Newspace parameters
Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 99.f (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.84118909057\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{5})\) |
Coefficient field: | 8.0.682515625.5 |
Defining polynomial: |
\( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 33) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( 528 \nu^{7} + 2098 \nu^{6} - 15725 \nu^{5} + 33439 \nu^{4} + 71401 \nu^{3} - 332708 \nu^{2} + 319181 \nu + 440220 ) / 1168519 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 5794 \nu^{7} - 9973 \nu^{6} - 30517 \nu^{5} + 195125 \nu^{4} - 61888 \nu^{3} + 104068 \nu^{2} + 501961 \nu + 528473 ) / 1168519 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 7409 \nu^{7} - 59487 \nu^{6} + 183537 \nu^{5} - 171974 \nu^{4} - 58164 \nu^{3} - 77439 \nu^{2} + 18601 \nu - 701074 ) / 1168519 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 8817 \nu^{7} + 16927 \nu^{6} - 106264 \nu^{5} + 200474 \nu^{4} + 521745 \nu^{3} + 380907 \nu^{2} + 2179908 \nu + 2809884 ) / 1168519 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 11971 \nu^{7} + 3536 \nu^{6} + 58156 \nu^{5} - 228404 \nu^{4} - 102852 \nu^{3} - 979996 \nu^{2} - 1085964 \nu - 2305776 ) / 1168519 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 13790 \nu^{7} + 57068 \nu^{6} - 113608 \nu^{5} + 65418 \nu^{4} - 266949 \nu^{3} + 6060 \nu^{2} - 742824 \nu + 665808 ) / 1168519 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} + \beta_{5} + \beta_{3} - 5\beta_{2} + 1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} + 6\beta_{6} + 6\beta_{5} + 2\beta_{4} + 4\beta_{3} - 10\beta_{2} - 4\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( 12\beta_{7} + 10\beta_{6} + 13\beta_{5} + 13\beta_{4} + 14\beta_{3} - 13\beta_{2} - 10\beta _1 - 12 \)
|
\(\nu^{5}\) | \(=\) |
\( 43\beta_{7} + 25\beta_{5} + 49\beta_{4} + 18\beta_{2} - 25\beta _1 - 62 \)
|
\(\nu^{6}\) | \(=\) |
\( 97\beta_{7} - 92\beta_{6} + 92\beta_{4} - 97\beta_{3} + 221\beta_{2} - 44\beta _1 - 221 \)
|
\(\nu^{7}\) | \(=\) |
\( -449\beta_{6} - 260\beta_{5} - 412\beta_{3} + 896\beta_{2} - 412 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).
\(n\) | \(46\) | \(56\) |
\(\chi(n)\) | \(-1 + \beta_{2} - \beta_{3} + \beta_{7}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
−0.523388 | − | 0.380264i | 0 | −2.34280 | − | 7.21040i | −9.01441 | + | 6.54935i | 0 | 8.07696 | + | 24.8583i | −3.11499 | + | 9.58696i | 0 | 7.20851 | ||||||||||||||||||||||||||||||||
37.2 | 2.02339 | + | 1.47008i | 0 | −0.539165 | − | 1.65938i | 8.44146 | − | 6.13308i | 0 | −10.1220 | − | 31.1524i | 7.53140 | − | 23.1793i | 0 | 26.0964 | |||||||||||||||||||||||||||||||||
64.1 | 0.0404346 | − | 0.124445i | 0 | 6.45828 | + | 4.69222i | −2.06705 | − | 6.36172i | 0 | 11.6029 | + | 8.43002i | 1.69194 | − | 1.22926i | 0 | −0.875265 | |||||||||||||||||||||||||||||||||
64.2 | 1.45957 | − | 4.49208i | 0 | −11.5763 | − | 8.41069i | −1.86000 | − | 5.72450i | 0 | −8.05785 | − | 5.85437i | −24.1083 | + | 17.5157i | 0 | −28.4297 | |||||||||||||||||||||||||||||||||
82.1 | 0.0404346 | + | 0.124445i | 0 | 6.45828 | − | 4.69222i | −2.06705 | + | 6.36172i | 0 | 11.6029 | − | 8.43002i | 1.69194 | + | 1.22926i | 0 | −0.875265 | |||||||||||||||||||||||||||||||||
82.2 | 1.45957 | + | 4.49208i | 0 | −11.5763 | + | 8.41069i | −1.86000 | + | 5.72450i | 0 | −8.05785 | + | 5.85437i | −24.1083 | − | 17.5157i | 0 | −28.4297 | |||||||||||||||||||||||||||||||||
91.1 | −0.523388 | + | 0.380264i | 0 | −2.34280 | + | 7.21040i | −9.01441 | − | 6.54935i | 0 | 8.07696 | − | 24.8583i | −3.11499 | − | 9.58696i | 0 | 7.20851 | |||||||||||||||||||||||||||||||||
91.2 | 2.02339 | − | 1.47008i | 0 | −0.539165 | + | 1.65938i | 8.44146 | + | 6.13308i | 0 | −10.1220 | + | 31.1524i | 7.53140 | + | 23.1793i | 0 | 26.0964 | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.4.f.b | 8 | |
3.b | odd | 2 | 1 | 33.4.e.b | ✓ | 8 | |
11.c | even | 5 | 1 | inner | 99.4.f.b | 8 | |
11.c | even | 5 | 1 | 1089.4.a.bg | 4 | ||
11.d | odd | 10 | 1 | 1089.4.a.z | 4 | ||
33.f | even | 10 | 1 | 363.4.a.t | 4 | ||
33.h | odd | 10 | 1 | 33.4.e.b | ✓ | 8 | |
33.h | odd | 10 | 1 | 363.4.a.p | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.4.e.b | ✓ | 8 | 3.b | odd | 2 | 1 | |
33.4.e.b | ✓ | 8 | 33.h | odd | 10 | 1 | |
99.4.f.b | 8 | 1.a | even | 1 | 1 | trivial | |
99.4.f.b | 8 | 11.c | even | 5 | 1 | inner | |
363.4.a.p | 4 | 33.h | odd | 10 | 1 | ||
363.4.a.t | 4 | 33.f | even | 10 | 1 | ||
1089.4.a.z | 4 | 11.d | odd | 10 | 1 | ||
1089.4.a.bg | 4 | 11.c | even | 5 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 6T_{2}^{7} + 34T_{2}^{6} - 72T_{2}^{5} + 49T_{2}^{4} + 96T_{2}^{3} + 51T_{2}^{2} - 3T_{2} + 1 \)
acting on \(S_{4}^{\mathrm{new}}(99, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - 6 T^{7} + 34 T^{6} - 72 T^{5} + \cdots + 1 \)
$3$
\( T^{8} \)
$5$
\( T^{8} + 9 T^{7} + 34 T^{6} + \cdots + 21911761 \)
$7$
\( T^{8} - 3 T^{7} + \cdots + 14957045401 \)
$11$
\( T^{8} - 87 T^{7} + \cdots + 3138428376721 \)
$13$
\( T^{8} + \cdots + 153370490192656 \)
$17$
\( T^{8} + 36 T^{7} + \cdots + 16499324068096 \)
$19$
\( T^{8} - 324 T^{7} + \cdots + 23\!\cdots\!96 \)
$23$
\( (T^{4} - 42 T^{3} - 20241 T^{2} + \cdots - 46471644)^{2} \)
$29$
\( T^{8} + 393 T^{7} + \cdots + 26\!\cdots\!16 \)
$31$
\( T^{8} - 15 T^{7} + \cdots + 2860289355121 \)
$37$
\( T^{8} + 747 T^{7} + \cdots + 19\!\cdots\!16 \)
$41$
\( T^{8} + 159 T^{7} + \cdots + 11\!\cdots\!36 \)
$43$
\( (T^{4} + 322 T^{3} - 136785 T^{2} + \cdots + 5520039844)^{2} \)
$47$
\( T^{8} - 351 T^{7} + \cdots + 20\!\cdots\!16 \)
$53$
\( T^{8} - 531 T^{7} + \cdots + 27\!\cdots\!21 \)
$59$
\( T^{8} - 1002 T^{7} + \cdots + 36\!\cdots\!61 \)
$61$
\( T^{8} - 1449 T^{7} + \cdots + 16\!\cdots\!16 \)
$67$
\( (T^{4} + 259 T^{3} - 86025 T^{2} + \cdots + 1798706704)^{2} \)
$71$
\( T^{8} + 429 T^{7} + \cdots + 12\!\cdots\!76 \)
$73$
\( T^{8} - 2547 T^{7} + \cdots + 27\!\cdots\!56 \)
$79$
\( T^{8} - 2805 T^{7} + \cdots + 11\!\cdots\!81 \)
$83$
\( T^{8} - 2553 T^{7} + \cdots + 82\!\cdots\!21 \)
$89$
\( (T^{4} + 894 T^{3} + \cdots - 245710544796)^{2} \)
$97$
\( T^{8} - 9 T^{7} + \cdots + 98\!\cdots\!81 \)
show more
show less