Properties

Label 99.4.a.c.1.2
Level $99$
Weight $4$
Character 99.1
Self dual yes
Analytic conductor $5.841$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(1,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051 q^{2} -7.46410 q^{4} +12.8564 q^{5} +16.9282 q^{7} -11.3205 q^{8} +O(q^{10})\) \(q+0.732051 q^{2} -7.46410 q^{4} +12.8564 q^{5} +16.9282 q^{7} -11.3205 q^{8} +9.41154 q^{10} +11.0000 q^{11} +74.6410 q^{13} +12.3923 q^{14} +51.4256 q^{16} +82.7846 q^{17} -67.9230 q^{19} -95.9615 q^{20} +8.05256 q^{22} -13.3538 q^{23} +40.2872 q^{25} +54.6410 q^{26} -126.354 q^{28} -168.995 q^{29} -65.4974 q^{31} +128.210 q^{32} +60.6025 q^{34} +217.636 q^{35} +40.8564 q^{37} -49.7231 q^{38} -145.541 q^{40} -274.928 q^{41} -2.28719 q^{43} -82.1051 q^{44} -9.77568 q^{46} -71.8461 q^{47} -56.4359 q^{49} +29.4923 q^{50} -557.128 q^{52} +149.005 q^{53} +141.420 q^{55} -191.636 q^{56} -123.713 q^{58} -545.631 q^{59} +101.303 q^{61} -47.9474 q^{62} -317.549 q^{64} +959.615 q^{65} +411.641 q^{67} -617.913 q^{68} +159.321 q^{70} +470.636 q^{71} +610.600 q^{73} +29.9090 q^{74} +506.985 q^{76} +186.210 q^{77} -978.225 q^{79} +661.149 q^{80} -201.261 q^{82} -26.1539 q^{83} +1064.31 q^{85} -1.67434 q^{86} -124.526 q^{88} +352.887 q^{89} +1263.54 q^{91} +99.6743 q^{92} -52.5950 q^{94} -873.246 q^{95} +847.585 q^{97} -41.3140 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 8 q^{4} - 2 q^{5} + 20 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 8 q^{4} - 2 q^{5} + 20 q^{7} + 12 q^{8} + 50 q^{10} + 22 q^{11} + 80 q^{13} + 4 q^{14} - 8 q^{16} + 124 q^{17} + 72 q^{19} - 88 q^{20} - 22 q^{22} + 98 q^{23} + 136 q^{25} + 40 q^{26} - 128 q^{28} - 144 q^{29} - 34 q^{31} + 104 q^{32} - 52 q^{34} + 172 q^{35} + 54 q^{37} - 432 q^{38} - 492 q^{40} - 536 q^{41} - 60 q^{43} - 88 q^{44} - 314 q^{46} + 272 q^{47} - 390 q^{49} - 232 q^{50} - 560 q^{52} + 492 q^{53} - 22 q^{55} - 120 q^{56} - 192 q^{58} - 634 q^{59} + 840 q^{61} - 134 q^{62} + 224 q^{64} + 880 q^{65} + 754 q^{67} - 640 q^{68} + 284 q^{70} + 678 q^{71} - 400 q^{73} - 6 q^{74} + 432 q^{76} + 220 q^{77} + 316 q^{79} + 1544 q^{80} + 512 q^{82} - 468 q^{83} + 452 q^{85} + 156 q^{86} + 132 q^{88} + 1842 q^{89} + 1280 q^{91} + 40 q^{92} - 992 q^{94} - 2952 q^{95} + 2194 q^{97} + 870 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.732051 0.258819 0.129410 0.991591i \(-0.458692\pi\)
0.129410 + 0.991591i \(0.458692\pi\)
\(3\) 0 0
\(4\) −7.46410 −0.933013
\(5\) 12.8564 1.14991 0.574956 0.818184i \(-0.305019\pi\)
0.574956 + 0.818184i \(0.305019\pi\)
\(6\) 0 0
\(7\) 16.9282 0.914037 0.457019 0.889457i \(-0.348917\pi\)
0.457019 + 0.889457i \(0.348917\pi\)
\(8\) −11.3205 −0.500301
\(9\) 0 0
\(10\) 9.41154 0.297619
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 74.6410 1.59244 0.796219 0.605009i \(-0.206830\pi\)
0.796219 + 0.605009i \(0.206830\pi\)
\(14\) 12.3923 0.236570
\(15\) 0 0
\(16\) 51.4256 0.803525
\(17\) 82.7846 1.18107 0.590536 0.807011i \(-0.298916\pi\)
0.590536 + 0.807011i \(0.298916\pi\)
\(18\) 0 0
\(19\) −67.9230 −0.820138 −0.410069 0.912055i \(-0.634495\pi\)
−0.410069 + 0.912055i \(0.634495\pi\)
\(20\) −95.9615 −1.07288
\(21\) 0 0
\(22\) 8.05256 0.0780369
\(23\) −13.3538 −0.121064 −0.0605319 0.998166i \(-0.519280\pi\)
−0.0605319 + 0.998166i \(0.519280\pi\)
\(24\) 0 0
\(25\) 40.2872 0.322297
\(26\) 54.6410 0.412153
\(27\) 0 0
\(28\) −126.354 −0.852808
\(29\) −168.995 −1.08212 −0.541061 0.840983i \(-0.681977\pi\)
−0.541061 + 0.840983i \(0.681977\pi\)
\(30\) 0 0
\(31\) −65.4974 −0.379474 −0.189737 0.981835i \(-0.560763\pi\)
−0.189737 + 0.981835i \(0.560763\pi\)
\(32\) 128.210 0.708268
\(33\) 0 0
\(34\) 60.6025 0.305684
\(35\) 217.636 1.05106
\(36\) 0 0
\(37\) 40.8564 0.181534 0.0907669 0.995872i \(-0.471068\pi\)
0.0907669 + 0.995872i \(0.471068\pi\)
\(38\) −49.7231 −0.212267
\(39\) 0 0
\(40\) −145.541 −0.575302
\(41\) −274.928 −1.04723 −0.523617 0.851954i \(-0.675418\pi\)
−0.523617 + 0.851954i \(0.675418\pi\)
\(42\) 0 0
\(43\) −2.28719 −0.00811146 −0.00405573 0.999992i \(-0.501291\pi\)
−0.00405573 + 0.999992i \(0.501291\pi\)
\(44\) −82.1051 −0.281314
\(45\) 0 0
\(46\) −9.77568 −0.0313336
\(47\) −71.8461 −0.222975 −0.111488 0.993766i \(-0.535562\pi\)
−0.111488 + 0.993766i \(0.535562\pi\)
\(48\) 0 0
\(49\) −56.4359 −0.164536
\(50\) 29.4923 0.0834167
\(51\) 0 0
\(52\) −557.128 −1.48576
\(53\) 149.005 0.386178 0.193089 0.981181i \(-0.438149\pi\)
0.193089 + 0.981181i \(0.438149\pi\)
\(54\) 0 0
\(55\) 141.420 0.346711
\(56\) −191.636 −0.457293
\(57\) 0 0
\(58\) −123.713 −0.280074
\(59\) −545.631 −1.20398 −0.601992 0.798502i \(-0.705626\pi\)
−0.601992 + 0.798502i \(0.705626\pi\)
\(60\) 0 0
\(61\) 101.303 0.212631 0.106315 0.994332i \(-0.466095\pi\)
0.106315 + 0.994332i \(0.466095\pi\)
\(62\) −47.9474 −0.0982150
\(63\) 0 0
\(64\) −317.549 −0.620212
\(65\) 959.615 1.83116
\(66\) 0 0
\(67\) 411.641 0.750596 0.375298 0.926904i \(-0.377540\pi\)
0.375298 + 0.926904i \(0.377540\pi\)
\(68\) −617.913 −1.10195
\(69\) 0 0
\(70\) 159.321 0.272035
\(71\) 470.636 0.786679 0.393339 0.919393i \(-0.371320\pi\)
0.393339 + 0.919393i \(0.371320\pi\)
\(72\) 0 0
\(73\) 610.600 0.978977 0.489488 0.872010i \(-0.337184\pi\)
0.489488 + 0.872010i \(0.337184\pi\)
\(74\) 29.9090 0.0469844
\(75\) 0 0
\(76\) 506.985 0.765199
\(77\) 186.210 0.275593
\(78\) 0 0
\(79\) −978.225 −1.39315 −0.696576 0.717483i \(-0.745294\pi\)
−0.696576 + 0.717483i \(0.745294\pi\)
\(80\) 661.149 0.923983
\(81\) 0 0
\(82\) −201.261 −0.271044
\(83\) −26.1539 −0.0345875 −0.0172938 0.999850i \(-0.505505\pi\)
−0.0172938 + 0.999850i \(0.505505\pi\)
\(84\) 0 0
\(85\) 1064.31 1.35813
\(86\) −1.67434 −0.00209940
\(87\) 0 0
\(88\) −124.526 −0.150846
\(89\) 352.887 0.420292 0.210146 0.977670i \(-0.432606\pi\)
0.210146 + 0.977670i \(0.432606\pi\)
\(90\) 0 0
\(91\) 1263.54 1.45555
\(92\) 99.6743 0.112954
\(93\) 0 0
\(94\) −52.5950 −0.0577102
\(95\) −873.246 −0.943086
\(96\) 0 0
\(97\) 847.585 0.887208 0.443604 0.896223i \(-0.353700\pi\)
0.443604 + 0.896223i \(0.353700\pi\)
\(98\) −41.3140 −0.0425851
\(99\) 0 0
\(100\) −300.708 −0.300708
\(101\) −1293.46 −1.27430 −0.637150 0.770740i \(-0.719887\pi\)
−0.637150 + 0.770740i \(0.719887\pi\)
\(102\) 0 0
\(103\) −1725.24 −1.65042 −0.825209 0.564828i \(-0.808943\pi\)
−0.825209 + 0.564828i \(0.808943\pi\)
\(104\) −844.974 −0.796697
\(105\) 0 0
\(106\) 109.079 0.0999502
\(107\) 484.179 0.437452 0.218726 0.975786i \(-0.429810\pi\)
0.218726 + 0.975786i \(0.429810\pi\)
\(108\) 0 0
\(109\) −64.2563 −0.0564645 −0.0282323 0.999601i \(-0.508988\pi\)
−0.0282323 + 0.999601i \(0.508988\pi\)
\(110\) 103.527 0.0897355
\(111\) 0 0
\(112\) 870.543 0.734452
\(113\) 2005.08 1.66922 0.834612 0.550839i \(-0.185692\pi\)
0.834612 + 0.550839i \(0.185692\pi\)
\(114\) 0 0
\(115\) −171.682 −0.139213
\(116\) 1261.39 1.00963
\(117\) 0 0
\(118\) −399.429 −0.311614
\(119\) 1401.39 1.07954
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 74.1587 0.0550329
\(123\) 0 0
\(124\) 488.879 0.354054
\(125\) −1089.10 −0.779298
\(126\) 0 0
\(127\) 109.605 0.0765816 0.0382908 0.999267i \(-0.487809\pi\)
0.0382908 + 0.999267i \(0.487809\pi\)
\(128\) −1258.14 −0.868791
\(129\) 0 0
\(130\) 702.487 0.473940
\(131\) −1156.71 −0.771469 −0.385734 0.922610i \(-0.626052\pi\)
−0.385734 + 0.922610i \(0.626052\pi\)
\(132\) 0 0
\(133\) −1149.82 −0.749636
\(134\) 301.342 0.194269
\(135\) 0 0
\(136\) −937.164 −0.590891
\(137\) −198.323 −0.123678 −0.0618391 0.998086i \(-0.519697\pi\)
−0.0618391 + 0.998086i \(0.519697\pi\)
\(138\) 0 0
\(139\) −2900.14 −1.76969 −0.884844 0.465888i \(-0.845735\pi\)
−0.884844 + 0.465888i \(0.845735\pi\)
\(140\) −1624.46 −0.980654
\(141\) 0 0
\(142\) 344.529 0.203607
\(143\) 821.051 0.480138
\(144\) 0 0
\(145\) −2172.67 −1.24435
\(146\) 446.990 0.253378
\(147\) 0 0
\(148\) −304.956 −0.169373
\(149\) −3488.34 −1.91796 −0.958980 0.283472i \(-0.908514\pi\)
−0.958980 + 0.283472i \(0.908514\pi\)
\(150\) 0 0
\(151\) −1163.32 −0.626953 −0.313477 0.949596i \(-0.601494\pi\)
−0.313477 + 0.949596i \(0.601494\pi\)
\(152\) 768.923 0.410315
\(153\) 0 0
\(154\) 136.315 0.0713286
\(155\) −842.061 −0.436361
\(156\) 0 0
\(157\) 342.057 0.173880 0.0869398 0.996214i \(-0.472291\pi\)
0.0869398 + 0.996214i \(0.472291\pi\)
\(158\) −716.111 −0.360574
\(159\) 0 0
\(160\) 1648.32 0.814446
\(161\) −226.056 −0.110657
\(162\) 0 0
\(163\) −1394.89 −0.670285 −0.335142 0.942167i \(-0.608784\pi\)
−0.335142 + 0.942167i \(0.608784\pi\)
\(164\) 2052.09 0.977082
\(165\) 0 0
\(166\) −19.1460 −0.00895191
\(167\) −478.703 −0.221815 −0.110908 0.993831i \(-0.535376\pi\)
−0.110908 + 0.993831i \(0.535376\pi\)
\(168\) 0 0
\(169\) 3374.28 1.53586
\(170\) 779.131 0.351509
\(171\) 0 0
\(172\) 17.0718 0.00756809
\(173\) −1808.58 −0.794822 −0.397411 0.917641i \(-0.630091\pi\)
−0.397411 + 0.917641i \(0.630091\pi\)
\(174\) 0 0
\(175\) 681.990 0.294592
\(176\) 565.682 0.242272
\(177\) 0 0
\(178\) 258.331 0.108780
\(179\) 4429.85 1.84973 0.924867 0.380292i \(-0.124176\pi\)
0.924867 + 0.380292i \(0.124176\pi\)
\(180\) 0 0
\(181\) 3409.17 1.40001 0.700005 0.714138i \(-0.253181\pi\)
0.700005 + 0.714138i \(0.253181\pi\)
\(182\) 924.974 0.376723
\(183\) 0 0
\(184\) 151.172 0.0605682
\(185\) 525.267 0.208748
\(186\) 0 0
\(187\) 910.631 0.356106
\(188\) 536.267 0.208039
\(189\) 0 0
\(190\) −639.261 −0.244089
\(191\) −2923.75 −1.10762 −0.553810 0.832643i \(-0.686827\pi\)
−0.553810 + 0.832643i \(0.686827\pi\)
\(192\) 0 0
\(193\) −2484.18 −0.926505 −0.463253 0.886226i \(-0.653318\pi\)
−0.463253 + 0.886226i \(0.653318\pi\)
\(194\) 620.475 0.229626
\(195\) 0 0
\(196\) 421.244 0.153514
\(197\) 5125.67 1.85375 0.926876 0.375369i \(-0.122484\pi\)
0.926876 + 0.375369i \(0.122484\pi\)
\(198\) 0 0
\(199\) −7.69219 −0.00274013 −0.00137006 0.999999i \(-0.500436\pi\)
−0.00137006 + 0.999999i \(0.500436\pi\)
\(200\) −456.071 −0.161246
\(201\) 0 0
\(202\) −946.879 −0.329813
\(203\) −2860.78 −0.989100
\(204\) 0 0
\(205\) −3534.59 −1.20423
\(206\) −1262.96 −0.427160
\(207\) 0 0
\(208\) 3838.46 1.27956
\(209\) −747.154 −0.247281
\(210\) 0 0
\(211\) 3107.34 1.01383 0.506915 0.861996i \(-0.330786\pi\)
0.506915 + 0.861996i \(0.330786\pi\)
\(212\) −1112.19 −0.360309
\(213\) 0 0
\(214\) 354.444 0.113221
\(215\) −29.4050 −0.00932746
\(216\) 0 0
\(217\) −1108.75 −0.346853
\(218\) −47.0388 −0.0146141
\(219\) 0 0
\(220\) −1055.58 −0.323486
\(221\) 6179.13 1.88078
\(222\) 0 0
\(223\) −12.3185 −0.00369913 −0.00184957 0.999998i \(-0.500589\pi\)
−0.00184957 + 0.999998i \(0.500589\pi\)
\(224\) 2170.37 0.647383
\(225\) 0 0
\(226\) 1467.82 0.432027
\(227\) −4615.90 −1.34964 −0.674820 0.737983i \(-0.735779\pi\)
−0.674820 + 0.737983i \(0.735779\pi\)
\(228\) 0 0
\(229\) 5074.63 1.46437 0.732186 0.681105i \(-0.238500\pi\)
0.732186 + 0.681105i \(0.238500\pi\)
\(230\) −125.680 −0.0360309
\(231\) 0 0
\(232\) 1913.11 0.541386
\(233\) −211.683 −0.0595184 −0.0297592 0.999557i \(-0.509474\pi\)
−0.0297592 + 0.999557i \(0.509474\pi\)
\(234\) 0 0
\(235\) −923.683 −0.256402
\(236\) 4072.64 1.12333
\(237\) 0 0
\(238\) 1025.89 0.279406
\(239\) −4312.49 −1.16716 −0.583581 0.812055i \(-0.698349\pi\)
−0.583581 + 0.812055i \(0.698349\pi\)
\(240\) 0 0
\(241\) −996.584 −0.266372 −0.133186 0.991091i \(-0.542521\pi\)
−0.133186 + 0.991091i \(0.542521\pi\)
\(242\) 88.5781 0.0235290
\(243\) 0 0
\(244\) −756.133 −0.198387
\(245\) −725.563 −0.189202
\(246\) 0 0
\(247\) −5069.85 −1.30602
\(248\) 741.464 0.189851
\(249\) 0 0
\(250\) −797.278 −0.201697
\(251\) 276.892 0.0696306 0.0348153 0.999394i \(-0.488916\pi\)
0.0348153 + 0.999394i \(0.488916\pi\)
\(252\) 0 0
\(253\) −146.892 −0.0365021
\(254\) 80.2364 0.0198208
\(255\) 0 0
\(256\) 1619.36 0.395352
\(257\) 3235.18 0.785233 0.392617 0.919702i \(-0.371570\pi\)
0.392617 + 0.919702i \(0.371570\pi\)
\(258\) 0 0
\(259\) 691.626 0.165929
\(260\) −7162.67 −1.70850
\(261\) 0 0
\(262\) −846.772 −0.199671
\(263\) −207.944 −0.0487544 −0.0243772 0.999703i \(-0.507760\pi\)
−0.0243772 + 0.999703i \(0.507760\pi\)
\(264\) 0 0
\(265\) 1915.67 0.444071
\(266\) −841.723 −0.194020
\(267\) 0 0
\(268\) −3072.53 −0.700316
\(269\) −5033.04 −1.14078 −0.570390 0.821374i \(-0.693208\pi\)
−0.570390 + 0.821374i \(0.693208\pi\)
\(270\) 0 0
\(271\) 1487.01 0.333319 0.166660 0.986015i \(-0.446702\pi\)
0.166660 + 0.986015i \(0.446702\pi\)
\(272\) 4257.25 0.949021
\(273\) 0 0
\(274\) −145.183 −0.0320102
\(275\) 443.159 0.0971764
\(276\) 0 0
\(277\) −235.836 −0.0511552 −0.0255776 0.999673i \(-0.508142\pi\)
−0.0255776 + 0.999673i \(0.508142\pi\)
\(278\) −2123.05 −0.458029
\(279\) 0 0
\(280\) −2463.75 −0.525847
\(281\) 4915.01 1.04343 0.521717 0.853118i \(-0.325292\pi\)
0.521717 + 0.853118i \(0.325292\pi\)
\(282\) 0 0
\(283\) −5199.56 −1.09216 −0.546081 0.837733i \(-0.683881\pi\)
−0.546081 + 0.837733i \(0.683881\pi\)
\(284\) −3512.87 −0.733981
\(285\) 0 0
\(286\) 601.051 0.124269
\(287\) −4654.04 −0.957210
\(288\) 0 0
\(289\) 1940.29 0.394930
\(290\) −1590.50 −0.322060
\(291\) 0 0
\(292\) −4557.58 −0.913398
\(293\) 8880.92 1.77075 0.885373 0.464881i \(-0.153903\pi\)
0.885373 + 0.464881i \(0.153903\pi\)
\(294\) 0 0
\(295\) −7014.85 −1.38448
\(296\) −462.515 −0.0908215
\(297\) 0 0
\(298\) −2553.64 −0.496405
\(299\) −996.743 −0.192786
\(300\) 0 0
\(301\) −38.7180 −0.00741417
\(302\) −851.612 −0.162267
\(303\) 0 0
\(304\) −3492.99 −0.659001
\(305\) 1302.39 0.244507
\(306\) 0 0
\(307\) −1497.93 −0.278474 −0.139237 0.990259i \(-0.544465\pi\)
−0.139237 + 0.990259i \(0.544465\pi\)
\(308\) −1389.89 −0.257131
\(309\) 0 0
\(310\) −616.432 −0.112939
\(311\) 7484.71 1.36469 0.682345 0.731030i \(-0.260960\pi\)
0.682345 + 0.731030i \(0.260960\pi\)
\(312\) 0 0
\(313\) −658.363 −0.118891 −0.0594455 0.998232i \(-0.518933\pi\)
−0.0594455 + 0.998232i \(0.518933\pi\)
\(314\) 250.403 0.0450034
\(315\) 0 0
\(316\) 7301.57 1.29983
\(317\) −233.708 −0.0414080 −0.0207040 0.999786i \(-0.506591\pi\)
−0.0207040 + 0.999786i \(0.506591\pi\)
\(318\) 0 0
\(319\) −1858.94 −0.326272
\(320\) −4082.53 −0.713189
\(321\) 0 0
\(322\) −165.485 −0.0286401
\(323\) −5622.98 −0.968641
\(324\) 0 0
\(325\) 3007.08 0.513239
\(326\) −1021.13 −0.173482
\(327\) 0 0
\(328\) 3112.33 0.523931
\(329\) −1216.23 −0.203808
\(330\) 0 0
\(331\) 8532.95 1.41696 0.708480 0.705731i \(-0.249381\pi\)
0.708480 + 0.705731i \(0.249381\pi\)
\(332\) 195.215 0.0322706
\(333\) 0 0
\(334\) −350.435 −0.0574100
\(335\) 5292.22 0.863120
\(336\) 0 0
\(337\) 11691.2 1.88979 0.944895 0.327373i \(-0.106163\pi\)
0.944895 + 0.327373i \(0.106163\pi\)
\(338\) 2470.15 0.397509
\(339\) 0 0
\(340\) −7944.14 −1.26715
\(341\) −720.472 −0.114416
\(342\) 0 0
\(343\) −6761.73 −1.06443
\(344\) 25.8921 0.00405817
\(345\) 0 0
\(346\) −1323.98 −0.205715
\(347\) −4598.79 −0.711459 −0.355729 0.934589i \(-0.615768\pi\)
−0.355729 + 0.934589i \(0.615768\pi\)
\(348\) 0 0
\(349\) 6720.27 1.03074 0.515369 0.856968i \(-0.327655\pi\)
0.515369 + 0.856968i \(0.327655\pi\)
\(350\) 499.251 0.0762460
\(351\) 0 0
\(352\) 1410.31 0.213551
\(353\) −5738.70 −0.865270 −0.432635 0.901569i \(-0.642416\pi\)
−0.432635 + 0.901569i \(0.642416\pi\)
\(354\) 0 0
\(355\) 6050.69 0.904611
\(356\) −2633.99 −0.392138
\(357\) 0 0
\(358\) 3242.87 0.478746
\(359\) 4115.27 0.605001 0.302501 0.953149i \(-0.402179\pi\)
0.302501 + 0.953149i \(0.402179\pi\)
\(360\) 0 0
\(361\) −2245.46 −0.327374
\(362\) 2495.69 0.362349
\(363\) 0 0
\(364\) −9431.18 −1.35804
\(365\) 7850.12 1.12574
\(366\) 0 0
\(367\) 9662.99 1.37440 0.687199 0.726469i \(-0.258840\pi\)
0.687199 + 0.726469i \(0.258840\pi\)
\(368\) −686.729 −0.0972778
\(369\) 0 0
\(370\) 384.522 0.0540279
\(371\) 2522.39 0.352981
\(372\) 0 0
\(373\) −141.780 −0.0196812 −0.00984062 0.999952i \(-0.503132\pi\)
−0.00984062 + 0.999952i \(0.503132\pi\)
\(374\) 666.628 0.0921671
\(375\) 0 0
\(376\) 813.334 0.111555
\(377\) −12613.9 −1.72321
\(378\) 0 0
\(379\) −2819.73 −0.382163 −0.191082 0.981574i \(-0.561200\pi\)
−0.191082 + 0.981574i \(0.561200\pi\)
\(380\) 6518.00 0.879911
\(381\) 0 0
\(382\) −2140.34 −0.286673
\(383\) 6337.84 0.845557 0.422778 0.906233i \(-0.361055\pi\)
0.422778 + 0.906233i \(0.361055\pi\)
\(384\) 0 0
\(385\) 2393.99 0.316907
\(386\) −1818.55 −0.239797
\(387\) 0 0
\(388\) −6326.46 −0.827776
\(389\) 8805.25 1.14767 0.573836 0.818970i \(-0.305455\pi\)
0.573836 + 0.818970i \(0.305455\pi\)
\(390\) 0 0
\(391\) −1105.49 −0.142985
\(392\) 638.883 0.0823176
\(393\) 0 0
\(394\) 3752.25 0.479786
\(395\) −12576.5 −1.60200
\(396\) 0 0
\(397\) 4315.26 0.545534 0.272767 0.962080i \(-0.412061\pi\)
0.272767 + 0.962080i \(0.412061\pi\)
\(398\) −5.63108 −0.000709197 0
\(399\) 0 0
\(400\) 2071.79 0.258974
\(401\) −361.681 −0.0450411 −0.0225206 0.999746i \(-0.507169\pi\)
−0.0225206 + 0.999746i \(0.507169\pi\)
\(402\) 0 0
\(403\) −4888.79 −0.604288
\(404\) 9654.53 1.18894
\(405\) 0 0
\(406\) −2094.24 −0.255998
\(407\) 449.420 0.0547345
\(408\) 0 0
\(409\) 9220.50 1.11473 0.557365 0.830268i \(-0.311812\pi\)
0.557365 + 0.830268i \(0.311812\pi\)
\(410\) −2587.50 −0.311677
\(411\) 0 0
\(412\) 12877.4 1.53986
\(413\) −9236.55 −1.10049
\(414\) 0 0
\(415\) −336.245 −0.0397726
\(416\) 9569.74 1.12787
\(417\) 0 0
\(418\) −546.954 −0.0640010
\(419\) 14912.9 1.73876 0.869380 0.494144i \(-0.164519\pi\)
0.869380 + 0.494144i \(0.164519\pi\)
\(420\) 0 0
\(421\) −13486.0 −1.56121 −0.780603 0.625027i \(-0.785088\pi\)
−0.780603 + 0.625027i \(0.785088\pi\)
\(422\) 2274.73 0.262399
\(423\) 0 0
\(424\) −1686.81 −0.193205
\(425\) 3335.16 0.380656
\(426\) 0 0
\(427\) 1714.87 0.194352
\(428\) −3613.96 −0.408148
\(429\) 0 0
\(430\) −21.5260 −0.00241413
\(431\) −406.334 −0.0454116 −0.0227058 0.999742i \(-0.507228\pi\)
−0.0227058 + 0.999742i \(0.507228\pi\)
\(432\) 0 0
\(433\) −1766.69 −0.196078 −0.0980391 0.995183i \(-0.531257\pi\)
−0.0980391 + 0.995183i \(0.531257\pi\)
\(434\) −811.664 −0.0897722
\(435\) 0 0
\(436\) 479.615 0.0526821
\(437\) 907.033 0.0992889
\(438\) 0 0
\(439\) 7824.19 0.850634 0.425317 0.905044i \(-0.360163\pi\)
0.425317 + 0.905044i \(0.360163\pi\)
\(440\) −1600.95 −0.173460
\(441\) 0 0
\(442\) 4523.44 0.486783
\(443\) −11667.9 −1.25137 −0.625686 0.780075i \(-0.715181\pi\)
−0.625686 + 0.780075i \(0.715181\pi\)
\(444\) 0 0
\(445\) 4536.86 0.483299
\(446\) −9.01776 −0.000957406 0
\(447\) 0 0
\(448\) −5375.53 −0.566897
\(449\) −16975.3 −1.78421 −0.892107 0.451825i \(-0.850773\pi\)
−0.892107 + 0.451825i \(0.850773\pi\)
\(450\) 0 0
\(451\) −3024.21 −0.315753
\(452\) −14966.1 −1.55741
\(453\) 0 0
\(454\) −3379.07 −0.349312
\(455\) 16244.6 1.67375
\(456\) 0 0
\(457\) −16192.9 −1.65748 −0.828741 0.559632i \(-0.810943\pi\)
−0.828741 + 0.559632i \(0.810943\pi\)
\(458\) 3714.89 0.379007
\(459\) 0 0
\(460\) 1281.45 0.129887
\(461\) −8586.04 −0.867444 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(462\) 0 0
\(463\) −7917.20 −0.794694 −0.397347 0.917668i \(-0.630069\pi\)
−0.397347 + 0.917668i \(0.630069\pi\)
\(464\) −8690.67 −0.869513
\(465\) 0 0
\(466\) −154.962 −0.0154045
\(467\) 15155.0 1.50169 0.750844 0.660480i \(-0.229647\pi\)
0.750844 + 0.660480i \(0.229647\pi\)
\(468\) 0 0
\(469\) 6968.34 0.686073
\(470\) −676.183 −0.0663617
\(471\) 0 0
\(472\) 6176.82 0.602354
\(473\) −25.1591 −0.00244570
\(474\) 0 0
\(475\) −2736.43 −0.264328
\(476\) −10460.2 −1.00723
\(477\) 0 0
\(478\) −3156.96 −0.302084
\(479\) −10001.1 −0.953993 −0.476996 0.878905i \(-0.658275\pi\)
−0.476996 + 0.878905i \(0.658275\pi\)
\(480\) 0 0
\(481\) 3049.56 0.289081
\(482\) −729.550 −0.0689421
\(483\) 0 0
\(484\) −903.156 −0.0848193
\(485\) 10896.9 1.02021
\(486\) 0 0
\(487\) 7044.54 0.655480 0.327740 0.944768i \(-0.393713\pi\)
0.327740 + 0.944768i \(0.393713\pi\)
\(488\) −1146.80 −0.106379
\(489\) 0 0
\(490\) −531.149 −0.0489691
\(491\) 13326.4 1.22487 0.612437 0.790520i \(-0.290189\pi\)
0.612437 + 0.790520i \(0.290189\pi\)
\(492\) 0 0
\(493\) −13990.2 −1.27806
\(494\) −3711.38 −0.338022
\(495\) 0 0
\(496\) −3368.25 −0.304917
\(497\) 7967.02 0.719054
\(498\) 0 0
\(499\) −20069.1 −1.80044 −0.900218 0.435440i \(-0.856593\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(500\) 8129.17 0.727095
\(501\) 0 0
\(502\) 202.699 0.0180217
\(503\) −7782.35 −0.689856 −0.344928 0.938629i \(-0.612097\pi\)
−0.344928 + 0.938629i \(0.612097\pi\)
\(504\) 0 0
\(505\) −16629.3 −1.46533
\(506\) −107.532 −0.00944744
\(507\) 0 0
\(508\) −818.102 −0.0714516
\(509\) 1475.93 0.128526 0.0642628 0.997933i \(-0.479530\pi\)
0.0642628 + 0.997933i \(0.479530\pi\)
\(510\) 0 0
\(511\) 10336.4 0.894821
\(512\) 11250.6 0.971116
\(513\) 0 0
\(514\) 2368.32 0.203233
\(515\) −22180.4 −1.89784
\(516\) 0 0
\(517\) −790.307 −0.0672295
\(518\) 506.305 0.0429455
\(519\) 0 0
\(520\) −10863.3 −0.916132
\(521\) −7609.43 −0.639875 −0.319938 0.947439i \(-0.603662\pi\)
−0.319938 + 0.947439i \(0.603662\pi\)
\(522\) 0 0
\(523\) 12452.9 1.04116 0.520581 0.853812i \(-0.325715\pi\)
0.520581 + 0.853812i \(0.325715\pi\)
\(524\) 8633.82 0.719790
\(525\) 0 0
\(526\) −152.226 −0.0126186
\(527\) −5422.18 −0.448186
\(528\) 0 0
\(529\) −11988.7 −0.985344
\(530\) 1402.37 0.114934
\(531\) 0 0
\(532\) 8582.34 0.699420
\(533\) −20520.9 −1.66765
\(534\) 0 0
\(535\) 6224.81 0.503031
\(536\) −4659.99 −0.375524
\(537\) 0 0
\(538\) −3684.44 −0.295255
\(539\) −620.795 −0.0496095
\(540\) 0 0
\(541\) 9312.17 0.740039 0.370020 0.929024i \(-0.379351\pi\)
0.370020 + 0.929024i \(0.379351\pi\)
\(542\) 1088.57 0.0862693
\(543\) 0 0
\(544\) 10613.8 0.836515
\(545\) −826.105 −0.0649292
\(546\) 0 0
\(547\) −11018.6 −0.861278 −0.430639 0.902524i \(-0.641712\pi\)
−0.430639 + 0.902524i \(0.641712\pi\)
\(548\) 1480.31 0.115393
\(549\) 0 0
\(550\) 324.415 0.0251511
\(551\) 11478.6 0.887490
\(552\) 0 0
\(553\) −16559.6 −1.27339
\(554\) −172.644 −0.0132399
\(555\) 0 0
\(556\) 21646.9 1.65114
\(557\) 12018.4 0.914250 0.457125 0.889403i \(-0.348879\pi\)
0.457125 + 0.889403i \(0.348879\pi\)
\(558\) 0 0
\(559\) −170.718 −0.0129170
\(560\) 11192.1 0.844555
\(561\) 0 0
\(562\) 3598.04 0.270061
\(563\) 8763.89 0.656046 0.328023 0.944670i \(-0.393618\pi\)
0.328023 + 0.944670i \(0.393618\pi\)
\(564\) 0 0
\(565\) 25778.1 1.91946
\(566\) −3806.34 −0.282672
\(567\) 0 0
\(568\) −5327.84 −0.393576
\(569\) 10273.2 0.756895 0.378447 0.925623i \(-0.376458\pi\)
0.378447 + 0.925623i \(0.376458\pi\)
\(570\) 0 0
\(571\) 2602.62 0.190747 0.0953734 0.995442i \(-0.469596\pi\)
0.0953734 + 0.995442i \(0.469596\pi\)
\(572\) −6128.41 −0.447975
\(573\) 0 0
\(574\) −3406.99 −0.247744
\(575\) −537.988 −0.0390185
\(576\) 0 0
\(577\) −19727.0 −1.42331 −0.711653 0.702532i \(-0.752053\pi\)
−0.711653 + 0.702532i \(0.752053\pi\)
\(578\) 1420.39 0.102215
\(579\) 0 0
\(580\) 16217.0 1.16099
\(581\) −442.739 −0.0316143
\(582\) 0 0
\(583\) 1639.06 0.116437
\(584\) −6912.30 −0.489783
\(585\) 0 0
\(586\) 6501.28 0.458303
\(587\) 10116.2 0.711309 0.355654 0.934618i \(-0.384258\pi\)
0.355654 + 0.934618i \(0.384258\pi\)
\(588\) 0 0
\(589\) 4448.78 0.311221
\(590\) −5135.23 −0.358329
\(591\) 0 0
\(592\) 2101.07 0.145867
\(593\) −3130.32 −0.216774 −0.108387 0.994109i \(-0.534569\pi\)
−0.108387 + 0.994109i \(0.534569\pi\)
\(594\) 0 0
\(595\) 18016.9 1.24138
\(596\) 26037.3 1.78948
\(597\) 0 0
\(598\) −729.667 −0.0498968
\(599\) −10080.1 −0.687581 −0.343790 0.939046i \(-0.611711\pi\)
−0.343790 + 0.939046i \(0.611711\pi\)
\(600\) 0 0
\(601\) 4777.02 0.324224 0.162112 0.986772i \(-0.448169\pi\)
0.162112 + 0.986772i \(0.448169\pi\)
\(602\) −28.3435 −0.00191893
\(603\) 0 0
\(604\) 8683.16 0.584955
\(605\) 1555.63 0.104537
\(606\) 0 0
\(607\) −2571.35 −0.171941 −0.0859703 0.996298i \(-0.527399\pi\)
−0.0859703 + 0.996298i \(0.527399\pi\)
\(608\) −8708.43 −0.580877
\(609\) 0 0
\(610\) 953.414 0.0632830
\(611\) −5362.67 −0.355074
\(612\) 0 0
\(613\) 12711.9 0.837564 0.418782 0.908087i \(-0.362457\pi\)
0.418782 + 0.908087i \(0.362457\pi\)
\(614\) −1096.56 −0.0720744
\(615\) 0 0
\(616\) −2107.99 −0.137879
\(617\) −16236.1 −1.05939 −0.529693 0.848189i \(-0.677693\pi\)
−0.529693 + 0.848189i \(0.677693\pi\)
\(618\) 0 0
\(619\) 12657.3 0.821874 0.410937 0.911664i \(-0.365202\pi\)
0.410937 + 0.911664i \(0.365202\pi\)
\(620\) 6285.23 0.407131
\(621\) 0 0
\(622\) 5479.19 0.353208
\(623\) 5973.75 0.384162
\(624\) 0 0
\(625\) −19037.8 −1.21842
\(626\) −481.955 −0.0307713
\(627\) 0 0
\(628\) −2553.15 −0.162232
\(629\) 3382.28 0.214404
\(630\) 0 0
\(631\) −3949.97 −0.249201 −0.124600 0.992207i \(-0.539765\pi\)
−0.124600 + 0.992207i \(0.539765\pi\)
\(632\) 11074.0 0.696994
\(633\) 0 0
\(634\) −171.086 −0.0107172
\(635\) 1409.13 0.0880621
\(636\) 0 0
\(637\) −4212.44 −0.262014
\(638\) −1360.84 −0.0844455
\(639\) 0 0
\(640\) −16175.2 −0.999033
\(641\) 7398.27 0.455872 0.227936 0.973676i \(-0.426802\pi\)
0.227936 + 0.973676i \(0.426802\pi\)
\(642\) 0 0
\(643\) −12491.7 −0.766134 −0.383067 0.923721i \(-0.625132\pi\)
−0.383067 + 0.923721i \(0.625132\pi\)
\(644\) 1687.31 0.103244
\(645\) 0 0
\(646\) −4116.31 −0.250703
\(647\) 10472.0 0.636315 0.318158 0.948038i \(-0.396936\pi\)
0.318158 + 0.948038i \(0.396936\pi\)
\(648\) 0 0
\(649\) −6001.94 −0.363015
\(650\) 2201.33 0.132836
\(651\) 0 0
\(652\) 10411.6 0.625384
\(653\) −6337.94 −0.379820 −0.189910 0.981801i \(-0.560820\pi\)
−0.189910 + 0.981801i \(0.560820\pi\)
\(654\) 0 0
\(655\) −14871.2 −0.887121
\(656\) −14138.4 −0.841479
\(657\) 0 0
\(658\) −890.339 −0.0527493
\(659\) −15196.7 −0.898302 −0.449151 0.893456i \(-0.648274\pi\)
−0.449151 + 0.893456i \(0.648274\pi\)
\(660\) 0 0
\(661\) 2298.17 0.135232 0.0676161 0.997711i \(-0.478461\pi\)
0.0676161 + 0.997711i \(0.478461\pi\)
\(662\) 6246.55 0.366736
\(663\) 0 0
\(664\) 296.075 0.0173042
\(665\) −14782.5 −0.862016
\(666\) 0 0
\(667\) 2256.73 0.131006
\(668\) 3573.09 0.206956
\(669\) 0 0
\(670\) 3874.18 0.223392
\(671\) 1114.33 0.0641106
\(672\) 0 0
\(673\) 23199.6 1.32880 0.664398 0.747379i \(-0.268688\pi\)
0.664398 + 0.747379i \(0.268688\pi\)
\(674\) 8558.54 0.489114
\(675\) 0 0
\(676\) −25186.0 −1.43298
\(677\) 2145.38 0.121793 0.0608963 0.998144i \(-0.480604\pi\)
0.0608963 + 0.998144i \(0.480604\pi\)
\(678\) 0 0
\(679\) 14348.1 0.810941
\(680\) −12048.6 −0.679472
\(681\) 0 0
\(682\) −527.422 −0.0296129
\(683\) 29544.6 1.65519 0.827593 0.561329i \(-0.189710\pi\)
0.827593 + 0.561329i \(0.189710\pi\)
\(684\) 0 0
\(685\) −2549.72 −0.142219
\(686\) −4949.93 −0.275495
\(687\) 0 0
\(688\) −117.620 −0.00651776
\(689\) 11121.9 0.614964
\(690\) 0 0
\(691\) 27803.1 1.53065 0.765325 0.643644i \(-0.222578\pi\)
0.765325 + 0.643644i \(0.222578\pi\)
\(692\) 13499.5 0.741579
\(693\) 0 0
\(694\) −3366.55 −0.184139
\(695\) −37285.4 −2.03498
\(696\) 0 0
\(697\) −22759.8 −1.23686
\(698\) 4919.58 0.266775
\(699\) 0 0
\(700\) −5090.44 −0.274858
\(701\) 19697.8 1.06130 0.530652 0.847590i \(-0.321947\pi\)
0.530652 + 0.847590i \(0.321947\pi\)
\(702\) 0 0
\(703\) −2775.09 −0.148883
\(704\) −3493.03 −0.187001
\(705\) 0 0
\(706\) −4201.02 −0.223948
\(707\) −21896.0 −1.16476
\(708\) 0 0
\(709\) 19122.5 1.01292 0.506460 0.862263i \(-0.330954\pi\)
0.506460 + 0.862263i \(0.330954\pi\)
\(710\) 4429.41 0.234131
\(711\) 0 0
\(712\) −3994.86 −0.210272
\(713\) 874.641 0.0459405
\(714\) 0 0
\(715\) 10555.8 0.552117
\(716\) −33064.8 −1.72582
\(717\) 0 0
\(718\) 3012.59 0.156586
\(719\) −1837.44 −0.0953060 −0.0476530 0.998864i \(-0.515174\pi\)
−0.0476530 + 0.998864i \(0.515174\pi\)
\(720\) 0 0
\(721\) −29205.2 −1.50854
\(722\) −1643.79 −0.0847307
\(723\) 0 0
\(724\) −25446.4 −1.30623
\(725\) −6808.33 −0.348765
\(726\) 0 0
\(727\) −7555.46 −0.385442 −0.192721 0.981254i \(-0.561731\pi\)
−0.192721 + 0.981254i \(0.561731\pi\)
\(728\) −14303.9 −0.728211
\(729\) 0 0
\(730\) 5746.69 0.291362
\(731\) −189.344 −0.00958021
\(732\) 0 0
\(733\) 11984.6 0.603905 0.301952 0.953323i \(-0.402362\pi\)
0.301952 + 0.953323i \(0.402362\pi\)
\(734\) 7073.80 0.355720
\(735\) 0 0
\(736\) −1712.10 −0.0857456
\(737\) 4528.05 0.226313
\(738\) 0 0
\(739\) −27142.5 −1.35109 −0.675543 0.737321i \(-0.736091\pi\)
−0.675543 + 0.737321i \(0.736091\pi\)
\(740\) −3920.64 −0.194764
\(741\) 0 0
\(742\) 1846.52 0.0913582
\(743\) 29222.6 1.44290 0.721450 0.692467i \(-0.243476\pi\)
0.721450 + 0.692467i \(0.243476\pi\)
\(744\) 0 0
\(745\) −44847.6 −2.20549
\(746\) −103.790 −0.00509388
\(747\) 0 0
\(748\) −6797.04 −0.332252
\(749\) 8196.29 0.399847
\(750\) 0 0
\(751\) −8859.39 −0.430471 −0.215236 0.976562i \(-0.569052\pi\)
−0.215236 + 0.976562i \(0.569052\pi\)
\(752\) −3694.73 −0.179166
\(753\) 0 0
\(754\) −9234.05 −0.446000
\(755\) −14956.2 −0.720941
\(756\) 0 0
\(757\) 35734.4 1.71571 0.857853 0.513896i \(-0.171798\pi\)
0.857853 + 0.513896i \(0.171798\pi\)
\(758\) −2064.19 −0.0989112
\(759\) 0 0
\(760\) 9885.59 0.471826
\(761\) −34394.7 −1.63838 −0.819189 0.573524i \(-0.805576\pi\)
−0.819189 + 0.573524i \(0.805576\pi\)
\(762\) 0 0
\(763\) −1087.74 −0.0516107
\(764\) 21823.2 1.03342
\(765\) 0 0
\(766\) 4639.62 0.218846
\(767\) −40726.4 −1.91727
\(768\) 0 0
\(769\) −11602.7 −0.544091 −0.272045 0.962284i \(-0.587700\pi\)
−0.272045 + 0.962284i \(0.587700\pi\)
\(770\) 1752.53 0.0820216
\(771\) 0 0
\(772\) 18542.2 0.864441
\(773\) 12680.6 0.590026 0.295013 0.955493i \(-0.404676\pi\)
0.295013 + 0.955493i \(0.404676\pi\)
\(774\) 0 0
\(775\) −2638.71 −0.122303
\(776\) −9595.09 −0.443871
\(777\) 0 0
\(778\) 6445.89 0.297039
\(779\) 18674.0 0.858876
\(780\) 0 0
\(781\) 5176.99 0.237193
\(782\) −809.276 −0.0370072
\(783\) 0 0
\(784\) −2902.25 −0.132209
\(785\) 4397.62 0.199946
\(786\) 0 0
\(787\) −4417.61 −0.200090 −0.100045 0.994983i \(-0.531899\pi\)
−0.100045 + 0.994983i \(0.531899\pi\)
\(788\) −38258.5 −1.72957
\(789\) 0 0
\(790\) −9206.61 −0.414628
\(791\) 33942.4 1.52573
\(792\) 0 0
\(793\) 7561.33 0.338601
\(794\) 3158.99 0.141194
\(795\) 0 0
\(796\) 57.4153 0.00255657
\(797\) 27030.1 1.20132 0.600661 0.799504i \(-0.294904\pi\)
0.600661 + 0.799504i \(0.294904\pi\)
\(798\) 0 0
\(799\) −5947.75 −0.263350
\(800\) 5165.23 0.228273
\(801\) 0 0
\(802\) −264.769 −0.0116575
\(803\) 6716.60 0.295173
\(804\) 0 0
\(805\) −2906.27 −0.127246
\(806\) −3578.85 −0.156401
\(807\) 0 0
\(808\) 14642.6 0.637533
\(809\) −23647.0 −1.02767 −0.513835 0.857889i \(-0.671776\pi\)
−0.513835 + 0.857889i \(0.671776\pi\)
\(810\) 0 0
\(811\) 33486.1 1.44988 0.724941 0.688811i \(-0.241867\pi\)
0.724941 + 0.688811i \(0.241867\pi\)
\(812\) 21353.1 0.922843
\(813\) 0 0
\(814\) 328.999 0.0141663
\(815\) −17933.3 −0.770768
\(816\) 0 0
\(817\) 155.353 0.00665251
\(818\) 6749.88 0.288513
\(819\) 0 0
\(820\) 26382.5 1.12356
\(821\) −2605.69 −0.110766 −0.0553832 0.998465i \(-0.517638\pi\)
−0.0553832 + 0.998465i \(0.517638\pi\)
\(822\) 0 0
\(823\) 31976.2 1.35434 0.677169 0.735828i \(-0.263207\pi\)
0.677169 + 0.735828i \(0.263207\pi\)
\(824\) 19530.6 0.825705
\(825\) 0 0
\(826\) −6761.62 −0.284827
\(827\) 37759.0 1.58768 0.793839 0.608128i \(-0.208079\pi\)
0.793839 + 0.608128i \(0.208079\pi\)
\(828\) 0 0
\(829\) −1137.55 −0.0476584 −0.0238292 0.999716i \(-0.507586\pi\)
−0.0238292 + 0.999716i \(0.507586\pi\)
\(830\) −246.149 −0.0102939
\(831\) 0 0
\(832\) −23702.2 −0.987649
\(833\) −4672.03 −0.194329
\(834\) 0 0
\(835\) −6154.40 −0.255068
\(836\) 5576.83 0.230716
\(837\) 0 0
\(838\) 10917.0 0.450024
\(839\) 37372.2 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(840\) 0 0
\(841\) 4170.26 0.170989
\(842\) −9872.44 −0.404070
\(843\) 0 0
\(844\) −23193.5 −0.945917
\(845\) 43381.1 1.76610
\(846\) 0 0
\(847\) 2048.31 0.0830943
\(848\) 7662.68 0.310304
\(849\) 0 0
\(850\) 2441.51 0.0985211
\(851\) −545.589 −0.0219772
\(852\) 0 0
\(853\) −22490.8 −0.902780 −0.451390 0.892327i \(-0.649072\pi\)
−0.451390 + 0.892327i \(0.649072\pi\)
\(854\) 1255.37 0.0503021
\(855\) 0 0
\(856\) −5481.16 −0.218858
\(857\) −43409.5 −1.73027 −0.865135 0.501539i \(-0.832767\pi\)
−0.865135 + 0.501539i \(0.832767\pi\)
\(858\) 0 0
\(859\) 29533.2 1.17306 0.586532 0.809926i \(-0.300493\pi\)
0.586532 + 0.809926i \(0.300493\pi\)
\(860\) 219.482 0.00870264
\(861\) 0 0
\(862\) −297.457 −0.0117534
\(863\) −14351.6 −0.566090 −0.283045 0.959107i \(-0.591345\pi\)
−0.283045 + 0.959107i \(0.591345\pi\)
\(864\) 0 0
\(865\) −23251.9 −0.913975
\(866\) −1293.31 −0.0507488
\(867\) 0 0
\(868\) 8275.85 0.323618
\(869\) −10760.5 −0.420051
\(870\) 0 0
\(871\) 30725.3 1.19528
\(872\) 727.413 0.0282492
\(873\) 0 0
\(874\) 663.994 0.0256979
\(875\) −18436.5 −0.712307
\(876\) 0 0
\(877\) −43248.7 −1.66523 −0.832614 0.553854i \(-0.813156\pi\)
−0.832614 + 0.553854i \(0.813156\pi\)
\(878\) 5727.71 0.220160
\(879\) 0 0
\(880\) 7272.64 0.278591
\(881\) −3816.13 −0.145935 −0.0729675 0.997334i \(-0.523247\pi\)
−0.0729675 + 0.997334i \(0.523247\pi\)
\(882\) 0 0
\(883\) 48787.6 1.85938 0.929690 0.368343i \(-0.120075\pi\)
0.929690 + 0.368343i \(0.120075\pi\)
\(884\) −46121.6 −1.75479
\(885\) 0 0
\(886\) −8541.49 −0.323879
\(887\) −41495.1 −1.57077 −0.785384 0.619009i \(-0.787534\pi\)
−0.785384 + 0.619009i \(0.787534\pi\)
\(888\) 0 0
\(889\) 1855.41 0.0699984
\(890\) 3321.21 0.125087
\(891\) 0 0
\(892\) 91.9464 0.00345134
\(893\) 4880.01 0.182870
\(894\) 0 0
\(895\) 56951.9 2.12703
\(896\) −21298.1 −0.794107
\(897\) 0 0
\(898\) −12426.7 −0.461788
\(899\) 11068.7 0.410637
\(900\) 0 0
\(901\) 12335.3 0.456104
\(902\) −2213.88 −0.0817228
\(903\) 0 0
\(904\) −22698.5 −0.835113
\(905\) 43829.7 1.60989
\(906\) 0 0
\(907\) 21615.3 0.791316 0.395658 0.918398i \(-0.370517\pi\)
0.395658 + 0.918398i \(0.370517\pi\)
\(908\) 34453.6 1.25923
\(909\) 0 0
\(910\) 11891.8 0.433199
\(911\) −3646.35 −0.132611 −0.0663057 0.997799i \(-0.521121\pi\)
−0.0663057 + 0.997799i \(0.521121\pi\)
\(912\) 0 0
\(913\) −287.693 −0.0104285
\(914\) −11854.0 −0.428988
\(915\) 0 0
\(916\) −37877.6 −1.36628
\(917\) −19581.1 −0.705151
\(918\) 0 0
\(919\) 31280.0 1.12278 0.561388 0.827553i \(-0.310267\pi\)
0.561388 + 0.827553i \(0.310267\pi\)
\(920\) 1943.53 0.0696482
\(921\) 0 0
\(922\) −6285.42 −0.224511
\(923\) 35128.7 1.25274
\(924\) 0 0
\(925\) 1645.99 0.0585079
\(926\) −5795.79 −0.205682
\(927\) 0 0
\(928\) −21666.9 −0.766433
\(929\) −6557.92 −0.231602 −0.115801 0.993272i \(-0.536944\pi\)
−0.115801 + 0.993272i \(0.536944\pi\)
\(930\) 0 0
\(931\) 3833.30 0.134942
\(932\) 1580.02 0.0555314
\(933\) 0 0
\(934\) 11094.2 0.388665
\(935\) 11707.4 0.409491
\(936\) 0 0
\(937\) −24473.3 −0.853265 −0.426632 0.904425i \(-0.640300\pi\)
−0.426632 + 0.904425i \(0.640300\pi\)
\(938\) 5101.18 0.177569
\(939\) 0 0
\(940\) 6894.46 0.239226
\(941\) −15420.8 −0.534224 −0.267112 0.963665i \(-0.586069\pi\)
−0.267112 + 0.963665i \(0.586069\pi\)
\(942\) 0 0
\(943\) 3671.34 0.126782
\(944\) −28059.4 −0.967432
\(945\) 0 0
\(946\) −18.4177 −0.000632993 0
\(947\) 33141.2 1.13722 0.568608 0.822609i \(-0.307482\pi\)
0.568608 + 0.822609i \(0.307482\pi\)
\(948\) 0 0
\(949\) 45575.8 1.55896
\(950\) −2003.20 −0.0684132
\(951\) 0 0
\(952\) −15864.5 −0.540096
\(953\) 20735.4 0.704813 0.352406 0.935847i \(-0.385363\pi\)
0.352406 + 0.935847i \(0.385363\pi\)
\(954\) 0 0
\(955\) −37589.0 −1.27367
\(956\) 32188.9 1.08898
\(957\) 0 0
\(958\) −7321.32 −0.246911
\(959\) −3357.26 −0.113046
\(960\) 0 0
\(961\) −25501.1 −0.856000
\(962\) 2232.44 0.0748198
\(963\) 0 0
\(964\) 7438.60 0.248528
\(965\) −31937.7 −1.06540
\(966\) 0 0
\(967\) −8178.87 −0.271990 −0.135995 0.990710i \(-0.543423\pi\)
−0.135995 + 0.990710i \(0.543423\pi\)
\(968\) −1369.78 −0.0454819
\(969\) 0 0
\(970\) 7977.08 0.264050
\(971\) 20576.1 0.680039 0.340020 0.940418i \(-0.389566\pi\)
0.340020 + 0.940418i \(0.389566\pi\)
\(972\) 0 0
\(973\) −49094.1 −1.61756
\(974\) 5156.96 0.169651
\(975\) 0 0
\(976\) 5209.55 0.170854
\(977\) −14541.9 −0.476188 −0.238094 0.971242i \(-0.576523\pi\)
−0.238094 + 0.971242i \(0.576523\pi\)
\(978\) 0 0
\(979\) 3881.76 0.126723
\(980\) 5415.68 0.176528
\(981\) 0 0
\(982\) 9755.62 0.317021
\(983\) 29285.7 0.950223 0.475111 0.879926i \(-0.342408\pi\)
0.475111 + 0.879926i \(0.342408\pi\)
\(984\) 0 0
\(985\) 65897.7 2.13165
\(986\) −10241.5 −0.330787
\(987\) 0 0
\(988\) 37841.8 1.21853
\(989\) 30.5427 0.000982004 0
\(990\) 0 0
\(991\) −38085.9 −1.22083 −0.610413 0.792083i \(-0.708997\pi\)
−0.610413 + 0.792083i \(0.708997\pi\)
\(992\) −8397.44 −0.268769
\(993\) 0 0
\(994\) 5832.26 0.186105
\(995\) −98.8940 −0.00315090
\(996\) 0 0
\(997\) −26803.6 −0.851434 −0.425717 0.904856i \(-0.639978\pi\)
−0.425717 + 0.904856i \(0.639978\pi\)
\(998\) −14691.6 −0.465987
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.a.c.1.2 2
3.2 odd 2 11.4.a.a.1.1 2
4.3 odd 2 1584.4.a.bc.1.2 2
5.4 even 2 2475.4.a.q.1.1 2
11.10 odd 2 1089.4.a.v.1.1 2
12.11 even 2 176.4.a.i.1.1 2
15.2 even 4 275.4.b.c.199.2 4
15.8 even 4 275.4.b.c.199.3 4
15.14 odd 2 275.4.a.b.1.2 2
21.20 even 2 539.4.a.e.1.1 2
24.5 odd 2 704.4.a.p.1.1 2
24.11 even 2 704.4.a.n.1.2 2
33.2 even 10 121.4.c.f.81.1 8
33.5 odd 10 121.4.c.c.3.2 8
33.8 even 10 121.4.c.f.9.2 8
33.14 odd 10 121.4.c.c.9.1 8
33.17 even 10 121.4.c.f.3.1 8
33.20 odd 10 121.4.c.c.81.2 8
33.26 odd 10 121.4.c.c.27.1 8
33.29 even 10 121.4.c.f.27.2 8
33.32 even 2 121.4.a.c.1.2 2
39.38 odd 2 1859.4.a.a.1.2 2
132.131 odd 2 1936.4.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.1 2 3.2 odd 2
99.4.a.c.1.2 2 1.1 even 1 trivial
121.4.a.c.1.2 2 33.32 even 2
121.4.c.c.3.2 8 33.5 odd 10
121.4.c.c.9.1 8 33.14 odd 10
121.4.c.c.27.1 8 33.26 odd 10
121.4.c.c.81.2 8 33.20 odd 10
121.4.c.f.3.1 8 33.17 even 10
121.4.c.f.9.2 8 33.8 even 10
121.4.c.f.27.2 8 33.29 even 10
121.4.c.f.81.1 8 33.2 even 10
176.4.a.i.1.1 2 12.11 even 2
275.4.a.b.1.2 2 15.14 odd 2
275.4.b.c.199.2 4 15.2 even 4
275.4.b.c.199.3 4 15.8 even 4
539.4.a.e.1.1 2 21.20 even 2
704.4.a.n.1.2 2 24.11 even 2
704.4.a.p.1.1 2 24.5 odd 2
1089.4.a.v.1.1 2 11.10 odd 2
1584.4.a.bc.1.2 2 4.3 odd 2
1859.4.a.a.1.2 2 39.38 odd 2
1936.4.a.w.1.1 2 132.131 odd 2
2475.4.a.q.1.1 2 5.4 even 2