Newspace parameters
Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 99.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(5.84118909057\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 33) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
1.00000 | 0 | −7.00000 | 4.00000 | 0 | −26.0000 | −15.0000 | 0 | 4.00000 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(11\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.4.a.a | 1 | |
3.b | odd | 2 | 1 | 33.4.a.b | ✓ | 1 | |
4.b | odd | 2 | 1 | 1584.4.a.l | 1 | ||
5.b | even | 2 | 1 | 2475.4.a.e | 1 | ||
11.b | odd | 2 | 1 | 1089.4.a.e | 1 | ||
12.b | even | 2 | 1 | 528.4.a.h | 1 | ||
15.d | odd | 2 | 1 | 825.4.a.f | 1 | ||
15.e | even | 4 | 2 | 825.4.c.f | 2 | ||
21.c | even | 2 | 1 | 1617.4.a.d | 1 | ||
24.f | even | 2 | 1 | 2112.4.a.h | 1 | ||
24.h | odd | 2 | 1 | 2112.4.a.u | 1 | ||
33.d | even | 2 | 1 | 363.4.a.d | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.4.a.b | ✓ | 1 | 3.b | odd | 2 | 1 | |
99.4.a.a | 1 | 1.a | even | 1 | 1 | trivial | |
363.4.a.d | 1 | 33.d | even | 2 | 1 | ||
528.4.a.h | 1 | 12.b | even | 2 | 1 | ||
825.4.a.f | 1 | 15.d | odd | 2 | 1 | ||
825.4.c.f | 2 | 15.e | even | 4 | 2 | ||
1089.4.a.e | 1 | 11.b | odd | 2 | 1 | ||
1584.4.a.l | 1 | 4.b | odd | 2 | 1 | ||
1617.4.a.d | 1 | 21.c | even | 2 | 1 | ||
2112.4.a.h | 1 | 24.f | even | 2 | 1 | ||
2112.4.a.u | 1 | 24.h | odd | 2 | 1 | ||
2475.4.a.e | 1 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} - 1 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(99))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T - 1 \)
$3$
\( T \)
$5$
\( T - 4 \)
$7$
\( T + 26 \)
$11$
\( T + 11 \)
$13$
\( T + 32 \)
$17$
\( T + 74 \)
$19$
\( T + 60 \)
$23$
\( T - 182 \)
$29$
\( T - 90 \)
$31$
\( T + 8 \)
$37$
\( T + 66 \)
$41$
\( T + 422 \)
$43$
\( T - 408 \)
$47$
\( T - 506 \)
$53$
\( T + 348 \)
$59$
\( T - 200 \)
$61$
\( T - 132 \)
$67$
\( T + 1036 \)
$71$
\( T + 762 \)
$73$
\( T + 542 \)
$79$
\( T + 550 \)
$83$
\( T - 132 \)
$89$
\( T + 570 \)
$97$
\( T - 14 \)
show more
show less