Properties

Label 99.4.a.c.1.1
Level $99$
Weight $4$
Character 99.1
Self dual yes
Analytic conductor $5.841$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(1,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{2} -0.535898 q^{4} -14.8564 q^{5} +3.07180 q^{7} +23.3205 q^{8} +O(q^{10})\) \(q-2.73205 q^{2} -0.535898 q^{4} -14.8564 q^{5} +3.07180 q^{7} +23.3205 q^{8} +40.5885 q^{10} +11.0000 q^{11} +5.35898 q^{13} -8.39230 q^{14} -59.4256 q^{16} +41.2154 q^{17} +139.923 q^{19} +7.96152 q^{20} -30.0526 q^{22} +111.354 q^{23} +95.7128 q^{25} -14.6410 q^{26} -1.64617 q^{28} +24.9948 q^{29} +31.4974 q^{31} -24.2102 q^{32} -112.603 q^{34} -45.6359 q^{35} +13.1436 q^{37} -382.277 q^{38} -346.459 q^{40} -261.072 q^{41} -57.7128 q^{43} -5.89488 q^{44} -304.224 q^{46} +343.846 q^{47} -333.564 q^{49} -261.492 q^{50} -2.87187 q^{52} +342.995 q^{53} -163.420 q^{55} +71.6359 q^{56} -68.2872 q^{58} -88.3693 q^{59} +738.697 q^{61} -86.0526 q^{62} +541.549 q^{64} -79.6152 q^{65} +342.359 q^{67} -22.0873 q^{68} +124.679 q^{70} +207.364 q^{71} -1010.60 q^{73} -35.9090 q^{74} -74.9845 q^{76} +33.7898 q^{77} +1294.23 q^{79} +882.851 q^{80} +713.261 q^{82} -441.846 q^{83} -612.313 q^{85} +157.674 q^{86} +256.526 q^{88} +1489.11 q^{89} +16.4617 q^{91} -59.6743 q^{92} -939.405 q^{94} -2078.75 q^{95} +1346.42 q^{97} +911.314 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 8 q^{4} - 2 q^{5} + 20 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 8 q^{4} - 2 q^{5} + 20 q^{7} + 12 q^{8} + 50 q^{10} + 22 q^{11} + 80 q^{13} + 4 q^{14} - 8 q^{16} + 124 q^{17} + 72 q^{19} - 88 q^{20} - 22 q^{22} + 98 q^{23} + 136 q^{25} + 40 q^{26} - 128 q^{28} - 144 q^{29} - 34 q^{31} + 104 q^{32} - 52 q^{34} + 172 q^{35} + 54 q^{37} - 432 q^{38} - 492 q^{40} - 536 q^{41} - 60 q^{43} - 88 q^{44} - 314 q^{46} + 272 q^{47} - 390 q^{49} - 232 q^{50} - 560 q^{52} + 492 q^{53} - 22 q^{55} - 120 q^{56} - 192 q^{58} - 634 q^{59} + 840 q^{61} - 134 q^{62} + 224 q^{64} + 880 q^{65} + 754 q^{67} - 640 q^{68} + 284 q^{70} + 678 q^{71} - 400 q^{73} - 6 q^{74} + 432 q^{76} + 220 q^{77} + 316 q^{79} + 1544 q^{80} + 512 q^{82} - 468 q^{83} + 452 q^{85} + 156 q^{86} + 132 q^{88} + 1842 q^{89} + 1280 q^{91} + 40 q^{92} - 992 q^{94} - 2952 q^{95} + 2194 q^{97} + 870 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73205 −0.965926 −0.482963 0.875641i \(-0.660439\pi\)
−0.482963 + 0.875641i \(0.660439\pi\)
\(3\) 0 0
\(4\) −0.535898 −0.0669873
\(5\) −14.8564 −1.32880 −0.664399 0.747378i \(-0.731312\pi\)
−0.664399 + 0.747378i \(0.731312\pi\)
\(6\) 0 0
\(7\) 3.07180 0.165861 0.0829307 0.996555i \(-0.473572\pi\)
0.0829307 + 0.996555i \(0.473572\pi\)
\(8\) 23.3205 1.03063
\(9\) 0 0
\(10\) 40.5885 1.28352
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 5.35898 0.114332 0.0571659 0.998365i \(-0.481794\pi\)
0.0571659 + 0.998365i \(0.481794\pi\)
\(14\) −8.39230 −0.160210
\(15\) 0 0
\(16\) −59.4256 −0.928525
\(17\) 41.2154 0.588012 0.294006 0.955804i \(-0.405011\pi\)
0.294006 + 0.955804i \(0.405011\pi\)
\(18\) 0 0
\(19\) 139.923 1.68950 0.844751 0.535159i \(-0.179748\pi\)
0.844751 + 0.535159i \(0.179748\pi\)
\(20\) 7.96152 0.0890125
\(21\) 0 0
\(22\) −30.0526 −0.291238
\(23\) 111.354 1.00952 0.504758 0.863261i \(-0.331582\pi\)
0.504758 + 0.863261i \(0.331582\pi\)
\(24\) 0 0
\(25\) 95.7128 0.765703
\(26\) −14.6410 −0.110436
\(27\) 0 0
\(28\) −1.64617 −0.0111106
\(29\) 24.9948 0.160049 0.0800246 0.996793i \(-0.474500\pi\)
0.0800246 + 0.996793i \(0.474500\pi\)
\(30\) 0 0
\(31\) 31.4974 0.182487 0.0912436 0.995829i \(-0.470916\pi\)
0.0912436 + 0.995829i \(0.470916\pi\)
\(32\) −24.2102 −0.133744
\(33\) 0 0
\(34\) −112.603 −0.567976
\(35\) −45.6359 −0.220396
\(36\) 0 0
\(37\) 13.1436 0.0583998 0.0291999 0.999574i \(-0.490704\pi\)
0.0291999 + 0.999574i \(0.490704\pi\)
\(38\) −382.277 −1.63193
\(39\) 0 0
\(40\) −346.459 −1.36950
\(41\) −261.072 −0.994453 −0.497226 0.867621i \(-0.665648\pi\)
−0.497226 + 0.867621i \(0.665648\pi\)
\(42\) 0 0
\(43\) −57.7128 −0.204677 −0.102339 0.994750i \(-0.532633\pi\)
−0.102339 + 0.994750i \(0.532633\pi\)
\(44\) −5.89488 −0.0201974
\(45\) 0 0
\(46\) −304.224 −0.975118
\(47\) 343.846 1.06713 0.533565 0.845759i \(-0.320852\pi\)
0.533565 + 0.845759i \(0.320852\pi\)
\(48\) 0 0
\(49\) −333.564 −0.972490
\(50\) −261.492 −0.739612
\(51\) 0 0
\(52\) −2.87187 −0.00765879
\(53\) 342.995 0.888943 0.444471 0.895793i \(-0.353392\pi\)
0.444471 + 0.895793i \(0.353392\pi\)
\(54\) 0 0
\(55\) −163.420 −0.400647
\(56\) 71.6359 0.170942
\(57\) 0 0
\(58\) −68.2872 −0.154596
\(59\) −88.3693 −0.194995 −0.0974975 0.995236i \(-0.531084\pi\)
−0.0974975 + 0.995236i \(0.531084\pi\)
\(60\) 0 0
\(61\) 738.697 1.55050 0.775250 0.631654i \(-0.217624\pi\)
0.775250 + 0.631654i \(0.217624\pi\)
\(62\) −86.0526 −0.176269
\(63\) 0 0
\(64\) 541.549 1.05771
\(65\) −79.6152 −0.151924
\(66\) 0 0
\(67\) 342.359 0.624266 0.312133 0.950038i \(-0.398957\pi\)
0.312133 + 0.950038i \(0.398957\pi\)
\(68\) −22.0873 −0.0393893
\(69\) 0 0
\(70\) 124.679 0.212886
\(71\) 207.364 0.346614 0.173307 0.984868i \(-0.444555\pi\)
0.173307 + 0.984868i \(0.444555\pi\)
\(72\) 0 0
\(73\) −1010.60 −1.62030 −0.810149 0.586224i \(-0.800614\pi\)
−0.810149 + 0.586224i \(0.800614\pi\)
\(74\) −35.9090 −0.0564099
\(75\) 0 0
\(76\) −74.9845 −0.113175
\(77\) 33.7898 0.0500091
\(78\) 0 0
\(79\) 1294.23 1.84319 0.921593 0.388157i \(-0.126888\pi\)
0.921593 + 0.388157i \(0.126888\pi\)
\(80\) 882.851 1.23382
\(81\) 0 0
\(82\) 713.261 0.960568
\(83\) −441.846 −0.584324 −0.292162 0.956369i \(-0.594375\pi\)
−0.292162 + 0.956369i \(0.594375\pi\)
\(84\) 0 0
\(85\) −612.313 −0.781349
\(86\) 157.674 0.197703
\(87\) 0 0
\(88\) 256.526 0.310747
\(89\) 1489.11 1.77355 0.886773 0.462205i \(-0.152942\pi\)
0.886773 + 0.462205i \(0.152942\pi\)
\(90\) 0 0
\(91\) 16.4617 0.0189633
\(92\) −59.6743 −0.0676248
\(93\) 0 0
\(94\) −939.405 −1.03077
\(95\) −2078.75 −2.24501
\(96\) 0 0
\(97\) 1346.42 1.40936 0.704679 0.709526i \(-0.251091\pi\)
0.704679 + 0.709526i \(0.251091\pi\)
\(98\) 911.314 0.939353
\(99\) 0 0
\(100\) −51.2923 −0.0512923
\(101\) 161.461 0.159069 0.0795347 0.996832i \(-0.474657\pi\)
0.0795347 + 0.996832i \(0.474657\pi\)
\(102\) 0 0
\(103\) −34.7592 −0.0332517 −0.0166259 0.999862i \(-0.505292\pi\)
−0.0166259 + 0.999862i \(0.505292\pi\)
\(104\) 124.974 0.117834
\(105\) 0 0
\(106\) −937.079 −0.858653
\(107\) −832.179 −0.751867 −0.375934 0.926647i \(-0.622678\pi\)
−0.375934 + 0.926647i \(0.622678\pi\)
\(108\) 0 0
\(109\) 1044.26 0.917629 0.458815 0.888532i \(-0.348274\pi\)
0.458815 + 0.888532i \(0.348274\pi\)
\(110\) 446.473 0.386996
\(111\) 0 0
\(112\) −182.543 −0.154007
\(113\) −295.082 −0.245654 −0.122827 0.992428i \(-0.539196\pi\)
−0.122827 + 0.992428i \(0.539196\pi\)
\(114\) 0 0
\(115\) −1654.32 −1.34144
\(116\) −13.3947 −0.0107213
\(117\) 0 0
\(118\) 241.429 0.188351
\(119\) 126.605 0.0975285
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −2018.16 −1.49767
\(123\) 0 0
\(124\) −16.8794 −0.0122243
\(125\) 435.102 0.311334
\(126\) 0 0
\(127\) −1317.60 −0.920618 −0.460309 0.887759i \(-0.652261\pi\)
−0.460309 + 0.887759i \(0.652261\pi\)
\(128\) −1285.86 −0.887928
\(129\) 0 0
\(130\) 217.513 0.146747
\(131\) 1600.71 1.06759 0.533797 0.845612i \(-0.320765\pi\)
0.533797 + 0.845612i \(0.320765\pi\)
\(132\) 0 0
\(133\) 429.815 0.280223
\(134\) −935.342 −0.602994
\(135\) 0 0
\(136\) 961.164 0.606023
\(137\) −1611.68 −1.00507 −0.502536 0.864556i \(-0.667600\pi\)
−0.502536 + 0.864556i \(0.667600\pi\)
\(138\) 0 0
\(139\) −31.8619 −0.0194424 −0.00972120 0.999953i \(-0.503094\pi\)
−0.00972120 + 0.999953i \(0.503094\pi\)
\(140\) 24.4562 0.0147637
\(141\) 0 0
\(142\) −566.529 −0.334803
\(143\) 58.9488 0.0344724
\(144\) 0 0
\(145\) −371.334 −0.212673
\(146\) 2761.01 1.56509
\(147\) 0 0
\(148\) −7.04363 −0.00391205
\(149\) 2428.34 1.33515 0.667576 0.744542i \(-0.267332\pi\)
0.667576 + 0.744542i \(0.267332\pi\)
\(150\) 0 0
\(151\) −2576.68 −1.38866 −0.694328 0.719659i \(-0.744298\pi\)
−0.694328 + 0.719659i \(0.744298\pi\)
\(152\) 3263.08 1.74125
\(153\) 0 0
\(154\) −92.3154 −0.0483051
\(155\) −467.939 −0.242489
\(156\) 0 0
\(157\) 2475.94 1.25861 0.629305 0.777158i \(-0.283340\pi\)
0.629305 + 0.777158i \(0.283340\pi\)
\(158\) −3535.89 −1.78038
\(159\) 0 0
\(160\) 359.677 0.177719
\(161\) 342.056 0.167440
\(162\) 0 0
\(163\) −2725.11 −1.30949 −0.654745 0.755850i \(-0.727224\pi\)
−0.654745 + 0.755850i \(0.727224\pi\)
\(164\) 139.908 0.0666157
\(165\) 0 0
\(166\) 1207.15 0.564414
\(167\) −2737.30 −1.26837 −0.634187 0.773180i \(-0.718665\pi\)
−0.634187 + 0.773180i \(0.718665\pi\)
\(168\) 0 0
\(169\) −2168.28 −0.986928
\(170\) 1672.87 0.754725
\(171\) 0 0
\(172\) 30.9282 0.0137108
\(173\) −2307.42 −1.01404 −0.507022 0.861933i \(-0.669254\pi\)
−0.507022 + 0.861933i \(0.669254\pi\)
\(174\) 0 0
\(175\) 294.010 0.127001
\(176\) −653.682 −0.279961
\(177\) 0 0
\(178\) −4068.33 −1.71311
\(179\) 1312.15 0.547905 0.273953 0.961743i \(-0.411669\pi\)
0.273953 + 0.961743i \(0.411669\pi\)
\(180\) 0 0
\(181\) −803.174 −0.329831 −0.164916 0.986308i \(-0.552735\pi\)
−0.164916 + 0.986308i \(0.552735\pi\)
\(182\) −44.9742 −0.0183171
\(183\) 0 0
\(184\) 2596.83 1.04044
\(185\) −195.267 −0.0776015
\(186\) 0 0
\(187\) 453.369 0.177292
\(188\) −184.267 −0.0714842
\(189\) 0 0
\(190\) 5679.26 2.16851
\(191\) −1718.25 −0.650932 −0.325466 0.945554i \(-0.605521\pi\)
−0.325466 + 0.945554i \(0.605521\pi\)
\(192\) 0 0
\(193\) 1340.18 0.499837 0.249919 0.968267i \(-0.419596\pi\)
0.249919 + 0.968267i \(0.419596\pi\)
\(194\) −3678.48 −1.36134
\(195\) 0 0
\(196\) 178.756 0.0651445
\(197\) 3518.33 1.27244 0.636220 0.771508i \(-0.280497\pi\)
0.636220 + 0.771508i \(0.280497\pi\)
\(198\) 0 0
\(199\) 823.692 0.293417 0.146709 0.989180i \(-0.453132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(200\) 2232.07 0.789156
\(201\) 0 0
\(202\) −441.121 −0.153649
\(203\) 76.7791 0.0265460
\(204\) 0 0
\(205\) 3878.59 1.32143
\(206\) 94.9639 0.0321187
\(207\) 0 0
\(208\) −318.461 −0.106160
\(209\) 1539.15 0.509404
\(210\) 0 0
\(211\) −107.343 −0.0350228 −0.0175114 0.999847i \(-0.505574\pi\)
−0.0175114 + 0.999847i \(0.505574\pi\)
\(212\) −183.810 −0.0595479
\(213\) 0 0
\(214\) 2273.56 0.726248
\(215\) 857.405 0.271975
\(216\) 0 0
\(217\) 96.7537 0.0302676
\(218\) −2852.96 −0.886362
\(219\) 0 0
\(220\) 87.5768 0.0268383
\(221\) 220.873 0.0672285
\(222\) 0 0
\(223\) −3933.68 −1.18125 −0.590625 0.806946i \(-0.701119\pi\)
−0.590625 + 0.806946i \(0.701119\pi\)
\(224\) −74.3689 −0.0221830
\(225\) 0 0
\(226\) 806.178 0.237284
\(227\) 1771.90 0.518085 0.259042 0.965866i \(-0.416593\pi\)
0.259042 + 0.965866i \(0.416593\pi\)
\(228\) 0 0
\(229\) 1915.37 0.552713 0.276356 0.961055i \(-0.410873\pi\)
0.276356 + 0.961055i \(0.410873\pi\)
\(230\) 4519.68 1.29573
\(231\) 0 0
\(232\) 582.892 0.164952
\(233\) −4396.32 −1.23610 −0.618052 0.786137i \(-0.712078\pi\)
−0.618052 + 0.786137i \(0.712078\pi\)
\(234\) 0 0
\(235\) −5108.32 −1.41800
\(236\) 47.3570 0.0130622
\(237\) 0 0
\(238\) −345.892 −0.0942053
\(239\) 4084.49 1.10546 0.552728 0.833362i \(-0.313587\pi\)
0.552728 + 0.833362i \(0.313587\pi\)
\(240\) 0 0
\(241\) 3908.58 1.04471 0.522353 0.852730i \(-0.325054\pi\)
0.522353 + 0.852730i \(0.325054\pi\)
\(242\) −330.578 −0.0878114
\(243\) 0 0
\(244\) −395.867 −0.103864
\(245\) 4955.56 1.29224
\(246\) 0 0
\(247\) 749.845 0.193164
\(248\) 734.536 0.188077
\(249\) 0 0
\(250\) −1188.72 −0.300725
\(251\) −1094.89 −0.275335 −0.137667 0.990479i \(-0.543960\pi\)
−0.137667 + 0.990479i \(0.543960\pi\)
\(252\) 0 0
\(253\) 1224.89 0.304381
\(254\) 3599.76 0.889249
\(255\) 0 0
\(256\) −819.364 −0.200040
\(257\) −783.179 −0.190091 −0.0950454 0.995473i \(-0.530300\pi\)
−0.0950454 + 0.995473i \(0.530300\pi\)
\(258\) 0 0
\(259\) 40.3744 0.00968628
\(260\) 42.6657 0.0101770
\(261\) 0 0
\(262\) −4373.23 −1.03122
\(263\) −6180.06 −1.44897 −0.724484 0.689292i \(-0.757922\pi\)
−0.724484 + 0.689292i \(0.757922\pi\)
\(264\) 0 0
\(265\) −5095.67 −1.18122
\(266\) −1174.28 −0.270675
\(267\) 0 0
\(268\) −183.470 −0.0418179
\(269\) −986.965 −0.223704 −0.111852 0.993725i \(-0.535678\pi\)
−0.111852 + 0.993725i \(0.535678\pi\)
\(270\) 0 0
\(271\) 4576.99 1.02595 0.512975 0.858404i \(-0.328543\pi\)
0.512975 + 0.858404i \(0.328543\pi\)
\(272\) −2449.25 −0.545984
\(273\) 0 0
\(274\) 4403.18 0.970825
\(275\) 1052.84 0.230868
\(276\) 0 0
\(277\) 567.836 0.123169 0.0615847 0.998102i \(-0.480385\pi\)
0.0615847 + 0.998102i \(0.480385\pi\)
\(278\) 87.0484 0.0187799
\(279\) 0 0
\(280\) −1064.25 −0.227147
\(281\) −5311.01 −1.12750 −0.563752 0.825944i \(-0.690643\pi\)
−0.563752 + 0.825944i \(0.690643\pi\)
\(282\) 0 0
\(283\) −4728.44 −0.993204 −0.496602 0.867978i \(-0.665419\pi\)
−0.496602 + 0.867978i \(0.665419\pi\)
\(284\) −111.126 −0.0232187
\(285\) 0 0
\(286\) −161.051 −0.0332977
\(287\) −801.960 −0.164941
\(288\) 0 0
\(289\) −3214.29 −0.654242
\(290\) 1014.50 0.205426
\(291\) 0 0
\(292\) 541.579 0.108539
\(293\) −2328.92 −0.464358 −0.232179 0.972673i \(-0.574585\pi\)
−0.232179 + 0.972673i \(0.574585\pi\)
\(294\) 0 0
\(295\) 1312.85 0.259109
\(296\) 306.515 0.0601886
\(297\) 0 0
\(298\) −6634.36 −1.28966
\(299\) 596.743 0.115420
\(300\) 0 0
\(301\) −177.282 −0.0339481
\(302\) 7039.61 1.34134
\(303\) 0 0
\(304\) −8315.01 −1.56875
\(305\) −10974.4 −2.06030
\(306\) 0 0
\(307\) −1678.07 −0.311962 −0.155981 0.987760i \(-0.549854\pi\)
−0.155981 + 0.987760i \(0.549854\pi\)
\(308\) −18.1079 −0.00334997
\(309\) 0 0
\(310\) 1278.43 0.234226
\(311\) −3572.71 −0.651413 −0.325707 0.945471i \(-0.605602\pi\)
−0.325707 + 0.945471i \(0.605602\pi\)
\(312\) 0 0
\(313\) 7184.36 1.29739 0.648697 0.761047i \(-0.275314\pi\)
0.648697 + 0.761047i \(0.275314\pi\)
\(314\) −6764.40 −1.21572
\(315\) 0 0
\(316\) −693.573 −0.123470
\(317\) 15.7077 0.00278306 0.00139153 0.999999i \(-0.499557\pi\)
0.00139153 + 0.999999i \(0.499557\pi\)
\(318\) 0 0
\(319\) 274.943 0.0482566
\(320\) −8045.47 −1.40549
\(321\) 0 0
\(322\) −934.515 −0.161734
\(323\) 5766.98 0.993447
\(324\) 0 0
\(325\) 512.923 0.0875442
\(326\) 7445.13 1.26487
\(327\) 0 0
\(328\) −6088.33 −1.02491
\(329\) 1056.23 0.176996
\(330\) 0 0
\(331\) −1318.95 −0.219022 −0.109511 0.993986i \(-0.534928\pi\)
−0.109511 + 0.993986i \(0.534928\pi\)
\(332\) 236.785 0.0391423
\(333\) 0 0
\(334\) 7478.43 1.22515
\(335\) −5086.22 −0.829523
\(336\) 0 0
\(337\) −239.183 −0.0386621 −0.0193310 0.999813i \(-0.506154\pi\)
−0.0193310 + 0.999813i \(0.506154\pi\)
\(338\) 5923.85 0.953299
\(339\) 0 0
\(340\) 328.137 0.0523404
\(341\) 346.472 0.0550220
\(342\) 0 0
\(343\) −2078.27 −0.327160
\(344\) −1345.89 −0.210947
\(345\) 0 0
\(346\) 6303.98 0.979491
\(347\) 5862.79 0.907006 0.453503 0.891255i \(-0.350174\pi\)
0.453503 + 0.891255i \(0.350174\pi\)
\(348\) 0 0
\(349\) 3491.73 0.535553 0.267776 0.963481i \(-0.413711\pi\)
0.267776 + 0.963481i \(0.413711\pi\)
\(350\) −803.251 −0.122673
\(351\) 0 0
\(352\) −266.313 −0.0403253
\(353\) 10916.7 1.64600 0.822999 0.568043i \(-0.192299\pi\)
0.822999 + 0.568043i \(0.192299\pi\)
\(354\) 0 0
\(355\) −3080.69 −0.460580
\(356\) −798.013 −0.118805
\(357\) 0 0
\(358\) −3584.87 −0.529236
\(359\) 11500.7 1.69077 0.845384 0.534160i \(-0.179372\pi\)
0.845384 + 0.534160i \(0.179372\pi\)
\(360\) 0 0
\(361\) 12719.5 1.85442
\(362\) 2194.31 0.318592
\(363\) 0 0
\(364\) −8.82180 −0.00127030
\(365\) 15013.9 2.15305
\(366\) 0 0
\(367\) 6767.01 0.962493 0.481246 0.876585i \(-0.340184\pi\)
0.481246 + 0.876585i \(0.340184\pi\)
\(368\) −6617.27 −0.937362
\(369\) 0 0
\(370\) 533.478 0.0749573
\(371\) 1053.61 0.147441
\(372\) 0 0
\(373\) −5310.22 −0.737139 −0.368569 0.929600i \(-0.620152\pi\)
−0.368569 + 0.929600i \(0.620152\pi\)
\(374\) −1238.63 −0.171251
\(375\) 0 0
\(376\) 8018.67 1.09982
\(377\) 133.947 0.0182987
\(378\) 0 0
\(379\) −838.267 −0.113612 −0.0568059 0.998385i \(-0.518092\pi\)
−0.0568059 + 0.998385i \(0.518092\pi\)
\(380\) 1114.00 0.150387
\(381\) 0 0
\(382\) 4694.34 0.628752
\(383\) 2832.16 0.377851 0.188925 0.981991i \(-0.439500\pi\)
0.188925 + 0.981991i \(0.439500\pi\)
\(384\) 0 0
\(385\) −501.994 −0.0664520
\(386\) −3661.45 −0.482806
\(387\) 0 0
\(388\) −721.542 −0.0944091
\(389\) −3111.25 −0.405519 −0.202759 0.979229i \(-0.564991\pi\)
−0.202759 + 0.979229i \(0.564991\pi\)
\(390\) 0 0
\(391\) 4589.49 0.593608
\(392\) −7778.88 −1.00228
\(393\) 0 0
\(394\) −9612.25 −1.22908
\(395\) −19227.5 −2.44922
\(396\) 0 0
\(397\) 14208.7 1.79626 0.898131 0.439728i \(-0.144925\pi\)
0.898131 + 0.439728i \(0.144925\pi\)
\(398\) −2250.37 −0.283419
\(399\) 0 0
\(400\) −5687.79 −0.710974
\(401\) 6261.68 0.779784 0.389892 0.920861i \(-0.372512\pi\)
0.389892 + 0.920861i \(0.372512\pi\)
\(402\) 0 0
\(403\) 168.794 0.0208641
\(404\) −86.5269 −0.0106556
\(405\) 0 0
\(406\) −209.764 −0.0256415
\(407\) 144.580 0.0176082
\(408\) 0 0
\(409\) −4192.50 −0.506860 −0.253430 0.967354i \(-0.581559\pi\)
−0.253430 + 0.967354i \(0.581559\pi\)
\(410\) −10596.5 −1.27640
\(411\) 0 0
\(412\) 18.6274 0.00222744
\(413\) −271.453 −0.0323421
\(414\) 0 0
\(415\) 6564.25 0.776448
\(416\) −129.742 −0.0152912
\(417\) 0 0
\(418\) −4205.05 −0.492047
\(419\) 9287.15 1.08283 0.541416 0.840755i \(-0.317888\pi\)
0.541416 + 0.840755i \(0.317888\pi\)
\(420\) 0 0
\(421\) 13146.0 1.52185 0.760923 0.648842i \(-0.224746\pi\)
0.760923 + 0.648842i \(0.224746\pi\)
\(422\) 293.267 0.0338294
\(423\) 0 0
\(424\) 7998.81 0.916172
\(425\) 3944.84 0.450242
\(426\) 0 0
\(427\) 2269.13 0.257168
\(428\) 445.964 0.0503656
\(429\) 0 0
\(430\) −2342.47 −0.262707
\(431\) −4909.67 −0.548701 −0.274351 0.961630i \(-0.588463\pi\)
−0.274351 + 0.961630i \(0.588463\pi\)
\(432\) 0 0
\(433\) −11743.3 −1.30334 −0.651671 0.758502i \(-0.725932\pi\)
−0.651671 + 0.758502i \(0.725932\pi\)
\(434\) −264.336 −0.0292363
\(435\) 0 0
\(436\) −559.615 −0.0614695
\(437\) 15581.0 1.70558
\(438\) 0 0
\(439\) −11824.2 −1.28551 −0.642754 0.766073i \(-0.722208\pi\)
−0.642754 + 0.766073i \(0.722208\pi\)
\(440\) −3811.05 −0.412920
\(441\) 0 0
\(442\) −603.435 −0.0649377
\(443\) −10102.1 −1.08344 −0.541722 0.840558i \(-0.682228\pi\)
−0.541722 + 0.840558i \(0.682228\pi\)
\(444\) 0 0
\(445\) −22122.9 −2.35668
\(446\) 10747.0 1.14100
\(447\) 0 0
\(448\) 1663.53 0.175434
\(449\) 345.254 0.0362885 0.0181443 0.999835i \(-0.494224\pi\)
0.0181443 + 0.999835i \(0.494224\pi\)
\(450\) 0 0
\(451\) −2871.79 −0.299839
\(452\) 158.134 0.0164557
\(453\) 0 0
\(454\) −4840.93 −0.500431
\(455\) −244.562 −0.0251983
\(456\) 0 0
\(457\) −10567.1 −1.08164 −0.540821 0.841138i \(-0.681886\pi\)
−0.540821 + 0.841138i \(0.681886\pi\)
\(458\) −5232.89 −0.533879
\(459\) 0 0
\(460\) 886.546 0.0898596
\(461\) −4733.96 −0.478270 −0.239135 0.970986i \(-0.576864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(462\) 0 0
\(463\) 3431.20 0.344409 0.172204 0.985061i \(-0.444911\pi\)
0.172204 + 0.985061i \(0.444911\pi\)
\(464\) −1485.33 −0.148610
\(465\) 0 0
\(466\) 12011.0 1.19399
\(467\) −5116.96 −0.507034 −0.253517 0.967331i \(-0.581587\pi\)
−0.253517 + 0.967331i \(0.581587\pi\)
\(468\) 0 0
\(469\) 1051.66 0.103542
\(470\) 13956.2 1.36968
\(471\) 0 0
\(472\) −2060.82 −0.200968
\(473\) −634.841 −0.0617125
\(474\) 0 0
\(475\) 13392.4 1.29366
\(476\) −67.8476 −0.00653317
\(477\) 0 0
\(478\) −11159.0 −1.06779
\(479\) −11566.9 −1.10335 −0.551675 0.834059i \(-0.686011\pi\)
−0.551675 + 0.834059i \(0.686011\pi\)
\(480\) 0 0
\(481\) 70.4363 0.00667696
\(482\) −10678.4 −1.00911
\(483\) 0 0
\(484\) −64.8437 −0.00608975
\(485\) −20002.9 −1.87275
\(486\) 0 0
\(487\) −18326.5 −1.70525 −0.852623 0.522527i \(-0.824990\pi\)
−0.852623 + 0.522527i \(0.824990\pi\)
\(488\) 17226.8 1.59799
\(489\) 0 0
\(490\) −13538.9 −1.24821
\(491\) 7617.58 0.700156 0.350078 0.936721i \(-0.386155\pi\)
0.350078 + 0.936721i \(0.386155\pi\)
\(492\) 0 0
\(493\) 1030.17 0.0941108
\(494\) −2048.62 −0.186582
\(495\) 0 0
\(496\) −1871.75 −0.169444
\(497\) 636.980 0.0574899
\(498\) 0 0
\(499\) 12909.1 1.15810 0.579050 0.815292i \(-0.303424\pi\)
0.579050 + 0.815292i \(0.303424\pi\)
\(500\) −233.171 −0.0208554
\(501\) 0 0
\(502\) 2991.30 0.265953
\(503\) −10165.7 −0.901121 −0.450561 0.892746i \(-0.648776\pi\)
−0.450561 + 0.892746i \(0.648776\pi\)
\(504\) 0 0
\(505\) −2398.74 −0.211371
\(506\) −3346.47 −0.294009
\(507\) 0 0
\(508\) 706.102 0.0616697
\(509\) −6449.93 −0.561666 −0.280833 0.959757i \(-0.590611\pi\)
−0.280833 + 0.959757i \(0.590611\pi\)
\(510\) 0 0
\(511\) −3104.36 −0.268745
\(512\) 12525.4 1.08115
\(513\) 0 0
\(514\) 2139.68 0.183614
\(515\) 516.397 0.0441848
\(516\) 0 0
\(517\) 3782.31 0.321752
\(518\) −110.305 −0.00935623
\(519\) 0 0
\(520\) −1856.67 −0.156577
\(521\) 19327.4 1.62524 0.812620 0.582794i \(-0.198041\pi\)
0.812620 + 0.582794i \(0.198041\pi\)
\(522\) 0 0
\(523\) 6259.09 0.523310 0.261655 0.965161i \(-0.415732\pi\)
0.261655 + 0.965161i \(0.415732\pi\)
\(524\) −857.819 −0.0715153
\(525\) 0 0
\(526\) 16884.2 1.39960
\(527\) 1298.18 0.107305
\(528\) 0 0
\(529\) 232.675 0.0191235
\(530\) 13921.6 1.14098
\(531\) 0 0
\(532\) −230.337 −0.0187714
\(533\) −1399.08 −0.113698
\(534\) 0 0
\(535\) 12363.2 0.999079
\(536\) 7983.99 0.643387
\(537\) 0 0
\(538\) 2696.44 0.216081
\(539\) −3669.20 −0.293217
\(540\) 0 0
\(541\) −14008.2 −1.11323 −0.556616 0.830770i \(-0.687900\pi\)
−0.556616 + 0.830770i \(0.687900\pi\)
\(542\) −12504.6 −0.990991
\(543\) 0 0
\(544\) −997.834 −0.0786430
\(545\) −15513.9 −1.21934
\(546\) 0 0
\(547\) −4949.45 −0.386879 −0.193440 0.981112i \(-0.561964\pi\)
−0.193440 + 0.981112i \(0.561964\pi\)
\(548\) 863.695 0.0673270
\(549\) 0 0
\(550\) −2876.41 −0.223001
\(551\) 3497.35 0.270404
\(552\) 0 0
\(553\) 3975.60 0.305714
\(554\) −1551.36 −0.118973
\(555\) 0 0
\(556\) 17.0748 0.00130239
\(557\) 3801.58 0.289188 0.144594 0.989491i \(-0.453812\pi\)
0.144594 + 0.989491i \(0.453812\pi\)
\(558\) 0 0
\(559\) −309.282 −0.0234011
\(560\) 2711.94 0.204644
\(561\) 0 0
\(562\) 14510.0 1.08908
\(563\) 9900.11 0.741101 0.370551 0.928812i \(-0.379169\pi\)
0.370551 + 0.928812i \(0.379169\pi\)
\(564\) 0 0
\(565\) 4383.85 0.326425
\(566\) 12918.3 0.959361
\(567\) 0 0
\(568\) 4835.84 0.357231
\(569\) −5329.16 −0.392636 −0.196318 0.980540i \(-0.562898\pi\)
−0.196318 + 0.980540i \(0.562898\pi\)
\(570\) 0 0
\(571\) −16962.6 −1.24319 −0.621597 0.783337i \(-0.713516\pi\)
−0.621597 + 0.783337i \(0.713516\pi\)
\(572\) −31.5906 −0.00230921
\(573\) 0 0
\(574\) 2190.99 0.159321
\(575\) 10658.0 0.772989
\(576\) 0 0
\(577\) −15487.0 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(578\) 8781.61 0.631949
\(579\) 0 0
\(580\) 198.997 0.0142464
\(581\) −1357.26 −0.0969169
\(582\) 0 0
\(583\) 3772.94 0.268026
\(584\) −23567.7 −1.66993
\(585\) 0 0
\(586\) 6362.72 0.448535
\(587\) −11084.2 −0.779373 −0.389686 0.920948i \(-0.627417\pi\)
−0.389686 + 0.920948i \(0.627417\pi\)
\(588\) 0 0
\(589\) 4407.22 0.308313
\(590\) −3586.77 −0.250280
\(591\) 0 0
\(592\) −781.066 −0.0542257
\(593\) −4349.68 −0.301214 −0.150607 0.988594i \(-0.548123\pi\)
−0.150607 + 0.988594i \(0.548123\pi\)
\(594\) 0 0
\(595\) −1880.90 −0.129596
\(596\) −1301.34 −0.0894382
\(597\) 0 0
\(598\) −1630.33 −0.111487
\(599\) −13183.9 −0.899299 −0.449650 0.893205i \(-0.648451\pi\)
−0.449650 + 0.893205i \(0.648451\pi\)
\(600\) 0 0
\(601\) −18765.0 −1.27361 −0.636806 0.771024i \(-0.719745\pi\)
−0.636806 + 0.771024i \(0.719745\pi\)
\(602\) 484.344 0.0327913
\(603\) 0 0
\(604\) 1380.84 0.0930223
\(605\) −1797.63 −0.120800
\(606\) 0 0
\(607\) 21871.4 1.46249 0.731244 0.682116i \(-0.238940\pi\)
0.731244 + 0.682116i \(0.238940\pi\)
\(608\) −3387.57 −0.225961
\(609\) 0 0
\(610\) 29982.6 1.99010
\(611\) 1842.67 0.122007
\(612\) 0 0
\(613\) −3527.85 −0.232445 −0.116222 0.993223i \(-0.537079\pi\)
−0.116222 + 0.993223i \(0.537079\pi\)
\(614\) 4584.56 0.301332
\(615\) 0 0
\(616\) 787.994 0.0515409
\(617\) 22728.1 1.48298 0.741490 0.670963i \(-0.234119\pi\)
0.741490 + 0.670963i \(0.234119\pi\)
\(618\) 0 0
\(619\) −21443.3 −1.39237 −0.696187 0.717861i \(-0.745121\pi\)
−0.696187 + 0.717861i \(0.745121\pi\)
\(620\) 250.767 0.0162437
\(621\) 0 0
\(622\) 9760.81 0.629217
\(623\) 4574.25 0.294163
\(624\) 0 0
\(625\) −18428.2 −1.17940
\(626\) −19628.0 −1.25319
\(627\) 0 0
\(628\) −1326.85 −0.0843109
\(629\) 541.718 0.0343398
\(630\) 0 0
\(631\) 21532.0 1.35844 0.679219 0.733936i \(-0.262319\pi\)
0.679219 + 0.733936i \(0.262319\pi\)
\(632\) 30182.0 1.89964
\(633\) 0 0
\(634\) −42.9141 −0.00268823
\(635\) 19574.9 1.22332
\(636\) 0 0
\(637\) −1787.56 −0.111187
\(638\) −751.159 −0.0466123
\(639\) 0 0
\(640\) 19103.2 1.17988
\(641\) −20148.3 −1.24151 −0.620756 0.784004i \(-0.713174\pi\)
−0.620756 + 0.784004i \(0.713174\pi\)
\(642\) 0 0
\(643\) 28869.7 1.77062 0.885310 0.465000i \(-0.153946\pi\)
0.885310 + 0.465000i \(0.153946\pi\)
\(644\) −183.307 −0.0112163
\(645\) 0 0
\(646\) −15755.7 −0.959597
\(647\) 1590.02 0.0966155 0.0483077 0.998833i \(-0.484617\pi\)
0.0483077 + 0.998833i \(0.484617\pi\)
\(648\) 0 0
\(649\) −972.062 −0.0587932
\(650\) −1401.33 −0.0845612
\(651\) 0 0
\(652\) 1460.38 0.0877192
\(653\) −20028.1 −1.20024 −0.600122 0.799909i \(-0.704881\pi\)
−0.600122 + 0.799909i \(0.704881\pi\)
\(654\) 0 0
\(655\) −23780.8 −1.41862
\(656\) 15514.4 0.923375
\(657\) 0 0
\(658\) −2885.66 −0.170965
\(659\) 10520.7 0.621897 0.310948 0.950427i \(-0.399353\pi\)
0.310948 + 0.950427i \(0.399353\pi\)
\(660\) 0 0
\(661\) 3295.83 0.193938 0.0969690 0.995287i \(-0.469085\pi\)
0.0969690 + 0.995287i \(0.469085\pi\)
\(662\) 3603.45 0.211559
\(663\) 0 0
\(664\) −10304.1 −0.602222
\(665\) −6385.51 −0.372360
\(666\) 0 0
\(667\) 2783.27 0.161572
\(668\) 1466.91 0.0849649
\(669\) 0 0
\(670\) 13895.8 0.801257
\(671\) 8125.67 0.467493
\(672\) 0 0
\(673\) −1187.64 −0.0680239 −0.0340119 0.999421i \(-0.510828\pi\)
−0.0340119 + 0.999421i \(0.510828\pi\)
\(674\) 653.460 0.0373447
\(675\) 0 0
\(676\) 1161.98 0.0661117
\(677\) −13221.4 −0.750574 −0.375287 0.926909i \(-0.622456\pi\)
−0.375287 + 0.926909i \(0.622456\pi\)
\(678\) 0 0
\(679\) 4135.91 0.233758
\(680\) −14279.4 −0.805282
\(681\) 0 0
\(682\) −946.578 −0.0531471
\(683\) 13831.4 0.774882 0.387441 0.921894i \(-0.373359\pi\)
0.387441 + 0.921894i \(0.373359\pi\)
\(684\) 0 0
\(685\) 23943.7 1.33554
\(686\) 5677.93 0.316012
\(687\) 0 0
\(688\) 3429.62 0.190048
\(689\) 1838.10 0.101635
\(690\) 0 0
\(691\) −9817.07 −0.540462 −0.270231 0.962796i \(-0.587100\pi\)
−0.270231 + 0.962796i \(0.587100\pi\)
\(692\) 1236.54 0.0679280
\(693\) 0 0
\(694\) −16017.4 −0.876101
\(695\) 473.354 0.0258350
\(696\) 0 0
\(697\) −10760.2 −0.584750
\(698\) −9539.58 −0.517304
\(699\) 0 0
\(700\) −157.560 −0.00850742
\(701\) −29949.8 −1.61368 −0.806838 0.590773i \(-0.798823\pi\)
−0.806838 + 0.590773i \(0.798823\pi\)
\(702\) 0 0
\(703\) 1839.09 0.0986667
\(704\) 5957.03 0.318912
\(705\) 0 0
\(706\) −29825.0 −1.58991
\(707\) 495.976 0.0263835
\(708\) 0 0
\(709\) 11307.5 0.598959 0.299479 0.954103i \(-0.403187\pi\)
0.299479 + 0.954103i \(0.403187\pi\)
\(710\) 8416.59 0.444886
\(711\) 0 0
\(712\) 34726.9 1.82787
\(713\) 3507.36 0.184224
\(714\) 0 0
\(715\) −875.768 −0.0458068
\(716\) −703.181 −0.0367027
\(717\) 0 0
\(718\) −31420.6 −1.63316
\(719\) 32623.4 1.69214 0.846070 0.533071i \(-0.178962\pi\)
0.846070 + 0.533071i \(0.178962\pi\)
\(720\) 0 0
\(721\) −106.773 −0.00551518
\(722\) −34750.2 −1.79123
\(723\) 0 0
\(724\) 430.420 0.0220945
\(725\) 2392.33 0.122550
\(726\) 0 0
\(727\) −502.545 −0.0256373 −0.0128187 0.999918i \(-0.504080\pi\)
−0.0128187 + 0.999918i \(0.504080\pi\)
\(728\) 383.895 0.0195441
\(729\) 0 0
\(730\) −41018.7 −2.07968
\(731\) −2378.66 −0.120353
\(732\) 0 0
\(733\) 8631.37 0.434935 0.217467 0.976068i \(-0.430220\pi\)
0.217467 + 0.976068i \(0.430220\pi\)
\(734\) −18487.8 −0.929697
\(735\) 0 0
\(736\) −2695.90 −0.135017
\(737\) 3765.95 0.188223
\(738\) 0 0
\(739\) −18357.5 −0.913792 −0.456896 0.889520i \(-0.651039\pi\)
−0.456896 + 0.889520i \(0.651039\pi\)
\(740\) 104.643 0.00519832
\(741\) 0 0
\(742\) −2878.52 −0.142417
\(743\) −11182.6 −0.552155 −0.276078 0.961135i \(-0.589035\pi\)
−0.276078 + 0.961135i \(0.589035\pi\)
\(744\) 0 0
\(745\) −36076.4 −1.77415
\(746\) 14507.8 0.712021
\(747\) 0 0
\(748\) −242.960 −0.0118763
\(749\) −2556.29 −0.124706
\(750\) 0 0
\(751\) 16733.4 0.813063 0.406531 0.913637i \(-0.366738\pi\)
0.406531 + 0.913637i \(0.366738\pi\)
\(752\) −20433.3 −0.990857
\(753\) 0 0
\(754\) −365.950 −0.0176752
\(755\) 38280.2 1.84524
\(756\) 0 0
\(757\) −24402.4 −1.17163 −0.585813 0.810446i \(-0.699225\pi\)
−0.585813 + 0.810446i \(0.699225\pi\)
\(758\) 2290.19 0.109741
\(759\) 0 0
\(760\) −48477.6 −2.31377
\(761\) −8469.33 −0.403434 −0.201717 0.979444i \(-0.564652\pi\)
−0.201717 + 0.979444i \(0.564652\pi\)
\(762\) 0 0
\(763\) 3207.74 0.152199
\(764\) 920.805 0.0436042
\(765\) 0 0
\(766\) −7737.62 −0.364976
\(767\) −473.570 −0.0222941
\(768\) 0 0
\(769\) 32834.7 1.53973 0.769864 0.638208i \(-0.220324\pi\)
0.769864 + 0.638208i \(0.220324\pi\)
\(770\) 1371.47 0.0641877
\(771\) 0 0
\(772\) −718.202 −0.0334827
\(773\) 35571.4 1.65513 0.827564 0.561371i \(-0.189726\pi\)
0.827564 + 0.561371i \(0.189726\pi\)
\(774\) 0 0
\(775\) 3014.71 0.139731
\(776\) 31399.1 1.45253
\(777\) 0 0
\(778\) 8500.11 0.391701
\(779\) −36530.0 −1.68013
\(780\) 0 0
\(781\) 2281.01 0.104508
\(782\) −12538.7 −0.573381
\(783\) 0 0
\(784\) 19822.3 0.902982
\(785\) −36783.6 −1.67244
\(786\) 0 0
\(787\) 15729.6 0.712452 0.356226 0.934400i \(-0.384063\pi\)
0.356226 + 0.934400i \(0.384063\pi\)
\(788\) −1885.47 −0.0852373
\(789\) 0 0
\(790\) 52530.6 2.36577
\(791\) −906.431 −0.0407446
\(792\) 0 0
\(793\) 3958.67 0.177272
\(794\) −38819.0 −1.73506
\(795\) 0 0
\(796\) −441.415 −0.0196552
\(797\) −7888.07 −0.350577 −0.175288 0.984517i \(-0.556086\pi\)
−0.175288 + 0.984517i \(0.556086\pi\)
\(798\) 0 0
\(799\) 14171.8 0.627485
\(800\) −2317.23 −0.102408
\(801\) 0 0
\(802\) −17107.2 −0.753214
\(803\) −11116.6 −0.488538
\(804\) 0 0
\(805\) −5081.73 −0.222494
\(806\) −461.154 −0.0201532
\(807\) 0 0
\(808\) 3765.36 0.163942
\(809\) −5896.97 −0.256275 −0.128138 0.991756i \(-0.540900\pi\)
−0.128138 + 0.991756i \(0.540900\pi\)
\(810\) 0 0
\(811\) 14197.9 0.614744 0.307372 0.951589i \(-0.400550\pi\)
0.307372 + 0.951589i \(0.400550\pi\)
\(812\) −41.1458 −0.00177824
\(813\) 0 0
\(814\) −394.999 −0.0170082
\(815\) 40485.3 1.74005
\(816\) 0 0
\(817\) −8075.35 −0.345803
\(818\) 11454.1 0.489589
\(819\) 0 0
\(820\) −2078.53 −0.0885188
\(821\) 19841.7 0.843459 0.421729 0.906722i \(-0.361423\pi\)
0.421729 + 0.906722i \(0.361423\pi\)
\(822\) 0 0
\(823\) −28202.2 −1.19449 −0.597246 0.802058i \(-0.703738\pi\)
−0.597246 + 0.802058i \(0.703738\pi\)
\(824\) −810.602 −0.0342702
\(825\) 0 0
\(826\) 741.622 0.0312401
\(827\) −34031.0 −1.43092 −0.715462 0.698651i \(-0.753784\pi\)
−0.715462 + 0.698651i \(0.753784\pi\)
\(828\) 0 0
\(829\) 4931.55 0.206610 0.103305 0.994650i \(-0.467058\pi\)
0.103305 + 0.994650i \(0.467058\pi\)
\(830\) −17933.9 −0.749992
\(831\) 0 0
\(832\) 2902.15 0.120930
\(833\) −13748.0 −0.571836
\(834\) 0 0
\(835\) 40666.4 1.68541
\(836\) −824.830 −0.0341236
\(837\) 0 0
\(838\) −25373.0 −1.04594
\(839\) 38189.8 1.57146 0.785731 0.618568i \(-0.212287\pi\)
0.785731 + 0.618568i \(0.212287\pi\)
\(840\) 0 0
\(841\) −23764.3 −0.974384
\(842\) −35915.6 −1.46999
\(843\) 0 0
\(844\) 57.5250 0.00234608
\(845\) 32212.9 1.31143
\(846\) 0 0
\(847\) 371.687 0.0150783
\(848\) −20382.7 −0.825406
\(849\) 0 0
\(850\) −10777.5 −0.434900
\(851\) 1463.59 0.0589556
\(852\) 0 0
\(853\) 42966.8 1.72469 0.862343 0.506325i \(-0.168997\pi\)
0.862343 + 0.506325i \(0.168997\pi\)
\(854\) −6199.37 −0.248405
\(855\) 0 0
\(856\) −19406.8 −0.774898
\(857\) 17281.5 0.688828 0.344414 0.938818i \(-0.388078\pi\)
0.344414 + 0.938818i \(0.388078\pi\)
\(858\) 0 0
\(859\) 9316.75 0.370062 0.185031 0.982733i \(-0.440761\pi\)
0.185031 + 0.982733i \(0.440761\pi\)
\(860\) −459.482 −0.0182188
\(861\) 0 0
\(862\) 13413.5 0.530005
\(863\) 9647.65 0.380544 0.190272 0.981731i \(-0.439063\pi\)
0.190272 + 0.981731i \(0.439063\pi\)
\(864\) 0 0
\(865\) 34279.9 1.34746
\(866\) 32083.3 1.25893
\(867\) 0 0
\(868\) −51.8501 −0.00202754
\(869\) 14236.5 0.555742
\(870\) 0 0
\(871\) 1834.70 0.0713735
\(872\) 24352.6 0.945737
\(873\) 0 0
\(874\) −42568.0 −1.64746
\(875\) 1336.55 0.0516383
\(876\) 0 0
\(877\) 19728.7 0.759624 0.379812 0.925064i \(-0.375989\pi\)
0.379812 + 0.925064i \(0.375989\pi\)
\(878\) 32304.3 1.24171
\(879\) 0 0
\(880\) 9711.36 0.372011
\(881\) −19473.9 −0.744712 −0.372356 0.928090i \(-0.621450\pi\)
−0.372356 + 0.928090i \(0.621450\pi\)
\(882\) 0 0
\(883\) 49092.4 1.87100 0.935499 0.353329i \(-0.114950\pi\)
0.935499 + 0.353329i \(0.114950\pi\)
\(884\) −118.365 −0.00450346
\(885\) 0 0
\(886\) 27599.5 1.04653
\(887\) −9292.86 −0.351774 −0.175887 0.984410i \(-0.556279\pi\)
−0.175887 + 0.984410i \(0.556279\pi\)
\(888\) 0 0
\(889\) −4047.41 −0.152695
\(890\) 60440.8 2.27638
\(891\) 0 0
\(892\) 2108.05 0.0791288
\(893\) 48112.0 1.80292
\(894\) 0 0
\(895\) −19493.9 −0.728055
\(896\) −3949.89 −0.147273
\(897\) 0 0
\(898\) −943.252 −0.0350520
\(899\) 787.273 0.0292069
\(900\) 0 0
\(901\) 14136.7 0.522709
\(902\) 7845.88 0.289622
\(903\) 0 0
\(904\) −6881.46 −0.253179
\(905\) 11932.3 0.438279
\(906\) 0 0
\(907\) 37688.7 1.37975 0.689875 0.723928i \(-0.257665\pi\)
0.689875 + 0.723928i \(0.257665\pi\)
\(908\) −949.559 −0.0347051
\(909\) 0 0
\(910\) 668.155 0.0243397
\(911\) −33049.6 −1.20196 −0.600979 0.799265i \(-0.705222\pi\)
−0.600979 + 0.799265i \(0.705222\pi\)
\(912\) 0 0
\(913\) −4860.31 −0.176180
\(914\) 28870.0 1.04479
\(915\) 0 0
\(916\) −1026.44 −0.0370247
\(917\) 4917.06 0.177073
\(918\) 0 0
\(919\) −23148.0 −0.830883 −0.415442 0.909620i \(-0.636373\pi\)
−0.415442 + 0.909620i \(0.636373\pi\)
\(920\) −38579.5 −1.38253
\(921\) 0 0
\(922\) 12933.4 0.461973
\(923\) 1111.26 0.0396290
\(924\) 0 0
\(925\) 1258.01 0.0447169
\(926\) −9374.21 −0.332673
\(927\) 0 0
\(928\) −605.131 −0.0214056
\(929\) 23177.9 0.818561 0.409280 0.912409i \(-0.365780\pi\)
0.409280 + 0.912409i \(0.365780\pi\)
\(930\) 0 0
\(931\) −46673.3 −1.64302
\(932\) 2355.98 0.0828033
\(933\) 0 0
\(934\) 13979.8 0.489757
\(935\) −6735.44 −0.235585
\(936\) 0 0
\(937\) −34574.7 −1.20545 −0.602724 0.797950i \(-0.705918\pi\)
−0.602724 + 0.797950i \(0.705918\pi\)
\(938\) −2873.18 −0.100014
\(939\) 0 0
\(940\) 2737.54 0.0949880
\(941\) −41831.2 −1.44916 −0.724578 0.689192i \(-0.757966\pi\)
−0.724578 + 0.689192i \(0.757966\pi\)
\(942\) 0 0
\(943\) −29071.3 −1.00392
\(944\) 5251.40 0.181058
\(945\) 0 0
\(946\) 1734.42 0.0596097
\(947\) −27231.2 −0.934419 −0.467209 0.884147i \(-0.654741\pi\)
−0.467209 + 0.884147i \(0.654741\pi\)
\(948\) 0 0
\(949\) −5415.79 −0.185252
\(950\) −36588.8 −1.24958
\(951\) 0 0
\(952\) 2952.50 0.100516
\(953\) −40939.4 −1.39156 −0.695781 0.718254i \(-0.744942\pi\)
−0.695781 + 0.718254i \(0.744942\pi\)
\(954\) 0 0
\(955\) 25527.0 0.864956
\(956\) −2188.87 −0.0740515
\(957\) 0 0
\(958\) 31601.3 1.06575
\(959\) −4950.74 −0.166703
\(960\) 0 0
\(961\) −28798.9 −0.966698
\(962\) −192.436 −0.00644945
\(963\) 0 0
\(964\) −2094.60 −0.0699820
\(965\) −19910.3 −0.664182
\(966\) 0 0
\(967\) −46173.1 −1.53550 −0.767750 0.640750i \(-0.778624\pi\)
−0.767750 + 0.640750i \(0.778624\pi\)
\(968\) 2821.78 0.0936937
\(969\) 0 0
\(970\) 54648.9 1.80894
\(971\) 5153.91 0.170337 0.0851683 0.996367i \(-0.472857\pi\)
0.0851683 + 0.996367i \(0.472857\pi\)
\(972\) 0 0
\(973\) −97.8734 −0.00322474
\(974\) 50069.0 1.64714
\(975\) 0 0
\(976\) −43897.6 −1.43968
\(977\) −9692.13 −0.317378 −0.158689 0.987329i \(-0.550727\pi\)
−0.158689 + 0.987329i \(0.550727\pi\)
\(978\) 0 0
\(979\) 16380.2 0.534744
\(980\) −2655.68 −0.0865638
\(981\) 0 0
\(982\) −20811.6 −0.676299
\(983\) −32915.7 −1.06800 −0.534002 0.845483i \(-0.679313\pi\)
−0.534002 + 0.845483i \(0.679313\pi\)
\(984\) 0 0
\(985\) −52269.7 −1.69081
\(986\) −2814.48 −0.0909041
\(987\) 0 0
\(988\) −401.841 −0.0129395
\(989\) −6426.54 −0.206625
\(990\) 0 0
\(991\) 29477.9 0.944901 0.472451 0.881357i \(-0.343370\pi\)
0.472451 + 0.881357i \(0.343370\pi\)
\(992\) −762.560 −0.0244066
\(993\) 0 0
\(994\) −1740.26 −0.0555310
\(995\) −12237.1 −0.389892
\(996\) 0 0
\(997\) −31944.4 −1.01473 −0.507366 0.861731i \(-0.669381\pi\)
−0.507366 + 0.861731i \(0.669381\pi\)
\(998\) −35268.4 −1.11864
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.a.c.1.1 2
3.2 odd 2 11.4.a.a.1.2 2
4.3 odd 2 1584.4.a.bc.1.1 2
5.4 even 2 2475.4.a.q.1.2 2
11.10 odd 2 1089.4.a.v.1.2 2
12.11 even 2 176.4.a.i.1.2 2
15.2 even 4 275.4.b.c.199.4 4
15.8 even 4 275.4.b.c.199.1 4
15.14 odd 2 275.4.a.b.1.1 2
21.20 even 2 539.4.a.e.1.2 2
24.5 odd 2 704.4.a.p.1.2 2
24.11 even 2 704.4.a.n.1.1 2
33.2 even 10 121.4.c.f.81.2 8
33.5 odd 10 121.4.c.c.3.1 8
33.8 even 10 121.4.c.f.9.1 8
33.14 odd 10 121.4.c.c.9.2 8
33.17 even 10 121.4.c.f.3.2 8
33.20 odd 10 121.4.c.c.81.1 8
33.26 odd 10 121.4.c.c.27.2 8
33.29 even 10 121.4.c.f.27.1 8
33.32 even 2 121.4.a.c.1.1 2
39.38 odd 2 1859.4.a.a.1.1 2
132.131 odd 2 1936.4.a.w.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.2 2 3.2 odd 2
99.4.a.c.1.1 2 1.1 even 1 trivial
121.4.a.c.1.1 2 33.32 even 2
121.4.c.c.3.1 8 33.5 odd 10
121.4.c.c.9.2 8 33.14 odd 10
121.4.c.c.27.2 8 33.26 odd 10
121.4.c.c.81.1 8 33.20 odd 10
121.4.c.f.3.2 8 33.17 even 10
121.4.c.f.9.1 8 33.8 even 10
121.4.c.f.27.1 8 33.29 even 10
121.4.c.f.81.2 8 33.2 even 10
176.4.a.i.1.2 2 12.11 even 2
275.4.a.b.1.1 2 15.14 odd 2
275.4.b.c.199.1 4 15.8 even 4
275.4.b.c.199.4 4 15.2 even 4
539.4.a.e.1.2 2 21.20 even 2
704.4.a.n.1.1 2 24.11 even 2
704.4.a.p.1.2 2 24.5 odd 2
1089.4.a.v.1.2 2 11.10 odd 2
1584.4.a.bc.1.1 2 4.3 odd 2
1859.4.a.a.1.1 2 39.38 odd 2
1936.4.a.w.1.2 2 132.131 odd 2
2475.4.a.q.1.2 2 5.4 even 2