.14 + 6709.43i −2.25218 + 2.05613i
\(221\) −4030.91 −1.22692
\(222\) 0 0
\(223\) −3976.34 + 2888.98i −1.19406 + 0.867535i −0.993687 0.112185i \(-0.964215\pi\)
−0.200372 + 0.979720i \(0.564215\pi\)
\(224\) −2112.68 1534.95i −0.630175 0.457849i
\(225\) 0 0
\(226\) −173.251 533.211i −0.0509932 0.156941i
\(227\) −859.697 624.607i −0.251366 0.182628i 0.454966 0.890509i \(-0.349651\pi\)
−0.706332 + 0.707881i \(0.749651\pi\)
\(228\) 0 0
\(229\) −1332.75 + 4101.80i −0.384589 + 1.18364i 0.552189 + 0.833719i \(0.313793\pi\)
−0.936778 + 0.349924i \(0.886207\pi\)
\(230\) 12155.3 3.48477
\(231\) 0 0
\(232\) −2509.17 −0.710065
\(233\) −1592.86 + 4902.32i −0.447862 + 1.37838i 0.431453 + 0.902135i \(0.358001\pi\)
−0.879315 + 0.476241i \(0.841999\pi\)
\(234\) 0 0
\(235\) 5609.86 + 4075.80i 1.55722 + 1.13139i
\(236\) 1250.61 + 3848.98i 0.344948 + 1.06164i
\(237\) 0 0
\(238\) 6756.60 + 4908.96i 1.84019 + 1.33698i
\(239\) −100.555 + 73.0575i −0.0272149 + 0.0197728i −0.601310 0.799016i \(-0.705354\pi\)
0.574095 + 0.818789i \(0.305354\pi\)
\(240\) 0 0
\(241\) −445.539 −0.119086 −0.0595429 0.998226i \(-0.518964\pi\)
−0.0595429 + 0.998226i \(0.518964\pi\)
\(242\) −6651.59 + 1509.90i −1.76686 + 0.401075i
\(243\) 0 0
\(244\) −1548.10 + 4764.57i −0.406177 + 1.25008i
\(245\) −2304.64 + 1674.42i −0.600971 + 0.436631i
\(246\) 0 0
\(247\) −210.395 647.530i −0.0541989 0.166807i
\(248\) −1105.53 3402.48i −0.283070 0.871200i
\(249\) 0 0
\(250\) 1665.53 1210.08i 0.421349 0.306128i
\(251\) −454.595 + 1399.10i −0.114318 + 0.351834i −0.991804 0.127767i \(-0.959219\pi\)
0.877486 + 0.479602i \(0.159219\pi\)
\(252\) 0 0
\(253\) 5037.17 + 2862.13i 1.25172 + 0.711229i
\(254\) −7109.70 −1.75631
\(255\) 0 0
\(256\) 5580.21 4054.26i 1.36236 0.989809i
\(257\) 1183.60 + 859.935i 0.287280 + 0.208721i 0.722086 0.691803i \(-0.243183\pi\)
−0.434807 + 0.900524i \(0.643183\pi\)
\(258\) 0 0
\(259\) −604.070 1859.14i −0.144923 0.446028i
\(260\) 6735.34 + 4893.51i 1.60657 + 1.16724i
\(261\) 0 0
\(262\) 2399.49 7384.87i 0.565805 1.74137i
\(263\) 734.717 0.172261 0.0861304 0.996284i \(-0.472550\pi\)
0.0861304 + 0.996284i \(0.472550\pi\)
\(264\) 0 0
\(265\) −90.3423 −0.0209422
\(266\) −435.916 + 1341.61i −0.100480 + 0.309246i
\(267\) 0 0
\(268\) −2765.31 2009.11i −0.630292 0.457934i
\(269\) −1059.09 3259.54i −0.240051 0.738802i −0.996411 0.0846463i \(-0.973024\pi\)
0.756360 0.654156i \(-0.226976\pi\)
\(270\) 0 0
\(271\) −1390.98 1010.61i −0.311793 0.226531i 0.420872 0.907120i \(-0.361724\pi\)
−0.732666 + 0.680589i \(0.761724\pi\)
\(272\) 13182.8 9577.87i 2.93870 2.13509i
\(273\) 0 0
\(274\) −15220.5 −3.35584
\(275\) −3556.86 + 398.630i −0.779952 + 0.0874120i
\(276\) 0 0
\(277\) 1593.31 4903.72i 0.345607 1.06367i −0.615652 0.788018i \(-0.711107\pi\)
0.961258 0.275649i \(-0.0888928\pi\)
\(278\) −8922.25 + 6482.40i −1.92490 + 1.39852i
\(279\) 0 0
\(280\) −2995.17 9218.20i −0.639271 1.96747i
\(281\) −1551.48 4774.96i −0.329372 1.01370i −0.969428 0.245374i \(-0.921089\pi\)
0.640057 0.768328i \(-0.278911\pi\)
\(282\) 0 0
\(283\) 1519.35 1103.87i 0.319138 0.231868i −0.416669 0.909058i \(-0.636803\pi\)
0.735808 + 0.677190i \(0.236803\pi\)
\(284\) 2582.91 7949.37i 0.539674 1.66095i
\(285\) 0 0
\(286\) 2356.86 + 5196.95i 0.487287 + 1.07448i
\(287\) 3531.28 0.726289
\(288\) 0 0
\(289\) −10135.5 + 7363.87i −2.06300 + 1.49885i
\(290\) −2954.87 2146.84i −0.598332 0.434713i
\(291\) 0 0
\(292\) −1525.50 4695.00i −0.305729 0.940939i
\(293\) 3892.69 + 2828.20i 0.776154 + 0.563909i 0.903822 0.427908i \(-0.140749\pi\)
−0.127668 + 0.991817i \(0.540749\pi\)
\(294\) 0 0
\(295\) −1022.92 + 3148.24i −0.201888 + 0.621347i
\(296\) −8329.93 −1.63570
\(297\) 0 0
\(298\) −680.934 −0.132367
\(299\) 1497.79 4609.74i 0.289698 0.891598i
\(300\) 0 0
\(301\) 1033.78 + 751.086i 0.197961 + 0.143827i
\(302\) −337.274 1038.02i −0.0642648 0.197787i
\(303\) 0 0
\(304\) 2226.68 + 1617.78i 0.420095 + 0.305217i
\(305\) −3315.10 + 2408.56i −0.622368 + 0.452177i
\(306\) 0 0
\(307\) −598.905 −0.111340 −0.0556699 0.998449i \(-0.517729\pi\)
−0.0556699 + 0.998449i \(0.517729\pi\)
\(308\) 1653.89 8053.32i 0.305972 1.48987i
\(309\) 0 0
\(310\) 1609.25 4952.75i 0.294836 0.907411i
\(311\) 4151.19 3016.02i 0.756889 0.549912i −0.141066 0.990000i \(-0.545053\pi\)
0.897954 + 0.440088i \(0.145053\pi\)
\(312\) 0 0
\(313\) −2948.47 9074.46i −0.532452 1.63872i −0.749092 0.662466i \(-0.769510\pi\)
0.216640 0.976251i \(-0.430490\pi\)
\(314\) 4632.12 + 14256.2i 0.832502 + 2.56218i
\(315\) 0 0
\(316\) −7293.00 + 5298.67i −1.29830 + 0.943271i
\(317\) −2040.57 + 6280.22i −0.361545 + 1.11272i 0.590572 + 0.806985i \(0.298902\pi\)
−0.952116 + 0.305736i \(0.901098\pi\)
\(318\) 0 0
\(319\) −719.000 1585.42i −0.126195 0.278265i
\(320\) −1454.36 −0.254066
\(321\) 0 0
\(322\) −8124.46 + 5902.76i −1.40608 + 1.02158i
\(323\) −2383.32 1731.59i −0.410563 0.298291i
\(324\) 0 0
\(325\) 925.308 + 2847.81i 0.157929 + 0.486055i
\(326\) −2625.44 1907.50i −0.446043 0.324069i
\(327\) 0 0
\(328\) 4649.98 14311.2i 0.782781 2.40915i
\(329\) −5728.82 −0.960000
\(330\) 0 0
\(331\) −6549.79 −1.08764 −0.543820 0.839202i \(-0.683023\pi\)
−0.543820 + 0.839202i \(0.683023\pi\)
\(332\) 1529.46 4707.18i 0.252831 0.778134i
\(333\) 0 0
\(334\) 6357.00 + 4618.63i 1.04144 + 0.756648i
\(335\) −863.954 2658.98i −0.140904 0.433658i
\(336\) 0 0
\(337\) 2176.56 + 1581.36i 0.351824 + 0.255615i 0.749634 0.661853i \(-0.230230\pi\)
−0.397810 + 0.917468i \(0.630230\pi\)
\(338\) −5246.17 + 3811.56i −0.844242 + 0.613378i
\(339\) 0 0
\(340\) 36022.5 5.74587
\(341\) 1833.07 1673.51i 0.291103 0.265764i
\(342\) 0 0
\(343\) 2035.25 6263.87i 0.320389 0.986056i
\(344\) 4405.20 3200.56i 0.690443 0.501636i
\(345\) 0 0
\(346\) 5268.07 + 16213.5i 0.818535 + 2.51919i
\(347\) 240.519 + 740.240i 0.0372095 + 0.114519i 0.967936 0.251197i \(-0.0808241\pi\)
−0.930726 + 0.365716i \(0.880824\pi\)
\(348\) 0 0
\(349\) 4381.68 3183.48i 0.672052 0.488274i −0.198660 0.980069i \(-0.563659\pi\)
0.870711 + 0.491794i \(0.163659\pi\)
\(350\) 1917.14 5900.35i 0.292787 0.901105i
\(351\) 0 0
\(352\) −6712.49 3814.05i −1.01641 0.577528i
\(353\) 4504.51 0.679181 0.339591 0.940573i \(-0.389711\pi\)
0.339591 + 0.940573i \(0.389711\pi\)
\(354\) 0 0
\(355\) 5531.03 4018.53i 0.826920 0.600793i
\(356\) −1144.80 831.747i −0.170434 0.123827i
\(357\) 0 0
\(358\) 6748.28 + 20769.1i 0.996250 + 3.06614i
\(359\) 6948.18 + 5048.15i 1.02148 + 0.742147i 0.966585 0.256345i \(-0.0825182\pi\)
0.0548930 + 0.998492i \(0.482518\pi\)
\(360\) 0 0
\(361\) −1965.78 + 6050.06i −0.286599 + 0.882061i
\(362\) −3802.08 −0.552025
\(363\) 0 0
\(364\) −6878.16 −0.990422
\(365\) 1247.77 3840.23i 0.178935 0.550704i
\(366\) 0 0
\(367\) −1762.10 1280.24i −0.250629 0.182093i 0.455376 0.890299i \(-0.349505\pi\)
−0.706006 + 0.708206i \(0.749505\pi\)
\(368\) 6054.78 + 18634.7i 0.857683 + 2.63968i
\(369\) 0 0
\(370\) −9809.58 7127.08i −1.37831 1.00140i
\(371\) 60.3836 43.8713i 0.00845003 0.00613931i
\(372\) 0 0
\(373\) −12814.7 −1.77888 −0.889440 0.457052i \(-0.848905\pi\)
−0.889440 + 0.457052i \(0.848905\pi\)
\(374\) 21467.4 + 12197.8i 2.96805 + 1.68646i
\(375\) 0 0
\(376\) −7543.69 + 23217.1i −1.03467 + 3.18439i
\(377\) −1178.26 + 856.058i −0.160965 + 0.116948i
\(378\) 0 0
\(379\) 2256.70 + 6945.39i 0.305854 + 0.941322i 0.979357 + 0.202137i \(0.0647888\pi\)
−0.673503 + 0.739184i \(0.735211\pi\)
\(380\) 1880.21 + 5786.69i 0.253823 + 0.781186i
\(381\) 0 0
\(382\) −17131.4 + 12446.7i −2.29455 + 1.66709i
\(383\) −3496.23 + 10760.3i −0.466446 + 1.43557i 0.390708 + 0.920515i \(0.372230\pi\)
−0.857154 + 0.515060i \(0.827770\pi\)
\(384\) 0 0
\(385\) 4966.25 4533.96i 0.657412 0.600187i
\(386\) −15792.8 −2.08247
\(387\) 0 0
\(388\) 18753.5 13625.2i 2.45378 1.78278i
\(389\) −2391.30 1737.38i −0.311681 0.226449i 0.420937 0.907090i \(-0.361701\pi\)
−0.732617 + 0.680641i \(0.761701\pi\)
\(390\) 0 0
\(391\) −6480.73 19945.6i −0.838222 2.57978i
\(392\) −8113.53 5894.83i −1.04540 0.759525i
\(393\) 0 0
\(394\) 4845.50 14912.9i 0.619576 1.90686i
\(395\) −7373.45 −0.939236
\(396\) 0 0
\(397\) 12391.9 1.56658 0.783288 0.621659i \(-0.213541\pi\)
0.783288 + 0.621659i \(0.213541\pi\)
\(398\) 1539.13 4736.95i 0.193843 0.596587i
\(399\) 0 0
\(400\) −9792.84 7114.91i −1.22410 0.889364i
\(401\) −2346.26 7221.04i −0.292186 0.899255i −0.984152 0.177326i \(-0.943255\pi\)
0.691967 0.721930i \(-0.256745\pi\)
\(402\) 0 0
\(403\) −1679.97 1220.57i −0.207656 0.150871i
\(404\) −18290.7 + 13289.0i −2.25247 + 1.63652i
\(405\) 0 0
\(406\) 3017.53 0.368861
\(407\) −2386.93 5263.27i −0.290702 0.641008i
\(408\) 0 0
\(409\) −2248.34 + 6919.67i −0.271817 + 0.836567i 0.718227 + 0.695809i \(0.244954\pi\)
−0.990044 + 0.140758i \(0.955046\pi\)
\(410\) 17720.6 12874.7i 2.13453 1.55083i
\(411\) 0 0
\(412\) 5146.27 + 15838.6i 0.615384 + 1.89396i
\(413\) −845.112 2600.99i −0.100691 0.309894i
\(414\) 0 0
\(415\) 3275.18 2379.55i 0.387403 0.281464i
\(416\) −1995.95 + 6142.89i −0.235239 + 0.723990i
\(417\) 0 0
\(418\) −838.970 + 4085.21i −0.0981707 + 0.478024i
\(419\) −11095.7 −1.29370 −0.646851 0.762616i \(-0.723915\pi\)
−0.646851 + 0.762616i \(0.723915\pi\)
\(420\) 0 0
\(421\) 4128.85 2999.79i 0.477976 0.347270i −0.322565 0.946547i \(-0.604545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(422\) 13794.0 + 10021.9i 1.59119 + 1.15606i
\(423\) 0 0
\(424\) −98.2835 302.485i −0.0112572 0.0346462i
\(425\) 10481.8 + 7615.44i 1.19633 + 0.869184i
\(426\) 0 0
\(427\) 1046.15 3219.71i 0.118563 0.364900i
\(428\) 28913.9 3.26544
\(429\) 0 0
\(430\) 7926.09 0.888906
\(431\) 4461.49 13731.1i 0.498613 1.53457i −0.312635 0.949873i \(-0.601212\pi\)
0.811249 0.584701i \(-0.198788\pi\)
\(432\) 0 0
\(433\) −3427.67 2490.35i −0.380423 0.276394i 0.381097 0.924535i \(-0.375546\pi\)
−0.761520 + 0.648142i \(0.775546\pi\)
\(434\) 1329.51 + 4091.83i 0.147048 + 0.452567i
\(435\) 0 0
\(436\) −4386.28 3186.82i −0.481800 0.350048i
\(437\) 2865.82 2082.14i 0.313709 0.227923i
\(438\) 0 0
\(439\) 1809.83 0.196761 0.0983807 0.995149i \(-0.468634\pi\)
0.0983807 + 0.995149i \(0.468634\pi\)
\(440\) −11835.2 26097.0i −1.28232 2.82756i
\(441\) 0 0
\(442\) 6383.28 19645.7i 0.686927 2.11414i
\(443\) 3881.15 2819.82i 0.416251 0.302424i −0.359877 0.933000i \(-0.617181\pi\)
0.776127 + 0.630576i \(0.217181\pi\)
\(444\) 0 0
\(445\) −357.665 1100.78i −0.0381010 0.117263i
\(446\) −7783.34 23954.7i −0.826350 2.54324i
\(447\) 0 0
\(448\) 972.075 706.254i 0.102514 0.0744807i
\(449\) 2835.91 8728.03i 0.298073 0.917375i −0.684099 0.729390i \(-0.739804\pi\)
0.982172 0.187985i \(-0.0601958\pi\)
\(450\) 0 0
\(451\) 10375.0 1162.76i 1.08323 0.121402i
\(452\) 1997.87 0.207902
\(453\) 0 0
\(454\) 4405.59 3200.85i 0.455428 0.330888i
\(455\) −4551.47 3306.84i −0.468959 0.340719i
\(456\) 0 0
\(457\) 1909.56 + 5877.02i 0.195461 + 0.601566i 0.999971 + 0.00762708i \(0.00242780\pi\)
−0.804510 + 0.593939i \(0.797572\pi\)
\(458\) −17880.7 12991.1i −1.82425 1.32540i
\(459\) 0 0
\(460\) −13385.1 + 41195.2i −1.35671 + 4.17551i
\(461\) 16827.2 1.70004 0.850022 0.526747i \(-0.176589\pi\)
0.850022 + 0.526747i \(0.176589\pi\)
\(462\) 0 0
\(463\) −818.694 −0.0821770 −0.0410885 0.999156i \(-0.513083\pi\)
−0.0410885 + 0.999156i \(0.513083\pi\)
\(464\) 1819.34 5599.35i 0.182027 0.560223i
\(465\) 0 0
\(466\) −21370.3 15526.5i −2.12438 1.54345i
\(467\) 5188.30 + 15968.0i 0.514103 + 1.58225i 0.784908 + 0.619612i \(0.212710\pi\)
−0.270805 + 0.962634i \(0.587290\pi\)
\(468\) 0 0
\(469\) 1868.69 + 1357.68i 0.183983 + 0.133671i
\(470\) −28748.2 + 20886.8i −2.82139 + 2.04986i
\(471\) 0 0
\(472\) −11653.8 −1.13646
\(473\) 3284.58 + 1866.30i 0.319292 + 0.181422i
\(474\) 0 0
\(475\) −676.252 + 2081.29i −0.0653233 + 0.201044i
\(476\) −24077.0 + 17493.0i −2.31842 + 1.68443i
\(477\) 0 0
\(478\) −196.828 605.774i −0.0188341 0.0579654i
\(479\) 1438.96 + 4428.65i 0.137260 + 0.422443i 0.995935 0.0900778i \(-0.0287116\pi\)
−0.858675 + 0.512521i \(0.828712\pi\)
\(480\) 0 0
\(481\) −3911.59 + 2841.94i −0.370797 + 0.269400i
\(482\) 705.547 2171.45i 0.0666739 0.205201i
\(483\) 0 0
\(484\) 2207.41 24205.4i 0.207308 2.27323i
\(485\) 18960.4 1.77515
\(486\) 0 0
\(487\) −14260.7 + 10361.0i −1.32693 + 0.964072i −0.327114 + 0.944985i \(0.606076\pi\)
−0.999818 + 0.0190875i \(0.993924\pi\)
\(488\) −11670.9 8479.40i −1.08262 0.786566i
\(489\) 0 0
\(490\) −4511.14 13883.8i −0.415903 1.28002i
\(491\) −12098.6 8790.18i −1.11203 0.807934i −0.129044 0.991639i \(-0.541191\pi\)
−0.982981 + 0.183705i \(0.941191\pi\)
\(492\) 0 0
\(493\) −1947.33 + 5993.26i −0.177897 + 0.547511i
\(494\) 3489.09 0.317776
\(495\) 0 0
\(496\) 8394.41 0.759920
\(497\) −1745.43 + 5371.87i −0.157531 + 0.484831i
\(498\) 0 0
\(499\) 17373.4 + 12622.5i 1.55859 + 1.13239i 0.937150 + 0.348928i \(0.113454\pi\)
0.621445 + 0.783458i \(0.286546\pi\)
\(500\) 2266.99 + 6977.08i 0.202766 + 0.624049i
\(501\) 0 0
\(502\) −6098.99 4431.18i −0.542254 0.393971i
\(503\) 9572.63 6954.92i 0.848554 0.616510i −0.0761930 0.997093i \(-0.524277\pi\)
0.924747 + 0.380583i \(0.124277\pi\)
\(504\) 0 0
\(505\) −18492.5 −1.62952
\(506\) −21926.1 + 20017.6i −1.92636 + 1.75868i
\(507\) 0 0
\(508\) 7829.02 24095.3i 0.683773 2.10444i
\(509\) −10979.7 + 7977.19i −0.956119 + 0.694661i −0.952246 0.305331i \(-0.901233\pi\)
−0.00387285 + 0.999993i \(0.501233\pi\)
\(510\) 0 0
\(511\) 1030.87 + 3172.69i 0.0892427 + 0.274661i
\(512\) 7971.14 + 24532.6i 0.688043 + 2.11758i
\(513\) 0 0
\(514\) −6065.45 + 4406.81i −0.520497 + 0.378163i
\(515\) −4209.34 + 12955.0i −0.360167 + 1.10848i
\(516\) 0 0
\(517\) −16831.3 + 1886.35i −1.43180 + 0.160467i
\(518\) 10017.6 0.849706
\(519\) 0 0
\(520\) −19394.9 + 14091.3i −1.63562 + 1.18835i
\(521\) −1718.71 1248.72i −0.144526 0.105004i 0.513173 0.858285i \(-0.328470\pi\)
−0.657699 + 0.753281i \(0.728470\pi\)
\(522\) 0 0
\(523\) −1717.70 5286.52i −0.143613 0.441995i 0.853217 0.521556i \(-0.174648\pi\)
−0.996830 + 0.0795607i \(0.974648\pi\)
\(524\) 22385.6 + 16264.1i 1.86626 + 1.35591i
\(525\) 0 0
\(526\) −1163.48 + 3580.84i −0.0964455 + 0.296829i
\(527\) −8984.95 −0.742677
\(528\) 0 0
\(529\) 13050.8 1.07264
\(530\) 143.064 440.307i 0.0117251 0.0360863i
\(531\) 0 0
\(532\) −4066.79 2954.70i −0.331424 0.240794i
\(533\) −2699.02 8306.72i −0.219339 0.675055i
\(534\) 0 0
\(535\) 19133.2 + 13901.1i 1.54617 + 1.12336i
\(536\) 7962.93 5785.41i 0.641691 0.466215i
\(537\) 0 0
\(538\) 17563.4 1.40746
\(539\) 1399.72 6815.69i 0.111856 0.544661i
\(540\) 0 0
\(541\) 4074.70 12540.6i 0.323817 0.996605i −0.648155 0.761508i \(-0.724459\pi\)
0.971972 0.235097i \(-0.0755408\pi\)
\(542\) 7128.18 5178.93i 0.564911 0.410432i
\(543\) 0 0
\(544\) 8636.16 + 26579.4i 0.680648 + 2.09482i
\(545\) −1370.39 4217.62i −0.107708 0.331492i
\(546\) 0 0
\(547\) −16488.3 + 11979.4i −1.28883 + 0.936388i −0.999781 0.0209272i \(-0.993338\pi\)
−0.289046 + 0.957315i \(0.593338\pi\)
\(548\) 16760.4 51583.1i 1.30651 4.02103i
\(549\) 0 0
\(550\) 3689.75 17966.6i 0.286057 1.39290i
\(551\) −1064.40 −0.0822961
\(552\) 0 0
\(553\) 4928.32 3580.63i 0.378975 0.275342i
\(554\) 21376.4 + 15530.9i 1.63935 + 1.19105i
\(555\) 0 0
\(556\) −12144.3 37376.4i −0.926320 2.85092i
\(557\) −6895.70 5010.02i −0.524560 0.381115i 0.293759 0.955880i \(-0.405094\pi\)
−0.818319 + 0.574764i \(0.805094\pi\)
\(558\) 0 0
\(559\) 976.663 3005.86i 0.0738970 0.227432i
\(560\) 22742.7 1.71616
\(561\) 0 0
\(562\) 25728.9 1.93115
\(563\) −7620.38 + 23453.1i −0.570445 + 1.75565i 0.0807448 + 0.996735i \(0.474270\pi\)
−0.651190 + 0.758915i \(0.725730\pi\)
\(564\) 0 0
\(565\) 1322.04 + 960.522i 0.0984404 + 0.0715212i
\(566\) 2974.00 + 9153.05i 0.220860 + 0.679737i
\(567\) 0 0
\(568\) 19472.1 + 14147.3i 1.43844 + 1.04509i
\(569\) 5078.13 3689.48i 0.374141 0.271829i −0.384785 0.923006i \(-0.625724\pi\)
0.758926 + 0.651177i \(0.225724\pi\)
\(570\) 0 0
\(571\) 13032.1 0.955127 0.477563 0.878597i \(-0.341520\pi\)
0.477563 + 0.878597i \(0.341520\pi\)
\(572\) −20208.1 + 2264.80i −1.47718 + 0.165552i
\(573\) 0 0
\(574\) −5592.07 + 17210.6i −0.406635 + 1.25149i
\(575\) −12603.8 + 9157.16i −0.914109 + 0.664139i
\(576\) 0 0
\(577\) 2386.86 + 7346.00i 0.172212 + 0.530014i 0.999495 0.0317713i \(-0.0101148\pi\)
−0.827283 + 0.561785i \(0.810115\pi\)
\(578\) −19839.4 61059.4i −1.42770 4.39400i
\(579\) 0 0
\(580\) 10529.6 7650.22i 0.753825 0.547686i
\(581\) −1033.55 + 3180.93i −0.0738016 + 0.227138i
\(582\) 0 0
\(583\) 162.962 148.777i 0.0115767 0.0105690i
\(584\) 14215.4 1.00725
\(585\) 0 0
\(586\) −19948.4 + 14493.3i −1.40625 + 1.02170i
\(587\) 3121.98 + 2268.25i 0.219519 + 0.159490i 0.692110 0.721792i \(-0.256681\pi\)
−0.472591 + 0.881282i \(0.656681\pi\)
\(588\) 0 0
\(589\) −468.973 1443.35i −0.0328076 0.100972i
\(590\) −13723.9 9970.98i −0.957633 0.695761i
\(591\) 0 0
\(592\) 6039.84 18588.7i 0.419317 1.29053i
\(593\) −26982.6 −1.86854 −0.934270 0.356567i \(-0.883947\pi\)
−0.934270 + 0.356567i \(0.883947\pi\)
\(594\) 0 0
\(595\) −24342.6 −1.67722
\(596\) 749.827 2307.73i 0.0515337 0.158605i
\(597\) 0 0
\(598\) 20094.9 + 14599.8i 1.37415 + 0.998377i
\(599\) 7080.31 + 21791.0i 0.482961 + 1.48640i 0.834912 + 0.550383i \(0.185518\pi\)
−0.351951 + 0.936018i \(0.614482\pi\)
\(600\) 0 0
\(601\) −2501.39 1817.36i −0.169773 0.123348i 0.499654 0.866225i \(-0.333460\pi\)
−0.669427 + 0.742878i \(0.733460\pi\)
\(602\) −5297.69 + 3849.00i −0.358668 + 0.260587i
\(603\) 0 0
\(604\) 3889.33 0.262011
\(605\) 13098.0 14956.1i 0.880182 1.00505i
\(606\) 0 0
\(607\) −4035.44 + 12419.8i −0.269841 + 0.830486i 0.720697 + 0.693250i \(0.243822\pi\)
−0.990538 + 0.137236i \(0.956178\pi\)
\(608\) −3818.97 + 2774.64i −0.254736 + 0.185077i
\(609\) 0 0
\(610\) −6489.03 19971.2i −0.430710 1.32559i
\(611\) 4378.63 + 13476.0i 0.289919 + 0.892279i
\(612\) 0 0
\(613\) 21863.9 15885.0i 1.44058 1.04664i 0.452654 0.891686i \(-0.350477\pi\)
0.987922 0.154953i \(-0.0495227\pi\)
\(614\) 948.415 2918.92i 0.0623370 0.191854i
\(615\) 0 0
\(616\) 20583.5 + 11695.6i 1.34632 + 0.764981i
\(617\) −23885.0 −1.55847 −0.779235 0.626732i \(-0.784392\pi\)
−0.779235 + 0.626732i \(0.784392\pi\)
\(618\) 0 0
\(619\) 11607.5 8433.32i 0.753705 0.547599i −0.143268 0.989684i \(-0.545761\pi\)
0.896973 + 0.442085i \(0.145761\pi\)
\(620\) 15013.1 + 10907.7i 0.972488 + 0.706554i
\(621\) 0 0
\(622\) 8125.60 + 25008.0i 0.523805 + 1.61211i
\(623\) 773.611 + 562.061i 0.0497497 + 0.0361453i
\(624\) 0 0
\(625\) −5643.76 + 17369.7i −0.361200 + 1.11166i
\(626\) 48895.9 3.12184
\(627\) 0 0
\(628\) −53416.0 −3.39415
\(629\) −6464.73 + 19896.4i −0.409803 + 1.26124i
\(630\) 0 0
\(631\) −3780.07 2746.38i −0.238482 0.173267i 0.462125 0.886815i \(-0.347087\pi\)
−0.700607 + 0.713548i \(0.747087\pi\)
\(632\) −8021.58 24687.9i −0.504876 1.55385i
\(633\) 0 0
\(634\) −27376.9 19890.5i −1.71495 1.24598i
\(635\) 16765.0 12180.5i 1.04772 0.761211i
\(636\) 0 0
\(637\) −5821.13 −0.362074
\(638\) 8865.55 993.594i 0.550142 0.0616564i
\(639\) 0 0
\(640\) −5510.97 + 16961.0i −0.340375 + 1.04757i
\(641\) 815.075 592.187i 0.0502239 0.0364898i −0.562390 0.826872i \(-0.690118\pi\)
0.612614 + 0.790382i \(0.290118\pi\)
\(642\) 0 0
\(643\) −73.7377 226.941i −0.00452244 0.0139187i 0.948770 0.315968i \(-0.102329\pi\)
−0.953292 + 0.302049i \(0.902329\pi\)
\(644\) −11058.4 34034.3i −0.676650 2.08251i
\(645\) 0 0
\(646\) 12213.5 8873.65i 0.743862 0.540448i
\(647\) −2481.51 + 7637.29i −0.150785 + 0.464070i −0.997710 0.0676441i \(-0.978452\pi\)
0.846924 + 0.531714i \(0.178452\pi\)
\(648\) 0 0
\(649\) −3339.39 7363.46i −0.201976 0.445364i
\(650\) −15344.8 −0.925960
\(651\) 0 0
\(652\) 9355.70 6797.32i 0.561960 0.408288i
\(653\) 236.274 + 171.663i 0.0141594 + 0.0102874i 0.594842 0.803842i \(-0.297214\pi\)
−0.580683 + 0.814130i \(0.697214\pi\)
\(654\) 0 0
\(655\) 6993.83 + 21524.8i 0.417208 + 1.28403i
\(656\) 28564.6 + 20753.4i 1.70009 + 1.23519i
\(657\) 0 0
\(658\) 9072.05 27920.9i 0.537485 1.65421i
\(659\) 9034.21 0.534025 0.267013 0.963693i \(-0.413963\pi\)
0.267013 + 0.963693i \(0.413963\pi\)
\(660\) 0 0
\(661\) 11884.6 0.699332 0.349666 0.936874i \(-0.386295\pi\)
0.349666 + 0.936874i \(0.386295\pi\)
\(662\) 10372.1 31922.1i 0.608949 1.87415i
\(663\) 0 0
\(664\) 11530.3 + 8377.27i 0.673891 + 0.489610i
\(665\) −1270.57 3910.41i −0.0740911 0.228029i
\(666\) 0 0
\(667\) −6130.28 4453.91i −0.355870 0.258555i
\(668\) −22653.0 + 16458.4i −1.31208 + 0.953285i
\(669\) 0 0
\(670\) 14327.4 0.826141
\(671\) 2013.43 9804.01i 0.115838 0.564053i
\(672\) 0 0
\(673\) −2312.52 + 7117.22i −0.132454 + 0.407650i −0.995185 0.0980118i \(-0.968752\pi\)
0.862732 + 0.505662i \(0.168752\pi\)
\(674\) −11154.0 + 8103.82i −0.637440 + 0.463127i
\(675\) 0 0
\(676\) −7140.70 21976.8i −0.406276 1.25039i
\(677\) 9795.40 + 30147.2i 0.556083 + 1.71145i 0.693067 + 0.720873i \(0.256259\pi\)
−0.136984 + 0.990573i \(0.543741\pi\)
\(678\) 0 0
\(679\) −12672.9 + 9207.40i −0.716261 + 0.520394i
\(680\) −32054.2 + 98652.8i −1.80768 + 5.56347i
\(681\) 0 0
\(682\) 5253.46 + 11584.1i 0.294964 + 0.650406i
\(683\) 7905.89 0.442914 0.221457 0.975170i \(-0.428919\pi\)
0.221457 + 0.975170i \(0.428919\pi\)
\(684\) 0 0
\(685\) 35890.6 26076.1i 2.00191 1.45447i
\(686\) 27305.6 + 19838.7i 1.51973 + 1.10415i
\(687\) 0 0
\(688\) 3948.13 + 12151.1i 0.218781 + 0.673337i
\(689\) −149.352 108.510i −0.00825813 0.00599988i
\(690\) 0 0
\(691\) −2133.15 + 6565.17i −0.117437 + 0.361434i −0.992448 0.122670i \(-0.960854\pi\)
0.875010 + 0.484104i \(0.160854\pi\)
\(692\) −60749.5 −3.33721
\(693\) 0 0
\(694\) −3988.64 −0.218165
\(695\) 9933.34 30571.7i 0.542148 1.66856i
\(696\) 0 0
\(697\) −30574.1 22213.4i −1.66151 1.20716i
\(698\) 8576.77 + 26396.6i 0.465094 + 1.43141i
\(699\) 0 0
\(700\) 17885.6 + 12994.6i 0.965730 + 0.701644i
\(701\) 16748.4 12168.4i 0.902393 0.655627i −0.0366868 0.999327i \(-0.511680\pi\)
0.939079 + 0.343700i \(0.111680\pi\)
\(702\) 0 0
\(703\) −3533.61 −0.189577
\(704\) 2623.42 2395.06i 0.140446 0.128221i
\(705\) 0 0
\(706\) −7133.27 + 21953.9i −0.380261 + 1.17032i
\(707\) 12360.2 8980.18i 0.657498 0.477701i
\(708\) 0 0
\(709\) −1947.48 5993.72i −0.103158 0.317488i 0.886136 0.463426i \(-0.153380\pi\)
−0.989294 + 0.145938i \(0.953380\pi\)
\(710\) 10826.5 + 33320.6i 0.572271 + 1.76127i
\(711\) 0 0
\(712\) 3296.55 2395.08i 0.173516 0.126067i
\(713\) 3338.60 10275.2i 0.175360 0.539702i
\(714\) 0 0
\(715\) −14461.2 8216.86i −0.756387 0.429781i
\(716\) −77818.7 −4.06176
\(717\) 0 0
\(718\) −35606.5 + 25869.6i −1.85073 + 1.34463i
\(719\) 1121.07 + 814.505i 0.0581486 + 0.0422474i 0.616480 0.787371i \(-0.288558\pi\)
−0.558331 + 0.829618i \(0.688558\pi\)
\(720\) 0 0
\(721\) −3477.64 10703.1i −0.179631 0.552848i
\(722\) −26373.6 19161.5i −1.35945 0.987698i
\(723\) 0 0
\(724\) 4186.76 12885.5i 0.214916 0.661445i
\(725\) 4681.20 0.239801
\(726\) 0 0
\(727\) −11818.1 −0.602900 −0.301450 0.953482i \(-0.597471\pi\)
−0.301450 + 0.953482i \(0.597471\pi\)
\(728\) 6120.46 18836.8i 0.311592 0.958982i
\(729\) 0 0
\(730\) 16740.5 + 12162.6i 0.848756 + 0.616657i
\(731\) −4225.88 13005.9i −0.213816 0.658059i
\(732\) 0 0
\(733\) 7716.12 + 5606.09i 0.388815 + 0.282491i 0.764970 0.644066i \(-0.222754\pi\)
−0.376155 + 0.926557i \(0.622754\pi\)
\(734\) 9030.03 6560.70i 0.454093 0.329918i
\(735\) 0 0
\(736\) −33605.1 −1.68301
\(737\) 5937.27 + 3373.57i 0.296747 + 0.168612i
\(738\) 0 0
\(739\) −1054.22 + 3244.54i −0.0524763 + 0.161505i −0.973860 0.227148i \(-0.927060\pi\)
0.921384 + 0.388654i \(0.127060\pi\)
\(740\) 34956.2 25397.2i 1.73651 1.26165i
\(741\) 0 0
\(742\) 118.196 + 363.769i 0.00584785 + 0.0179978i
\(743\) 757.991 + 2332.86i 0.0374266 + 0.115187i 0.968024 0.250856i \(-0.0807121\pi\)
−0.930598 + 0.366044i \(0.880712\pi\)
\(744\) 0 0
\(745\) 1605.68 1166.59i 0.0789631 0.0573700i
\(746\) 20293.2 62456.0i 0.995961 3.06525i
\(747\) 0 0
\(748\) −64978.6 + 59322.5i −3.17627 + 2.89979i
\(749\) −19538.9 −0.953185
\(750\) 0 0
\(751\) 9349.05 6792.49i 0.454263 0.330042i −0.337013 0.941500i \(-0.609417\pi\)
0.791277 + 0.611458i \(0.209417\pi\)
\(752\) −46340.5 33668.3i −2.24716 1.63266i
\(753\) 0 0
\(754\) −2306.35 7098.22i −0.111396 0.342841i
\(755\) 2573.68 + 1869.89i 0.124061 + 0.0901353i
\(756\) 0 0
\(757\) 7924.05 24387.7i 0.380455 1.17092i −0.559269 0.828986i \(-0.688918\pi\)
0.939724 0.341934i \(-0.111082\pi\)
\(758\) −37423.9 −1.79327
\(759\) 0 0
\(760\) −17520.8 −0.836243
\(761\) 1870.80 5757.72i 0.0891147 0.274267i −0.896561 0.442921i \(-0.853942\pi\)
0.985675 + 0.168654i \(0.0539422\pi\)
\(762\) 0 0
\(763\) 2964.07 + 2153.53i 0.140638 + 0.102179i
\(764\) −23318.0 71765.5i −1.10421 3.39841i
\(765\) 0 0
\(766\) −46906.5 34079.6i −2.21254 1.60750i
\(767\) −5472.43 + 3975.96i −0.257625 + 0.187175i
\(768\) 0 0
\(769\) 23509.7 1.10245 0.551224 0.834357i \(-0.314161\pi\)
0.551224 + 0.834357i \(0.314161\pi\)
\(770\) 14233.0 + 31384.3i 0.666132 + 1.46884i
\(771\) 0 0
\(772\) 17390.6 53522.9i 0.810755 2.49525i
\(773\) 4033.24 2930.32i 0.187666 0.136347i −0.489986 0.871731i \(-0.662998\pi\)
0.677651 + 0.735384i \(0.262998\pi\)
\(774\) 0 0
\(775\) 2062.52 + 6347.79i 0.0955974 + 0.294219i
\(776\) 20627.1 + 63483.6i 0.954212 + 2.93676i
\(777\) 0 0
\(778\) 12254.4 8903.35i 0.564707 0.410284i
\(779\) 1972.55 6070.88i 0.0907239 0.279219i
\(780\) 0 0
\(781\) −3359.27 + 16357.4i −0.153911 + 0.749439i
\(782\) 107473. 4.91462
\(783\) 0 0
\(784\) 19037.6 13831.6i 0.867236 0.630084i
\(785\) −35346.9 25681.0i −1.60711 1.16764i
\(786\) 0 0
\(787\) 7136.30 + 21963.3i 0.323230 + 0.994798i 0.972233 + 0.234013i \(0.0751859\pi\)
−0.649004 + 0.760785i \(0.724814\pi\)
\(788\) 45205.1 + 32843.4i 2.04361 + 1.48477i
\(789\) 0 0
\(790\) 11676.5 35936.4i 0.525860 1.61843i
\(791\) −1350.08 −0.0606868
\(792\) 0 0
\(793\) −8373.39 −0.374965
\(794\) −19623.6 + 60395.1i −0.877096 + 2.69942i
\(795\) 0 0
\(796\) 14359.0 + 10432.4i 0.639373 + 0.464531i
\(797\) −5369.64 16526.1i −0.238648 0.734483i −0.996617 0.0821918i \(-0.973808\pi\)
0.757969 0.652291i \(-0.226192\pi\)
\(798\) 0 0
\(799\) 49600.5 + 36036.8i 2.19617 + 1.59561i
\(800\) 16795.6 12202.8i 0.742270 0.539291i
\(801\) 0 0
\(802\) 38909.1 1.71313
\(803\) 4073.40 + 8981.98i 0.179013 + 0.394729i
\(804\) 0 0
\(805\) 9045.13 27838.1i 0.396024 1.21884i
\(806\) 8609.14 6254.90i 0.376233 0.273349i
\(807\) 0 0
\(808\) −20118.0 61916.9i −0.875927 2.69583i
\(809\) −1030.68 3172.12i −0.0447922 0.137856i 0.926159 0.377132i \(-0.123090\pi\)
−0.970952 + 0.239276i \(0.923090\pi\)
\(810\) 0 0
\(811\) −3942.93 + 2864.71i −0.170721 + 0.124036i −0.669865 0.742483i \(-0.733648\pi\)
0.499144 + 0.866519i \(0.333648\pi\)
\(812\) −3322.83 + 10226.6i −0.143606 + 0.441975i
\(813\) 0 0
\(814\) 29431.8 3298.53i 1.26730 0.142031i
\(815\) 9458.91 0.406541
\(816\) 0 0
\(817\) 1868.71 1357.70i 0.0800219 0.0581393i
\(818\) −30164.4 21915.7i −1.28933 0.936755i
\(819\) 0 0
\(820\) 24119.9 + 74233.5i 1.02720 + 3.16140i
\(821\) 15080.4 + 10956.5i 0.641058 + 0.465756i 0.860214 0.509934i \(-0.170330\pi\)
−0.219155 + 0.975690i \(0.570330\pi\)
\(822\) 0 0
\(823\) 5815.65 17898.7i 0.246319 0.758093i −0.749097 0.662460i \(-0.769512\pi\)
0.995417 0.0956332i \(-0.0304876\pi\)
\(824\) −47955.6 −2.02744
\(825\) 0 0
\(826\) 14014.9 0.590364
\(827\) 10812.3 33276.8i 0.454632 1.39921i −0.416935 0.908936i \(-0.636896\pi\)
0.871567 0.490277i \(-0.163104\pi\)
\(828\) 0 0
\(829\) −11513.8 8365.25i −0.482377 0.350467i 0.319868 0.947462i \(-0.396361\pi\)
−0.802245 + 0.596995i \(0.796361\pi\)
\(830\) 6410.88 + 19730.7i 0.268102 + 0.825134i
\(831\) 0 0
\(832\) −2404.31 1746.83i −0.100186 0.0727892i
\(833\) −20376.8 + 14804.6i −0.847558 + 0.615787i
\(834\) 0 0
\(835\) −22902.9 −0.949207
\(836\) −12921.2 7341.85i −0.534556 0.303736i
\(837\) 0 0
\(838\) 17571.0 54077.9i 0.724319 2.22923i
\(839\) −20512.2 + 14903.0i −0.844054 + 0.613241i −0.923500 0.383598i \(-0.874685\pi\)
0.0794461 + 0.996839i \(0.474685\pi\)
\(840\) 0 0
\(841\) −6833.02 21029.9i −0.280168 0.862269i
\(842\) 8081.88 + 24873.5i 0.330784 + 1.01805i
\(843\) 0 0
\(844\) −49154.5 + 35712.8i −2.00470 + 1.45650i
\(845\) 5840.67 17975.7i 0.237781 0.731816i
\(846\) 0 0
\(847\) −1491.68 + 16357.0i −0.0605133 + 0.663558i
\(848\) 746.276 0.0302208
\(849\) 0 0
\(850\) −53714.6 + 39025.9i −2.16752 + 1.57480i
\(851\) −20351.3 14786.1i −0.819781 0.595605i
\(852\) 0 0
\(853\) −2986.46 9191.39i −0.119876 0.368942i 0.873056 0.487619i \(-0.162135\pi\)
−0.992933 + 0.118678i \(0.962135\pi\)
\(854\) 14035.4 + 10197.3i 0.562392 + 0.408602i
\(855\) 0 0
\(856\) −25728.7 + 79184.9i −1.02733 + 3.16178i
\(857\) 38619.7 1.53935 0.769676 0.638435i \(-0.220418\pi\)
0.769676 + 0.638435i \(0.220418\pi\)
\(858\) 0 0
\(859\) −30501.9 −1.21154 −0.605769 0.795641i \(-0.707134\pi\)
−0.605769 + 0.795641i \(0.707134\pi\)
\(860\) −8728.00 + 26862.0i −0.346073 + 1.06510i
\(861\) 0 0
\(862\) 59856.8 + 43488.5i 2.36512 + 1.71836i
\(863\) 9135.64 + 28116.6i 0.360349 + 1.10904i 0.952843 + 0.303464i \(0.0981433\pi\)
−0.592494 + 0.805575i \(0.701857\pi\)
\(864\) 0 0
\(865\) −40199.7 29206.8i −1.58015 1.14805i
\(866\) 17565.4 12762.0i 0.689255 0.500773i
\(867\) 0 0
\(868\) −15331.5 −0.599522
\(869\) 13300.5 12142.7i 0.519203 0.474009i
\(870\) 0 0
\(871\) 1765.44 5433.46i 0.0686792 0.211373i
\(872\) 12630.6 9176.70i 0.490513 0.356379i
\(873\) 0 0
\(874\) 5609.60 + 17264.6i 0.217103 + 0.668173i
\(875\) −1531.94 4714.84i −0.0591876 0.182161i
\(876\) 0 0
\(877\) 18613.5 13523.5i 0.716685 0.520702i −0.168638 0.985678i \(-0.553937\pi\)
0.885323 + 0.464976i \(0.153937\pi\)
\(878\) −2866.01 + 8820.67i −0.110163 + 0.339047i
\(879\) 0 0
\(880\) 66818.2 7488.56i 2.55959 0.286863i
\(881\) −34057.4 −1.30241 −0.651205 0.758902i \(-0.725736\pi\)
−0.651205 + 0.758902i \(0.725736\pi\)
\(882\) 0 0
\(883\) −28035.4 + 20368.9i −1.06848 + 0.776295i −0.975638 0.219386i \(-0.929595\pi\)
−0.0928400 + 0.995681i \(0.529595\pi\)
\(884\) 59551.6 + 43266.7i 2.26576 + 1.64617i
\(885\) 0 0
\(886\) 7597.02 + 23381.2i 0.288067 + 0.886578i
\(887\) −4164.73 3025.86i −0.157653 0.114541i 0.506162 0.862438i \(-0.331064\pi\)
−0.663815 + 0.747897i \(0.731064\pi\)
\(888\) 0 0
\(889\) −5290.54 + 16282.6i −0.199594 + 0.614287i
\(890\) 5931.34 0.223392
\(891\) 0 0
\(892\) 89754.8 3.36907
\(893\) −3200.08 + 9848.82i −0.119918 + 0.369069i
\(894\) 0 0
\(895\) −51494.9 37413.2i −1.92322 1.39730i
\(896\) −4553.01 14012.7i −0.169760 0.522469i
\(897\) 0 0
\(898\) 38047.5 + 27643.1i 1.41388 + 1.02724i
\(899\) −2626.36 + 1908.16i −0.0974350 + 0.0707907i
\(900\) 0 0
\(901\) −798.776 −0.0295351
\(902\) −10762.6 + 52406.4i −0.397289 + 1.93453i
\(903\) 0 0
\(904\) −1777.78 + 5471.44i −0.0654072 + 0.201303i
\(905\) 8965.51 6513.82i 0.329308 0.239256i
\(906\) 0 0
\(907\) 12572.1 + 38693.0i 0.460254 + 1.41652i 0.864855 + 0.502022i \(0.167411\pi\)
−0.404601 + 0.914493i \(0.632589\pi\)
\(908\) 5996.56 + 18455.5i 0.219166 + 0.674524i
\(909\) 0 0
\(910\) 23324.4 16946.2i 0.849666 0.617318i
\(911\) −7794.32 + 23988.5i −0.283466 + 0.872418i 0.703388 + 0.710806i \(0.251669\pi\)
−0.986854 + 0.161613i \(0.948331\pi\)
\(912\) 0 0
\(913\) −1989.18 + 9685.93i −0.0721053 + 0.351104i
\(914\) −31667.2 −1.14601
\(915\) 0 0
\(916\) 63717.3 46293.3i 2.29834 1.66984i
\(917\) −15127.3 10990.6i −0.544762 0.395793i
\(918\) 0 0
\(919\) −2842.41 8748.04i −0.102027 0.314006i 0.886994 0.461780i \(-0.152789\pi\)
−0.989021 + 0.147774i \(0.952789\pi\)
\(920\) −100908. 73314.1i −3.61614 2.62728i
\(921\) 0 0
\(922\) −26647.2 + 82011.7i −0.951822 + 2.92941i
\(923\) 13970.4 0.498205
\(924\) 0 0
\(925\) 15540.6 0.552403
\(926\) 1296.47 3990.12i 0.0460093 0.141602i
\(927\) 0 0
\(928\) 8169.16 + 5935.24i 0.288972 + 0.209950i
\(929\) 10339.7 + 31822.2i 0.365160 + 1.12385i 0.949881 + 0.312612i \(0.101204\pi\)
−0.584721 + 0.811235i \(0.698796\pi\)
\(930\) 0 0
\(931\) −3441.81 2500.62i −0.121161 0.0880285i
\(932\) 76152.7 55328.1i 2.67646 1.94456i
\(933\) 0 0
\(934\) −86040.2 −3.01426
\(935\) −71518.8 + 8015.37i −2.50151 + 0.280354i
\(936\) 0 0
\(937\) −9594.58 + 29529.1i −0.334516 + 1.02953i 0.632445 + 0.774606i \(0.282052\pi\)
−0.966960 + 0.254928i \(0.917948\pi\)
\(938\) −9576.23 + 6957.54i −0.333342 + 0.242187i
\(939\) 0 0
\(940\) −39129.9 120429.i −1.35774 4.17870i
\(941\) −6687.39 20581.7i −0.231671 0.713011i −0.997546 0.0700208i \(-0.977693\pi\)
0.765874 0.642991i \(-0.222307\pi\)
\(942\) 0 0
\(943\) 36763.7 26710.4i 1.26956 0.922386i
\(944\) 8449.91 26006.1i 0.291336 0.896640i
\(945\) 0 0
\(946\) −14297.3 + 13052.8i −0.491381 + 0.448608i
\(947\) 31725.1 1.08862 0.544311 0.838883i \(-0.316791\pi\)
0.544311 + 0.838883i \(0.316791\pi\)
\(948\) 0 0
\(949\) 6675.30 4849.89i 0.228334 0.165895i
\(950\) −9072.81 6591.78i −0.309854 0.225122i
\(951\) 0 0
\(952\) −26482.3 81504.2i −0.901572 2.77475i
\(953\) 42127.7 + 30607.6i 1.43195 + 1.04037i 0.989649 + 0.143508i \(0.0458383\pi\)
0.442303 + 0.896866i \(0.354162\pi\)
\(954\) 0 0
\(955\) 19072.8 58700.0i 0.646262 1.98899i
\(956\) 2269.75 0.0767877
\(957\) 0 0
\(958\) −23862.9 −0.804777
\(959\) −11326.0 + 34857.8i −0.381372 + 1.17374i
\(960\) 0 0
\(961\) 20356.8 + 14790.0i 0.683319 + 0.496460i
\(962\) −7656.61 23564.6i −0.256610 0.789765i
\(963\) 0 0
\(964\) 6582.26 + 4782.29i 0.219917 + 0.159779i
\(965\) 37240.3 27056.6i 1.24229 0.902574i
\(966\) 0 0
\(967\) −4519.31 −0.150291 −0.0751454 0.997173i \(-0.523942\pi\)
−0.0751454 + 0.997173i \(0.523942\pi\)
\(968\) 64325.6 + 27584.2i 2.13585 + 0.915898i
\(969\) 0 0
\(970\) −30025.4 + 92408.6i −0.993873 + 3.05883i
\(971\) 20189.6 14668.6i 0.667265 0.484796i −0.201844 0.979418i \(-0.564693\pi\)
0.869109 + 0.494621i \(0.164693\pi\)
\(972\) 0 0
\(973\) 8206.64 + 25257.5i 0.270394 + 0.832186i
\(974\) −27914.2 85911.0i −0.918304 2.82625i
\(975\) 0 0
\(976\) 27384.5 19896.0i 0.898112 0.652517i
\(977\) −17549.0 + 54010.4i −0.574661 + 1.76862i 0.0626715 + 0.998034i \(0.480038\pi\)
−0.637332 + 0.770589i \(0.719962\pi\)
\(978\) 0 0
\(979\) 2457.95 + 1396.61i 0.0802416 + 0.0455935i
\(980\) 52020.8 1.69566
\(981\) 0 0
\(982\) 62000.5 45046.0i 2.01478 1.46382i
\(983\) −25471.5 18506.2i −0.826466 0.600463i 0.0920914 0.995751i \(-0.470645\pi\)
−0.918557 + 0.395288i \(0.870645\pi\)
\(984\) 0 0
\(985\) 14123.2 + 43466.9i 0.456857 + 1.40606i
\(986\) −26126.0 18981.6i −0.843835 0.613082i
\(987\) 0 0
\(988\) −3842.09 + 11824.7i −0.123718 + 0.380764i
\(989\) 16443.7 0.528696
\(990\) 0 0
\(991\) 9490.27 0.304206 0.152103 0.988365i \(-0.451395\pi\)
0.152103 + 0.988365i \(0.451395\pi\)
\(992\) −4448.99 + 13692.6i −0.142395 + 0.438246i
\(993\) 0 0
\(994\) −23417.2 17013.6i −0.747232 0.542896i
\(995\) 4486.12 + 13806.8i 0.142934 + 0.439906i
\(996\) 0 0
\(997\) −33078.7 24033.1i −1.05077 0.763427i −0.0784085 0.996921i \(-0.524984\pi\)
−0.972358 + 0.233495i \(0.924984\pi\)
\(998\) −89031.2 + 64685.0i −2.82388 + 2.05167i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.d.64.1 12
3.2 odd 2 33.4.e.c.31.3 yes 12
11.4 even 5 1089.4.a.bi.1.1 6
11.5 even 5 inner 99.4.f.d.82.1 12
11.7 odd 10 1089.4.a.bk.1.6 6
33.5 odd 10 33.4.e.c.16.3 12
33.26 odd 10 363.4.a.v.1.6 6
33.29 even 10 363.4.a.u.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.16.3 12 33.5 odd 10
33.4.e.c.31.3 yes 12 3.2 odd 2
99.4.f.d.64.1 12 1.1 even 1 trivial
99.4.f.d.82.1 12 11.5 even 5 inner
363.4.a.u.1.1 6 33.29 even 10
363.4.a.v.1.6 6 33.26 odd 10
1089.4.a.bi.1.1 6 11.4 even 5
1089.4.a.bk.1.6 6 11.7 odd 10