Properties

Label 99.3.l.a.71.5
Level $99$
Weight $3$
Character 99.71
Analytic conductor $2.698$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 99.l (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.69755461717\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 71.5
Character \(\chi\) \(=\) 99.71
Dual form 99.3.l.a.53.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.296118 - 0.0962144i) q^{2} +(-3.15764 + 2.29416i) q^{4} +(-5.65537 - 1.83754i) q^{5} +(-7.01499 + 5.09669i) q^{7} +(-1.44634 + 1.99072i) q^{8} +O(q^{10})\) \(q+(0.296118 - 0.0962144i) q^{2} +(-3.15764 + 2.29416i) q^{4} +(-5.65537 - 1.83754i) q^{5} +(-7.01499 + 5.09669i) q^{7} +(-1.44634 + 1.99072i) q^{8} -1.85145 q^{10} +(-0.122358 - 10.9993i) q^{11} +(5.77807 + 17.7831i) q^{13} +(-1.58689 + 2.18416i) q^{14} +(4.58769 - 14.1195i) q^{16} +(-9.12965 - 2.96640i) q^{17} +(-4.66262 - 3.38759i) q^{19} +(22.0732 - 7.17203i) q^{20} +(-1.09453 - 3.24532i) q^{22} +41.5830i q^{23} +(8.38122 + 6.08931i) q^{25} +(3.42197 + 4.70994i) q^{26} +(10.4582 - 32.1870i) q^{28} +(-10.2118 - 14.0553i) q^{29} +(-4.22647 - 13.0077i) q^{31} -14.4651i q^{32} -2.98886 q^{34} +(49.0378 - 15.9333i) q^{35} +(5.83617 - 4.24023i) q^{37} +(-1.70662 - 0.554514i) q^{38} +(11.8376 - 8.60055i) q^{40} +(-31.2326 + 42.9880i) q^{41} +43.3682 q^{43} +(25.6206 + 34.4512i) q^{44} +(4.00089 + 12.3135i) q^{46} +(11.0762 - 15.2451i) q^{47} +(8.09204 - 24.9047i) q^{49} +(3.06770 + 0.996758i) q^{50} +(-59.0422 - 42.8967i) q^{52} +(-51.8817 + 16.8574i) q^{53} +(-19.5197 + 62.4300i) q^{55} -21.3365i q^{56} +(-4.37620 - 3.17949i) q^{58} +(-20.7671 - 28.5835i) q^{59} +(-36.4184 + 112.084i) q^{61} +(-2.50306 - 3.44517i) q^{62} +(16.9590 + 52.1945i) q^{64} -111.187i q^{65} -91.5111 q^{67} +(35.6335 - 11.5780i) q^{68} +(12.9879 - 9.43628i) q^{70} +(-110.147 - 35.7890i) q^{71} +(42.8336 - 31.1204i) q^{73} +(1.32022 - 1.81713i) q^{74} +22.4946 q^{76} +(56.9185 + 76.5365i) q^{77} +(0.633214 + 1.94883i) q^{79} +(-51.8902 + 71.4207i) q^{80} +(-5.11246 + 15.7345i) q^{82} +(27.4089 + 8.90568i) q^{83} +(46.1806 + 33.5522i) q^{85} +(12.8421 - 4.17265i) q^{86} +(22.0736 + 15.6652i) q^{88} +134.980i q^{89} +(-131.168 - 95.2991i) q^{91} +(-95.3981 - 131.304i) q^{92} +(1.81306 - 5.58001i) q^{94} +(20.1440 + 27.7259i) q^{95} +(-3.08284 - 9.48799i) q^{97} -8.15330i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 16 q^{7} + O(q^{10}) \) \( 32 q + 16 q^{4} - 16 q^{7} + 48 q^{10} + 8 q^{13} + 96 q^{16} - 40 q^{19} - 60 q^{22} - 188 q^{25} - 348 q^{28} - 164 q^{31} + 296 q^{34} - 36 q^{37} + 48 q^{40} + 544 q^{43} + 296 q^{46} + 196 q^{49} - 640 q^{52} - 440 q^{55} - 208 q^{58} - 432 q^{61} - 328 q^{64} + 48 q^{67} + 112 q^{70} + 712 q^{73} + 2104 q^{76} + 432 q^{79} + 676 q^{82} - 68 q^{85} - 176 q^{88} + 64 q^{91} - 1360 q^{94} + 132 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.296118 0.0962144i 0.148059 0.0481072i −0.234050 0.972225i \(-0.575198\pi\)
0.382109 + 0.924117i \(0.375198\pi\)
\(3\) 0 0
\(4\) −3.15764 + 2.29416i −0.789410 + 0.573540i
\(5\) −5.65537 1.83754i −1.13107 0.367508i −0.317090 0.948396i \(-0.602706\pi\)
−0.813984 + 0.580887i \(0.802706\pi\)
\(6\) 0 0
\(7\) −7.01499 + 5.09669i −1.00214 + 0.728099i −0.962546 0.271117i \(-0.912607\pi\)
−0.0395956 + 0.999216i \(0.512607\pi\)
\(8\) −1.44634 + 1.99072i −0.180793 + 0.248840i
\(9\) 0 0
\(10\) −1.85145 −0.185145
\(11\) −0.122358 10.9993i −0.0111235 0.999938i
\(12\) 0 0
\(13\) 5.77807 + 17.7831i 0.444467 + 1.36793i 0.883067 + 0.469246i \(0.155474\pi\)
−0.438601 + 0.898682i \(0.644526\pi\)
\(14\) −1.58689 + 2.18416i −0.113349 + 0.156012i
\(15\) 0 0
\(16\) 4.58769 14.1195i 0.286731 0.882467i
\(17\) −9.12965 2.96640i −0.537038 0.174494i 0.0279257 0.999610i \(-0.491110\pi\)
−0.564964 + 0.825116i \(0.691110\pi\)
\(18\) 0 0
\(19\) −4.66262 3.38759i −0.245401 0.178294i 0.458285 0.888805i \(-0.348464\pi\)
−0.703686 + 0.710511i \(0.748464\pi\)
\(20\) 22.0732 7.17203i 1.10366 0.358601i
\(21\) 0 0
\(22\) −1.09453 3.24532i −0.0497512 0.147514i
\(23\) 41.5830i 1.80796i 0.427578 + 0.903979i \(0.359367\pi\)
−0.427578 + 0.903979i \(0.640633\pi\)
\(24\) 0 0
\(25\) 8.38122 + 6.08931i 0.335249 + 0.243572i
\(26\) 3.42197 + 4.70994i 0.131614 + 0.181152i
\(27\) 0 0
\(28\) 10.4582 32.1870i 0.373507 1.14954i
\(29\) −10.2118 14.0553i −0.352129 0.484665i 0.595805 0.803129i \(-0.296833\pi\)
−0.947935 + 0.318464i \(0.896833\pi\)
\(30\) 0 0
\(31\) −4.22647 13.0077i −0.136338 0.419604i 0.859458 0.511206i \(-0.170801\pi\)
−0.995796 + 0.0916020i \(0.970801\pi\)
\(32\) 14.4651i 0.452034i
\(33\) 0 0
\(34\) −2.98886 −0.0879076
\(35\) 49.0378 15.9333i 1.40108 0.455238i
\(36\) 0 0
\(37\) 5.83617 4.24023i 0.157734 0.114601i −0.506118 0.862464i \(-0.668920\pi\)
0.663853 + 0.747863i \(0.268920\pi\)
\(38\) −1.70662 0.554514i −0.0449110 0.0145925i
\(39\) 0 0
\(40\) 11.8376 8.60055i 0.295941 0.215014i
\(41\) −31.2326 + 42.9880i −0.761771 + 1.04849i 0.235294 + 0.971924i \(0.424395\pi\)
−0.997065 + 0.0765632i \(0.975605\pi\)
\(42\) 0 0
\(43\) 43.3682 1.00856 0.504282 0.863539i \(-0.331757\pi\)
0.504282 + 0.863539i \(0.331757\pi\)
\(44\) 25.6206 + 34.4512i 0.582285 + 0.782981i
\(45\) 0 0
\(46\) 4.00089 + 12.3135i 0.0869758 + 0.267684i
\(47\) 11.0762 15.2451i 0.235663 0.324363i −0.674763 0.738035i \(-0.735754\pi\)
0.910426 + 0.413672i \(0.135754\pi\)
\(48\) 0 0
\(49\) 8.09204 24.9047i 0.165144 0.508260i
\(50\) 3.06770 + 0.996758i 0.0613541 + 0.0199352i
\(51\) 0 0
\(52\) −59.0422 42.8967i −1.13543 0.824937i
\(53\) −51.8817 + 16.8574i −0.978899 + 0.318064i −0.754403 0.656411i \(-0.772074\pi\)
−0.224496 + 0.974475i \(0.572074\pi\)
\(54\) 0 0
\(55\) −19.5197 + 62.4300i −0.354904 + 1.13509i
\(56\) 21.3365i 0.381008i
\(57\) 0 0
\(58\) −4.37620 3.17949i −0.0754517 0.0548189i
\(59\) −20.7671 28.5835i −0.351985 0.484466i 0.595909 0.803052i \(-0.296792\pi\)
−0.947894 + 0.318586i \(0.896792\pi\)
\(60\) 0 0
\(61\) −36.4184 + 112.084i −0.597023 + 1.83745i −0.0526365 + 0.998614i \(0.516762\pi\)
−0.544387 + 0.838834i \(0.683238\pi\)
\(62\) −2.50306 3.44517i −0.0403720 0.0555673i
\(63\) 0 0
\(64\) 16.9590 + 52.1945i 0.264985 + 0.815539i
\(65\) 111.187i 1.71057i
\(66\) 0 0
\(67\) −91.5111 −1.36584 −0.682919 0.730494i \(-0.739290\pi\)
−0.682919 + 0.730494i \(0.739290\pi\)
\(68\) 35.6335 11.5780i 0.524022 0.170265i
\(69\) 0 0
\(70\) 12.9879 9.43628i 0.185542 0.134804i
\(71\) −110.147 35.7890i −1.55137 0.504070i −0.596883 0.802328i \(-0.703594\pi\)
−0.954485 + 0.298258i \(0.903594\pi\)
\(72\) 0 0
\(73\) 42.8336 31.1204i 0.586762 0.426307i −0.254394 0.967101i \(-0.581876\pi\)
0.841156 + 0.540793i \(0.181876\pi\)
\(74\) 1.32022 1.81713i 0.0178408 0.0245558i
\(75\) 0 0
\(76\) 22.4946 0.295981
\(77\) 56.9185 + 76.5365i 0.739201 + 0.993981i
\(78\) 0 0
\(79\) 0.633214 + 1.94883i 0.00801537 + 0.0246688i 0.954984 0.296657i \(-0.0958717\pi\)
−0.946969 + 0.321325i \(0.895872\pi\)
\(80\) −51.8902 + 71.4207i −0.648627 + 0.892759i
\(81\) 0 0
\(82\) −5.11246 + 15.7345i −0.0623470 + 0.191884i
\(83\) 27.4089 + 8.90568i 0.330227 + 0.107297i 0.469438 0.882965i \(-0.344457\pi\)
−0.139211 + 0.990263i \(0.544457\pi\)
\(84\) 0 0
\(85\) 46.1806 + 33.5522i 0.543302 + 0.394732i
\(86\) 12.8421 4.17265i 0.149327 0.0485192i
\(87\) 0 0
\(88\) 22.0736 + 15.6652i 0.250836 + 0.178014i
\(89\) 134.980i 1.51663i 0.651891 + 0.758313i \(0.273976\pi\)
−0.651891 + 0.758313i \(0.726024\pi\)
\(90\) 0 0
\(91\) −131.168 95.2991i −1.44141 1.04724i
\(92\) −95.3981 131.304i −1.03694 1.42722i
\(93\) 0 0
\(94\) 1.81306 5.58001i 0.0192878 0.0593619i
\(95\) 20.1440 + 27.7259i 0.212042 + 0.291851i
\(96\) 0 0
\(97\) −3.08284 9.48799i −0.0317818 0.0978144i 0.933907 0.357515i \(-0.116376\pi\)
−0.965689 + 0.259701i \(0.916376\pi\)
\(98\) 8.15330i 0.0831970i
\(99\) 0 0
\(100\) −40.4347 −0.404347
\(101\) 163.987 53.2825i 1.62363 0.527550i 0.650837 0.759218i \(-0.274418\pi\)
0.972795 + 0.231668i \(0.0744182\pi\)
\(102\) 0 0
\(103\) 91.9355 66.7951i 0.892578 0.648496i −0.0439711 0.999033i \(-0.514001\pi\)
0.936549 + 0.350537i \(0.114001\pi\)
\(104\) −43.7582 14.2179i −0.420752 0.136711i
\(105\) 0 0
\(106\) −13.7411 + 9.98353i −0.129633 + 0.0941842i
\(107\) 48.8875 67.2879i 0.456893 0.628859i −0.516968 0.856005i \(-0.672939\pi\)
0.973861 + 0.227146i \(0.0729395\pi\)
\(108\) 0 0
\(109\) 125.432 1.15075 0.575377 0.817888i \(-0.304855\pi\)
0.575377 + 0.817888i \(0.304855\pi\)
\(110\) 0.226540 + 20.3647i 0.00205945 + 0.185134i
\(111\) 0 0
\(112\) 39.7799 + 122.430i 0.355178 + 1.09313i
\(113\) −59.4756 + 81.8612i −0.526333 + 0.724435i −0.986566 0.163363i \(-0.947766\pi\)
0.460233 + 0.887798i \(0.347766\pi\)
\(114\) 0 0
\(115\) 76.4105 235.167i 0.664439 2.04493i
\(116\) 64.4901 + 20.9541i 0.555949 + 0.180639i
\(117\) 0 0
\(118\) −8.89966 6.46598i −0.0754208 0.0547964i
\(119\) 79.1632 25.7217i 0.665237 0.216149i
\(120\) 0 0
\(121\) −120.970 + 2.69171i −0.999753 + 0.0222455i
\(122\) 36.6941i 0.300771i
\(123\) 0 0
\(124\) 43.1875 + 31.3775i 0.348286 + 0.253045i
\(125\) 51.1707 + 70.4305i 0.409366 + 0.563444i
\(126\) 0 0
\(127\) 38.3169 117.927i 0.301708 0.928561i −0.679178 0.733974i \(-0.737663\pi\)
0.980885 0.194587i \(-0.0623366\pi\)
\(128\) 44.0532 + 60.6340i 0.344166 + 0.473703i
\(129\) 0 0
\(130\) −10.6978 32.9245i −0.0822909 0.253265i
\(131\) 52.5607i 0.401227i −0.979670 0.200614i \(-0.935706\pi\)
0.979670 0.200614i \(-0.0642935\pi\)
\(132\) 0 0
\(133\) 49.9738 0.375743
\(134\) −27.0980 + 8.80469i −0.202224 + 0.0657066i
\(135\) 0 0
\(136\) 19.1099 13.8841i 0.140514 0.102089i
\(137\) −119.626 38.8689i −0.873185 0.283715i −0.162060 0.986781i \(-0.551814\pi\)
−0.711125 + 0.703066i \(0.751814\pi\)
\(138\) 0 0
\(139\) −43.4005 + 31.5323i −0.312234 + 0.226851i −0.732855 0.680385i \(-0.761812\pi\)
0.420620 + 0.907237i \(0.361812\pi\)
\(140\) −118.290 + 162.812i −0.844928 + 1.16294i
\(141\) 0 0
\(142\) −36.0599 −0.253943
\(143\) 194.895 65.7307i 1.36290 0.459655i
\(144\) 0 0
\(145\) 31.9241 + 98.2523i 0.220166 + 0.677602i
\(146\) 9.68955 13.3365i 0.0663668 0.0913460i
\(147\) 0 0
\(148\) −8.70077 + 26.7782i −0.0587890 + 0.180934i
\(149\) 4.02993 + 1.30940i 0.0270465 + 0.00878795i 0.322509 0.946566i \(-0.395474\pi\)
−0.295462 + 0.955354i \(0.595474\pi\)
\(150\) 0 0
\(151\) −76.3610 55.4795i −0.505702 0.367414i 0.305489 0.952196i \(-0.401180\pi\)
−0.811191 + 0.584782i \(0.801180\pi\)
\(152\) 13.4875 4.38236i 0.0887336 0.0288313i
\(153\) 0 0
\(154\) 24.2185 + 17.1874i 0.157263 + 0.111607i
\(155\) 81.3299i 0.524709i
\(156\) 0 0
\(157\) 120.287 + 87.3939i 0.766162 + 0.556649i 0.900794 0.434247i \(-0.142985\pi\)
−0.134632 + 0.990896i \(0.542985\pi\)
\(158\) 0.375011 + 0.516159i 0.00237349 + 0.00326683i
\(159\) 0 0
\(160\) −26.5802 + 81.8054i −0.166126 + 0.511284i
\(161\) −211.936 291.705i −1.31637 1.81183i
\(162\) 0 0
\(163\) −28.3527 87.2606i −0.173943 0.535341i 0.825641 0.564196i \(-0.190814\pi\)
−0.999584 + 0.0288552i \(0.990814\pi\)
\(164\) 207.393i 1.26459i
\(165\) 0 0
\(166\) 8.97310 0.0540548
\(167\) 13.5693 4.40895i 0.0812536 0.0264009i −0.268108 0.963389i \(-0.586398\pi\)
0.349362 + 0.936988i \(0.386398\pi\)
\(168\) 0 0
\(169\) −146.127 + 106.168i −0.864660 + 0.628212i
\(170\) 16.9031 + 5.49215i 0.0994300 + 0.0323068i
\(171\) 0 0
\(172\) −136.941 + 99.4936i −0.796170 + 0.578451i
\(173\) −136.531 + 187.919i −0.789197 + 1.08624i 0.205011 + 0.978760i \(0.434277\pi\)
−0.994208 + 0.107476i \(0.965723\pi\)
\(174\) 0 0
\(175\) −89.8295 −0.513312
\(176\) −155.866 48.7339i −0.885601 0.276897i
\(177\) 0 0
\(178\) 12.9870 + 39.9698i 0.0729606 + 0.224550i
\(179\) 84.4401 116.222i 0.471733 0.649284i −0.505157 0.863027i \(-0.668566\pi\)
0.976890 + 0.213743i \(0.0685655\pi\)
\(180\) 0 0
\(181\) −74.0732 + 227.974i −0.409244 + 1.25952i 0.508055 + 0.861324i \(0.330365\pi\)
−0.917299 + 0.398199i \(0.869635\pi\)
\(182\) −48.0103 15.5995i −0.263793 0.0857114i
\(183\) 0 0
\(184\) −82.7802 60.1433i −0.449892 0.326866i
\(185\) −40.7973 + 13.2558i −0.220526 + 0.0716532i
\(186\) 0 0
\(187\) −31.5113 + 100.783i −0.168510 + 0.538946i
\(188\) 73.5489i 0.391218i
\(189\) 0 0
\(190\) 8.63262 + 6.27197i 0.0454349 + 0.0330104i
\(191\) 22.0606 + 30.3638i 0.115501 + 0.158973i 0.862853 0.505455i \(-0.168675\pi\)
−0.747352 + 0.664428i \(0.768675\pi\)
\(192\) 0 0
\(193\) 62.9072 193.608i 0.325944 1.00315i −0.645069 0.764125i \(-0.723171\pi\)
0.971013 0.239028i \(-0.0768288\pi\)
\(194\) −1.82576 2.51295i −0.00941115 0.0129533i
\(195\) 0 0
\(196\) 31.5837 + 97.2047i 0.161141 + 0.495942i
\(197\) 208.477i 1.05826i 0.848541 + 0.529129i \(0.177481\pi\)
−0.848541 + 0.529129i \(0.822519\pi\)
\(198\) 0 0
\(199\) −249.874 −1.25565 −0.627825 0.778355i \(-0.716055\pi\)
−0.627825 + 0.778355i \(0.716055\pi\)
\(200\) −24.2442 + 7.87743i −0.121221 + 0.0393872i
\(201\) 0 0
\(202\) 43.4328 31.5558i 0.215014 0.156217i
\(203\) 143.271 + 46.5515i 0.705767 + 0.229318i
\(204\) 0 0
\(205\) 255.624 185.722i 1.24695 0.905960i
\(206\) 20.7971 28.6247i 0.100957 0.138955i
\(207\) 0 0
\(208\) 277.595 1.33459
\(209\) −36.6907 + 51.7002i −0.175554 + 0.247369i
\(210\) 0 0
\(211\) 37.5620 + 115.604i 0.178019 + 0.547885i 0.999758 0.0219776i \(-0.00699627\pi\)
−0.821740 + 0.569863i \(0.806996\pi\)
\(212\) 125.150 172.254i 0.590331 0.812520i
\(213\) 0 0
\(214\) 8.00238 24.6288i 0.0373943 0.115088i
\(215\) −245.263 79.6909i −1.14076 0.370655i
\(216\) 0 0
\(217\) 95.9451 + 69.7082i 0.442143 + 0.321236i
\(218\) 37.1427 12.0684i 0.170379 0.0553595i
\(219\) 0 0
\(220\) −81.5883 241.913i −0.370856 1.09960i
\(221\) 179.493i 0.812186i
\(222\) 0 0
\(223\) 58.0972 + 42.2101i 0.260526 + 0.189283i 0.710379 0.703820i \(-0.248524\pi\)
−0.449853 + 0.893103i \(0.648524\pi\)
\(224\) 73.7241 + 101.473i 0.329125 + 0.453002i
\(225\) 0 0
\(226\) −9.73555 + 29.9629i −0.0430776 + 0.132579i
\(227\) 137.568 + 189.346i 0.606028 + 0.834125i 0.996243 0.0865981i \(-0.0275996\pi\)
−0.390216 + 0.920723i \(0.627600\pi\)
\(228\) 0 0
\(229\) 21.0536 + 64.7964i 0.0919372 + 0.282954i 0.986443 0.164102i \(-0.0524726\pi\)
−0.894506 + 0.447056i \(0.852473\pi\)
\(230\) 76.9889i 0.334735i
\(231\) 0 0
\(232\) 42.7498 0.184267
\(233\) 101.511 32.9829i 0.435669 0.141558i −0.0829673 0.996552i \(-0.526440\pi\)
0.518637 + 0.854995i \(0.326440\pi\)
\(234\) 0 0
\(235\) −90.6533 + 65.8635i −0.385759 + 0.280270i
\(236\) 131.150 + 42.6133i 0.555721 + 0.180565i
\(237\) 0 0
\(238\) 20.9668 15.2333i 0.0880959 0.0640054i
\(239\) 204.895 282.014i 0.857302 1.17997i −0.124904 0.992169i \(-0.539862\pi\)
0.982206 0.187806i \(-0.0601377\pi\)
\(240\) 0 0
\(241\) −377.429 −1.56609 −0.783047 0.621962i \(-0.786336\pi\)
−0.783047 + 0.621962i \(0.786336\pi\)
\(242\) −35.5624 + 12.4361i −0.146952 + 0.0513889i
\(243\) 0 0
\(244\) −142.143 437.472i −0.582554 1.79292i
\(245\) −91.5270 + 125.976i −0.373580 + 0.514188i
\(246\) 0 0
\(247\) 33.3009 102.489i 0.134821 0.414937i
\(248\) 32.0077 + 10.3999i 0.129063 + 0.0419352i
\(249\) 0 0
\(250\) 21.9290 + 15.9323i 0.0877159 + 0.0637293i
\(251\) −286.896 + 93.2182i −1.14301 + 0.371387i −0.818507 0.574497i \(-0.805198\pi\)
−0.324506 + 0.945884i \(0.605198\pi\)
\(252\) 0 0
\(253\) 457.385 5.08802i 1.80785 0.0201107i
\(254\) 38.6069i 0.151996i
\(255\) 0 0
\(256\) −158.718 115.316i −0.619994 0.450452i
\(257\) 8.80297 + 12.1162i 0.0342528 + 0.0471449i 0.825800 0.563963i \(-0.190724\pi\)
−0.791547 + 0.611108i \(0.790724\pi\)
\(258\) 0 0
\(259\) −19.3296 + 59.4903i −0.0746316 + 0.229692i
\(260\) 255.081 + 351.089i 0.981082 + 1.35034i
\(261\) 0 0
\(262\) −5.05710 15.5642i −0.0193019 0.0594052i
\(263\) 470.671i 1.78962i 0.446443 + 0.894812i \(0.352691\pi\)
−0.446443 + 0.894812i \(0.647309\pi\)
\(264\) 0 0
\(265\) 324.386 1.22410
\(266\) 14.7981 4.80820i 0.0556320 0.0180759i
\(267\) 0 0
\(268\) 288.959 209.941i 1.07821 0.783362i
\(269\) −190.046 61.7497i −0.706491 0.229553i −0.0663343 0.997797i \(-0.521130\pi\)
−0.640156 + 0.768245i \(0.721130\pi\)
\(270\) 0 0
\(271\) 70.6026 51.2958i 0.260526 0.189283i −0.449853 0.893103i \(-0.648524\pi\)
0.710379 + 0.703819i \(0.248524\pi\)
\(272\) −83.7680 + 115.297i −0.307971 + 0.423885i
\(273\) 0 0
\(274\) −39.1632 −0.142931
\(275\) 65.9528 92.9328i 0.239828 0.337937i
\(276\) 0 0
\(277\) −92.4637 284.574i −0.333804 1.02734i −0.967308 0.253604i \(-0.918384\pi\)
0.633504 0.773739i \(-0.281616\pi\)
\(278\) −9.81780 + 13.5130i −0.0353158 + 0.0486080i
\(279\) 0 0
\(280\) −39.2066 + 120.666i −0.140024 + 0.430949i
\(281\) 284.085 + 92.3049i 1.01098 + 0.328487i 0.767245 0.641354i \(-0.221627\pi\)
0.243735 + 0.969842i \(0.421627\pi\)
\(282\) 0 0
\(283\) 165.458 + 120.212i 0.584656 + 0.424777i 0.840400 0.541967i \(-0.182320\pi\)
−0.255744 + 0.966745i \(0.582320\pi\)
\(284\) 429.911 139.686i 1.51377 0.491854i
\(285\) 0 0
\(286\) 51.3875 38.2157i 0.179676 0.133621i
\(287\) 460.743i 1.60538i
\(288\) 0 0
\(289\) −159.255 115.706i −0.551055 0.400365i
\(290\) 18.9066 + 26.0227i 0.0651951 + 0.0897333i
\(291\) 0 0
\(292\) −63.8579 + 196.534i −0.218691 + 0.673063i
\(293\) −60.4497 83.2019i −0.206313 0.283965i 0.693304 0.720645i \(-0.256154\pi\)
−0.899617 + 0.436680i \(0.856154\pi\)
\(294\) 0 0
\(295\) 64.9224 + 199.811i 0.220076 + 0.677324i
\(296\) 17.7510i 0.0599697i
\(297\) 0 0
\(298\) 1.31932 0.00442724
\(299\) −739.473 + 240.270i −2.47316 + 0.803577i
\(300\) 0 0
\(301\) −304.228 + 221.035i −1.01072 + 0.734334i
\(302\) −27.9497 9.08142i −0.0925488 0.0300709i
\(303\) 0 0
\(304\) −69.2217 + 50.2925i −0.227703 + 0.165436i
\(305\) 411.919 566.958i 1.35055 1.85888i
\(306\) 0 0
\(307\) 39.5643 0.128874 0.0644369 0.997922i \(-0.479475\pi\)
0.0644369 + 0.997922i \(0.479475\pi\)
\(308\) −355.315 111.095i −1.15362 0.360697i
\(309\) 0 0
\(310\) 7.82510 + 24.0832i 0.0252423 + 0.0776877i
\(311\) −81.9693 + 112.821i −0.263567 + 0.362769i −0.920205 0.391437i \(-0.871978\pi\)
0.656638 + 0.754206i \(0.271978\pi\)
\(312\) 0 0
\(313\) −69.8621 + 215.013i −0.223201 + 0.686943i 0.775268 + 0.631633i \(0.217615\pi\)
−0.998469 + 0.0553107i \(0.982385\pi\)
\(314\) 44.0278 + 14.3055i 0.140216 + 0.0455589i
\(315\) 0 0
\(316\) −6.47039 4.70102i −0.0204759 0.0148766i
\(317\) −334.945 + 108.830i −1.05661 + 0.343313i −0.785259 0.619167i \(-0.787470\pi\)
−0.271350 + 0.962481i \(0.587470\pi\)
\(318\) 0 0
\(319\) −153.349 + 114.042i −0.480718 + 0.357499i
\(320\) 326.342i 1.01982i
\(321\) 0 0
\(322\) −90.8241 65.9876i −0.282062 0.204930i
\(323\) 32.5191 + 44.7587i 0.100678 + 0.138572i
\(324\) 0 0
\(325\) −59.8594 + 184.228i −0.184183 + 0.566856i
\(326\) −16.7914 23.1114i −0.0515075 0.0708940i
\(327\) 0 0
\(328\) −40.4040 124.351i −0.123183 0.379118i
\(329\) 163.396i 0.496644i
\(330\) 0 0
\(331\) −84.8580 −0.256369 −0.128184 0.991750i \(-0.540915\pi\)
−0.128184 + 0.991750i \(0.540915\pi\)
\(332\) −106.978 + 34.7594i −0.322224 + 0.104697i
\(333\) 0 0
\(334\) 3.59392 2.61113i 0.0107602 0.00781776i
\(335\) 517.529 + 168.155i 1.54486 + 0.501956i
\(336\) 0 0
\(337\) −426.493 + 309.865i −1.26556 + 0.919482i −0.999016 0.0443415i \(-0.985881\pi\)
−0.266542 + 0.963823i \(0.585881\pi\)
\(338\) −33.0560 + 45.4977i −0.0977989 + 0.134609i
\(339\) 0 0
\(340\) −222.796 −0.655282
\(341\) −142.559 + 48.0799i −0.418062 + 0.140997i
\(342\) 0 0
\(343\) −61.1288 188.135i −0.178218 0.548499i
\(344\) −62.7254 + 86.3341i −0.182341 + 0.250971i
\(345\) 0 0
\(346\) −22.3487 + 68.7823i −0.0645917 + 0.198793i
\(347\) −120.136 39.0345i −0.346212 0.112491i 0.130749 0.991416i \(-0.458262\pi\)
−0.476961 + 0.878924i \(0.658262\pi\)
\(348\) 0 0
\(349\) 365.235 + 265.359i 1.04652 + 0.760340i 0.971547 0.236845i \(-0.0761135\pi\)
0.0749713 + 0.997186i \(0.476113\pi\)
\(350\) −26.6001 + 8.64290i −0.0760003 + 0.0246940i
\(351\) 0 0
\(352\) −159.106 + 1.76992i −0.452006 + 0.00502818i
\(353\) 145.710i 0.412775i 0.978470 + 0.206388i \(0.0661708\pi\)
−0.978470 + 0.206388i \(0.933829\pi\)
\(354\) 0 0
\(355\) 557.159 + 404.800i 1.56946 + 1.14028i
\(356\) −309.665 426.217i −0.869845 1.19724i
\(357\) 0 0
\(358\) 13.8220 42.5397i 0.0386089 0.118826i
\(359\) −252.282 347.237i −0.702736 0.967233i −0.999923 0.0124137i \(-0.996048\pi\)
0.297187 0.954819i \(-0.403952\pi\)
\(360\) 0 0
\(361\) −101.291 311.741i −0.280584 0.863549i
\(362\) 74.6339i 0.206171i
\(363\) 0 0
\(364\) 632.812 1.73850
\(365\) −299.425 + 97.2891i −0.820342 + 0.266545i
\(366\) 0 0
\(367\) −107.083 + 77.8000i −0.291778 + 0.211989i −0.724038 0.689760i \(-0.757716\pi\)
0.432260 + 0.901749i \(0.357716\pi\)
\(368\) 587.130 + 190.770i 1.59546 + 0.518397i
\(369\) 0 0
\(370\) −10.8054 + 7.85058i −0.0292038 + 0.0212178i
\(371\) 278.033 382.679i 0.749414 1.03148i
\(372\) 0 0
\(373\) −478.180 −1.28198 −0.640992 0.767547i \(-0.721477\pi\)
−0.640992 + 0.767547i \(0.721477\pi\)
\(374\) 0.365711 + 32.8754i 0.000977837 + 0.0879022i
\(375\) 0 0
\(376\) 14.3287 + 44.0992i 0.0381082 + 0.117285i
\(377\) 190.942 262.809i 0.506476 0.697105i
\(378\) 0 0
\(379\) −81.6441 + 251.275i −0.215420 + 0.662994i 0.783704 + 0.621135i \(0.213328\pi\)
−0.999124 + 0.0418592i \(0.986672\pi\)
\(380\) −127.215 41.3347i −0.334777 0.108775i
\(381\) 0 0
\(382\) 9.45396 + 6.86871i 0.0247486 + 0.0179809i
\(383\) −224.859 + 73.0612i −0.587100 + 0.190760i −0.587479 0.809240i \(-0.699879\pi\)
0.000379005 1.00000i \(0.499879\pi\)
\(384\) 0 0
\(385\) −181.256 537.432i −0.470795 1.39593i
\(386\) 63.3834i 0.164206i
\(387\) 0 0
\(388\) 31.5015 + 22.8871i 0.0811893 + 0.0589875i
\(389\) 300.486 + 413.583i 0.772457 + 1.06320i 0.996074 + 0.0885193i \(0.0282135\pi\)
−0.223617 + 0.974677i \(0.571787\pi\)
\(390\) 0 0
\(391\) 123.352 379.638i 0.315478 0.970942i
\(392\) 37.8745 + 52.1298i 0.0966187 + 0.132984i
\(393\) 0 0
\(394\) 20.0585 + 61.7336i 0.0509098 + 0.156684i
\(395\) 12.1849i 0.0308479i
\(396\) 0 0
\(397\) 389.224 0.980413 0.490207 0.871606i \(-0.336921\pi\)
0.490207 + 0.871606i \(0.336921\pi\)
\(398\) −73.9921 + 24.0415i −0.185910 + 0.0604058i
\(399\) 0 0
\(400\) 124.428 90.4024i 0.311071 0.226006i
\(401\) 214.986 + 69.8532i 0.536125 + 0.174198i 0.564551 0.825398i \(-0.309049\pi\)
−0.0284257 + 0.999596i \(0.509049\pi\)
\(402\) 0 0
\(403\) 206.897 150.319i 0.513391 0.373000i
\(404\) −395.573 + 544.459i −0.979140 + 1.34767i
\(405\) 0 0
\(406\) 46.9039 0.115527
\(407\) −47.3537 63.6751i −0.116348 0.156450i
\(408\) 0 0
\(409\) −56.1688 172.870i −0.137332 0.422664i 0.858614 0.512623i \(-0.171326\pi\)
−0.995945 + 0.0899593i \(0.971326\pi\)
\(410\) 57.8256 79.5902i 0.141038 0.194122i
\(411\) 0 0
\(412\) −137.061 + 421.829i −0.332672 + 1.02386i
\(413\) 291.363 + 94.6694i 0.705478 + 0.229224i
\(414\) 0 0
\(415\) −138.643 100.730i −0.334079 0.242722i
\(416\) 257.234 83.5803i 0.618350 0.200914i
\(417\) 0 0
\(418\) −5.89046 + 18.8395i −0.0140920 + 0.0450706i
\(419\) 171.909i 0.410284i 0.978732 + 0.205142i \(0.0657656\pi\)
−0.978732 + 0.205142i \(0.934234\pi\)
\(420\) 0 0
\(421\) 97.7668 + 71.0318i 0.232225 + 0.168722i 0.697813 0.716280i \(-0.254157\pi\)
−0.465587 + 0.885002i \(0.654157\pi\)
\(422\) 22.2455 + 30.6183i 0.0527145 + 0.0725552i
\(423\) 0 0
\(424\) 41.4804 127.663i 0.0978311 0.301093i
\(425\) −58.4542 80.4553i −0.137539 0.189307i
\(426\) 0 0
\(427\) −315.784 971.884i −0.739542 2.27608i
\(428\) 324.627i 0.758473i
\(429\) 0 0
\(430\) −80.2942 −0.186731
\(431\) −451.082 + 146.565i −1.04659 + 0.340059i −0.781331 0.624117i \(-0.785459\pi\)
−0.265263 + 0.964176i \(0.585459\pi\)
\(432\) 0 0
\(433\) −205.673 + 149.430i −0.474996 + 0.345105i −0.799385 0.600819i \(-0.794841\pi\)
0.324389 + 0.945924i \(0.394841\pi\)
\(434\) 35.1179 + 11.4105i 0.0809169 + 0.0262915i
\(435\) 0 0
\(436\) −396.070 + 287.761i −0.908416 + 0.660003i
\(437\) 140.866 193.886i 0.322349 0.443675i
\(438\) 0 0
\(439\) 515.246 1.17368 0.586841 0.809703i \(-0.300372\pi\)
0.586841 + 0.809703i \(0.300372\pi\)
\(440\) −96.0486 129.154i −0.218292 0.293531i
\(441\) 0 0
\(442\) −17.2698 53.1511i −0.0390720 0.120251i
\(443\) 309.199 425.576i 0.697966 0.960668i −0.302007 0.953306i \(-0.597656\pi\)
0.999973 0.00736244i \(-0.00234356\pi\)
\(444\) 0 0
\(445\) 248.031 763.360i 0.557372 1.71542i
\(446\) 21.2648 + 6.90936i 0.0476790 + 0.0154918i
\(447\) 0 0
\(448\) −384.987 279.709i −0.859345 0.624351i
\(449\) 515.338 167.443i 1.14775 0.372925i 0.327452 0.944868i \(-0.393810\pi\)
0.820293 + 0.571943i \(0.193810\pi\)
\(450\) 0 0
\(451\) 476.660 + 338.277i 1.05690 + 0.750061i
\(452\) 394.935i 0.873749i
\(453\) 0 0
\(454\) 58.9542 + 42.8328i 0.129855 + 0.0943453i
\(455\) 566.687 + 779.978i 1.24547 + 1.71424i
\(456\) 0 0
\(457\) 37.8329 116.438i 0.0827854 0.254787i −0.901093 0.433626i \(-0.857234\pi\)
0.983878 + 0.178839i \(0.0572340\pi\)
\(458\) 12.4687 + 17.1617i 0.0272242 + 0.0374709i
\(459\) 0 0
\(460\) 298.235 + 917.871i 0.648336 + 1.99537i
\(461\) 308.300i 0.668764i 0.942438 + 0.334382i \(0.108528\pi\)
−0.942438 + 0.334382i \(0.891472\pi\)
\(462\) 0 0
\(463\) 369.654 0.798389 0.399195 0.916866i \(-0.369290\pi\)
0.399195 + 0.916866i \(0.369290\pi\)
\(464\) −245.301 + 79.7032i −0.528667 + 0.171774i
\(465\) 0 0
\(466\) 26.8857 19.5336i 0.0576947 0.0419177i
\(467\) 103.523 + 33.6365i 0.221676 + 0.0720269i 0.417749 0.908562i \(-0.362819\pi\)
−0.196073 + 0.980589i \(0.562819\pi\)
\(468\) 0 0
\(469\) 641.950 466.404i 1.36876 0.994465i
\(470\) −20.5070 + 28.2255i −0.0436319 + 0.0600542i
\(471\) 0 0
\(472\) 86.9382 0.184191
\(473\) −5.30645 477.021i −0.0112187 1.00850i
\(474\) 0 0
\(475\) −18.4503 56.7843i −0.0388428 0.119546i
\(476\) −190.959 + 262.833i −0.401175 + 0.552170i
\(477\) 0 0
\(478\) 33.5392 103.223i 0.0701658 0.215948i
\(479\) −287.864 93.5328i −0.600969 0.195267i −0.00729665 0.999973i \(-0.502323\pi\)
−0.593673 + 0.804707i \(0.702323\pi\)
\(480\) 0 0
\(481\) 109.126 + 79.2847i 0.226873 + 0.164833i
\(482\) −111.763 + 36.3141i −0.231874 + 0.0753404i
\(483\) 0 0
\(484\) 375.805 286.024i 0.776456 0.590959i
\(485\) 59.3229i 0.122315i
\(486\) 0 0
\(487\) −375.540 272.846i −0.771130 0.560258i 0.131174 0.991359i \(-0.458125\pi\)
−0.902304 + 0.431101i \(0.858125\pi\)
\(488\) −170.455 234.611i −0.349293 0.480761i
\(489\) 0 0
\(490\) −14.9820 + 46.1099i −0.0305756 + 0.0941019i
\(491\) 204.017 + 280.805i 0.415513 + 0.571905i 0.964552 0.263892i \(-0.0850063\pi\)
−0.549039 + 0.835797i \(0.685006\pi\)
\(492\) 0 0
\(493\) 51.5361 + 158.612i 0.104536 + 0.321728i
\(494\) 33.5530i 0.0679210i
\(495\) 0 0
\(496\) −203.052 −0.409379
\(497\) 955.087 310.326i 1.92170 0.624399i
\(498\) 0 0
\(499\) −368.064 + 267.414i −0.737603 + 0.535900i −0.891960 0.452115i \(-0.850670\pi\)
0.154356 + 0.988015i \(0.450670\pi\)
\(500\) −323.157 105.000i −0.646315 0.210000i
\(501\) 0 0
\(502\) −75.9860 + 55.2071i −0.151367 + 0.109974i
\(503\) −243.623 + 335.319i −0.484341 + 0.666638i −0.979332 0.202260i \(-0.935171\pi\)
0.494991 + 0.868898i \(0.335171\pi\)
\(504\) 0 0
\(505\) −1025.31 −2.03033
\(506\) 134.950 45.5137i 0.266700 0.0899480i
\(507\) 0 0
\(508\) 149.553 + 460.277i 0.294396 + 0.906056i
\(509\) 88.1735 121.360i 0.173229 0.238429i −0.713571 0.700583i \(-0.752923\pi\)
0.886800 + 0.462154i \(0.152923\pi\)
\(510\) 0 0
\(511\) −141.866 + 436.619i −0.277625 + 0.854441i
\(512\) −343.213 111.517i −0.670337 0.217806i
\(513\) 0 0
\(514\) 3.77247 + 2.74086i 0.00733943 + 0.00533241i
\(515\) −642.668 + 208.815i −1.24790 + 0.405467i
\(516\) 0 0
\(517\) −169.040 119.965i −0.326964 0.232041i
\(518\) 19.4759i 0.0375983i
\(519\) 0 0
\(520\) 221.343 + 160.815i 0.425659 + 0.309260i
\(521\) −256.909 353.605i −0.493107 0.678704i 0.487850 0.872927i \(-0.337781\pi\)
−0.980957 + 0.194224i \(0.937781\pi\)
\(522\) 0 0
\(523\) −126.781 + 390.193i −0.242412 + 0.746067i 0.753639 + 0.657288i \(0.228297\pi\)
−0.996051 + 0.0887790i \(0.971703\pi\)
\(524\) 120.583 + 165.968i 0.230120 + 0.316733i
\(525\) 0 0
\(526\) 45.2854 + 139.374i 0.0860938 + 0.264970i
\(527\) 131.293i 0.249134i
\(528\) 0 0
\(529\) −1200.15 −2.26871
\(530\) 96.0564 31.2106i 0.181238 0.0588879i
\(531\) 0 0
\(532\) −157.799 + 114.648i −0.296615 + 0.215504i
\(533\) −944.922 307.024i −1.77284 0.576030i
\(534\) 0 0
\(535\) −400.121 + 290.705i −0.747890 + 0.543374i
\(536\) 132.357 182.173i 0.246934 0.339875i
\(537\) 0 0
\(538\) −62.2171 −0.115645
\(539\) −274.925 85.9597i −0.510066 0.159480i
\(540\) 0 0
\(541\) −154.410 475.226i −0.285416 0.878421i −0.986274 0.165119i \(-0.947199\pi\)
0.700857 0.713302i \(-0.252801\pi\)
\(542\) 15.9713 21.9826i 0.0294673 0.0405583i
\(543\) 0 0
\(544\) −42.9093 + 132.061i −0.0788773 + 0.242759i
\(545\) −709.365 230.487i −1.30159 0.422911i
\(546\) 0 0
\(547\) 562.723 + 408.842i 1.02874 + 0.747426i 0.968057 0.250731i \(-0.0806709\pi\)
0.0606867 + 0.998157i \(0.480671\pi\)
\(548\) 466.908 151.708i 0.852022 0.276839i
\(549\) 0 0
\(550\) 10.5883 33.8646i 0.0192515 0.0615720i
\(551\) 100.128i 0.181720i
\(552\) 0 0
\(553\) −14.3746 10.4437i −0.0259938 0.0188856i
\(554\) −54.7602 75.3710i −0.0988452 0.136049i
\(555\) 0 0
\(556\) 64.7031 199.136i 0.116372 0.358157i
\(557\) 254.943 + 350.898i 0.457707 + 0.629979i 0.974031 0.226414i \(-0.0727002\pi\)
−0.516325 + 0.856393i \(0.672700\pi\)
\(558\) 0 0
\(559\) 250.585 + 771.220i 0.448273 + 1.37964i
\(560\) 765.484i 1.36694i
\(561\) 0 0
\(562\) 93.0037 0.165487
\(563\) 639.745 207.866i 1.13632 0.369211i 0.320343 0.947302i \(-0.396202\pi\)
0.815973 + 0.578091i \(0.196202\pi\)
\(564\) 0 0
\(565\) 486.780 353.666i 0.861557 0.625958i
\(566\) 60.5610 + 19.6775i 0.106998 + 0.0347658i
\(567\) 0 0
\(568\) 230.556 167.509i 0.405909 0.294910i
\(569\) 319.271 439.438i 0.561108 0.772299i −0.430359 0.902658i \(-0.641613\pi\)
0.991467 + 0.130359i \(0.0416129\pi\)
\(570\) 0 0
\(571\) 607.861 1.06456 0.532278 0.846570i \(-0.321336\pi\)
0.532278 + 0.846570i \(0.321336\pi\)
\(572\) −464.610 + 654.673i −0.812256 + 1.14453i
\(573\) 0 0
\(574\) −44.3301 136.434i −0.0772302 0.237690i
\(575\) −253.212 + 348.516i −0.440369 + 0.606115i
\(576\) 0 0
\(577\) 40.4970 124.637i 0.0701854 0.216009i −0.909811 0.415022i \(-0.863774\pi\)
0.979997 + 0.199014i \(0.0637738\pi\)
\(578\) −58.2907 18.9398i −0.100849 0.0327678i
\(579\) 0 0
\(580\) −326.211 237.006i −0.562433 0.408632i
\(581\) −237.663 + 77.2212i −0.409058 + 0.132911i
\(582\) 0 0
\(583\) 191.768 + 568.600i 0.328933 + 0.975301i
\(584\) 130.281i 0.223083i
\(585\) 0 0
\(586\) −25.9054 18.8214i −0.0442072 0.0321184i
\(587\) 78.5679 + 108.139i 0.133846 + 0.184224i 0.870679 0.491851i \(-0.163680\pi\)
−0.736833 + 0.676075i \(0.763680\pi\)
\(588\) 0 0
\(589\) −24.3585 + 74.9677i −0.0413557 + 0.127280i
\(590\) 38.4493 + 52.9210i 0.0651684 + 0.0896966i
\(591\) 0 0
\(592\) −33.0952 101.857i −0.0559040 0.172055i
\(593\) 164.004i 0.276567i 0.990393 + 0.138283i \(0.0441585\pi\)
−0.990393 + 0.138283i \(0.955841\pi\)
\(594\) 0 0
\(595\) −494.962 −0.831869
\(596\) −15.7291 + 5.11068i −0.0263910 + 0.00857497i
\(597\) 0 0
\(598\) −195.854 + 142.296i −0.327514 + 0.237953i
\(599\) 40.7149 + 13.2291i 0.0679714 + 0.0220852i 0.342805 0.939406i \(-0.388623\pi\)
−0.274834 + 0.961492i \(0.588623\pi\)
\(600\) 0 0
\(601\) 252.000 183.089i 0.419301 0.304640i −0.358056 0.933700i \(-0.616560\pi\)
0.777356 + 0.629060i \(0.216560\pi\)
\(602\) −68.8205 + 94.7233i −0.114320 + 0.157348i
\(603\) 0 0
\(604\) 368.399 0.609933
\(605\) 689.076 + 207.065i 1.13897 + 0.342256i
\(606\) 0 0
\(607\) 347.998 + 1071.03i 0.573308 + 1.76446i 0.641871 + 0.766812i \(0.278158\pi\)
−0.0685637 + 0.997647i \(0.521842\pi\)
\(608\) −49.0019 + 67.4453i −0.0805952 + 0.110930i
\(609\) 0 0
\(610\) 67.4269 207.519i 0.110536 0.340195i
\(611\) 335.103 + 108.881i 0.548450 + 0.178202i
\(612\) 0 0
\(613\) −377.693 274.410i −0.616139 0.447651i 0.235432 0.971891i \(-0.424350\pi\)
−0.851571 + 0.524240i \(0.824350\pi\)
\(614\) 11.7157 3.80665i 0.0190809 0.00619976i
\(615\) 0 0
\(616\) −234.687 + 2.61069i −0.380985 + 0.00423813i
\(617\) 130.650i 0.211750i 0.994379 + 0.105875i \(0.0337644\pi\)
−0.994379 + 0.105875i \(0.966236\pi\)
\(618\) 0 0
\(619\) −887.453 644.773i −1.43369 1.04164i −0.989315 0.145794i \(-0.953426\pi\)
−0.444374 0.895841i \(-0.646574\pi\)
\(620\) −186.584 256.810i −0.300941 0.414210i
\(621\) 0 0
\(622\) −13.4175 + 41.2949i −0.0215716 + 0.0663905i
\(623\) −687.950 946.881i −1.10425 1.51987i
\(624\) 0 0
\(625\) −240.004 738.656i −0.384006 1.18185i
\(626\) 70.3909i 0.112446i
\(627\) 0 0
\(628\) −580.320 −0.924076
\(629\) −65.8604 + 21.3993i −0.104707 + 0.0340212i
\(630\) 0 0
\(631\) 939.823 682.821i 1.48942 1.08213i 0.515052 0.857159i \(-0.327773\pi\)
0.974366 0.224967i \(-0.0722274\pi\)
\(632\) −4.79543 1.55813i −0.00758770 0.00246539i
\(633\) 0 0
\(634\) −88.7121 + 64.4531i −0.139924 + 0.101661i
\(635\) −433.392 + 596.513i −0.682507 + 0.939391i
\(636\) 0 0
\(637\) 489.639 0.768664
\(638\) −34.4368 + 48.5242i −0.0539762 + 0.0760568i
\(639\) 0 0
\(640\) −137.720 423.857i −0.215187 0.662277i
\(641\) 228.036 313.864i 0.355750 0.489648i −0.593208 0.805049i \(-0.702139\pi\)
0.948958 + 0.315401i \(0.102139\pi\)
\(642\) 0 0
\(643\) −35.6219 + 109.633i −0.0553995 + 0.170502i −0.974928 0.222522i \(-0.928571\pi\)
0.919528 + 0.393024i \(0.128571\pi\)
\(644\) 1338.43 + 434.883i 2.07831 + 0.675285i
\(645\) 0 0
\(646\) 13.9359 + 10.1250i 0.0215726 + 0.0156734i
\(647\) −173.649 + 56.4219i −0.268391 + 0.0872054i −0.440121 0.897939i \(-0.645064\pi\)
0.171730 + 0.985144i \(0.445064\pi\)
\(648\) 0 0
\(649\) −311.858 + 231.922i −0.480521 + 0.357352i
\(650\) 60.3125i 0.0927885i
\(651\) 0 0
\(652\) 289.717 + 210.492i 0.444352 + 0.322840i
\(653\) 6.35509 + 8.74703i 0.00973214 + 0.0133951i 0.813855 0.581068i \(-0.197365\pi\)
−0.804123 + 0.594463i \(0.797365\pi\)
\(654\) 0 0
\(655\) −96.5825 + 297.250i −0.147454 + 0.453817i
\(656\) 463.682 + 638.203i 0.706832 + 0.972871i
\(657\) 0 0
\(658\) 15.7210 + 48.3844i 0.0238921 + 0.0735325i
\(659\) 875.394i 1.32837i −0.747569 0.664184i \(-0.768779\pi\)
0.747569 0.664184i \(-0.231221\pi\)
\(660\) 0 0
\(661\) 1015.92 1.53695 0.768475 0.639880i \(-0.221016\pi\)
0.768475 + 0.639880i \(0.221016\pi\)
\(662\) −25.1279 + 8.16456i −0.0379576 + 0.0123332i
\(663\) 0 0
\(664\) −57.3714 + 41.6827i −0.0864027 + 0.0627752i
\(665\) −282.620 91.8289i −0.424993 0.138089i
\(666\) 0 0
\(667\) 584.461 424.636i 0.876253 0.636635i
\(668\) −32.7323 + 45.0521i −0.0490004 + 0.0674433i
\(669\) 0 0
\(670\) 169.428 0.252878
\(671\) 1237.31 + 386.863i 1.84398 + 0.576547i
\(672\) 0 0
\(673\) −35.1655 108.228i −0.0522519 0.160815i 0.921525 0.388318i \(-0.126944\pi\)
−0.973777 + 0.227503i \(0.926944\pi\)
\(674\) −96.4786 + 132.791i −0.143143 + 0.197020i
\(675\) 0 0
\(676\) 217.852 670.479i 0.322266 0.991834i
\(677\) 811.539 + 263.685i 1.19873 + 0.389490i 0.839293 0.543680i \(-0.182969\pi\)
0.359435 + 0.933170i \(0.382969\pi\)
\(678\) 0 0
\(679\) 69.9835 + 50.8460i 0.103068 + 0.0748836i
\(680\) −133.586 + 43.4048i −0.196450 + 0.0638305i
\(681\) 0 0
\(682\) −37.5883 + 27.9535i −0.0551148 + 0.0409876i
\(683\) 193.740i 0.283661i 0.989891 + 0.141830i \(0.0452987\pi\)
−0.989891 + 0.141830i \(0.954701\pi\)
\(684\) 0 0
\(685\) 605.108 + 439.636i 0.883369 + 0.641805i
\(686\) −36.2026 49.8286i −0.0527735 0.0726365i
\(687\) 0 0
\(688\) 198.960 612.336i 0.289186 0.890024i
\(689\) −599.551 825.212i −0.870176 1.19769i
\(690\) 0 0
\(691\) −78.3885 241.255i −0.113442 0.349139i 0.878177 0.478336i \(-0.158760\pi\)
−0.991619 + 0.129197i \(0.958760\pi\)
\(692\) 906.604i 1.31012i
\(693\) 0 0
\(694\) −39.3300 −0.0566714
\(695\) 303.388 98.5768i 0.436530 0.141837i
\(696\) 0 0
\(697\) 412.662 299.817i 0.592055 0.430153i
\(698\) 133.684 + 43.4365i 0.191524 + 0.0622300i
\(699\) 0 0
\(700\) 283.649 206.083i 0.405213 0.294405i
\(701\) −669.680 + 921.735i −0.955321 + 1.31489i −0.00619790 + 0.999981i \(0.501973\pi\)
−0.949123 + 0.314906i \(0.898027\pi\)
\(702\) 0 0
\(703\) −41.5761 −0.0591409
\(704\) 572.029 192.924i 0.812541 0.274040i
\(705\) 0 0
\(706\) 14.0194 + 43.1472i 0.0198575 + 0.0611150i
\(707\) −878.802 + 1209.57i −1.24300 + 1.71084i
\(708\) 0 0
\(709\) 115.622 355.847i 0.163077 0.501899i −0.835812 0.549015i \(-0.815003\pi\)
0.998889 + 0.0471157i \(0.0150029\pi\)
\(710\) 203.932 + 66.2615i 0.287228 + 0.0933261i
\(711\) 0 0
\(712\) −268.707 195.227i −0.377397 0.274195i
\(713\) 540.901 175.749i 0.758627 0.246493i
\(714\) 0 0
\(715\) −1222.98 + 13.6047i −1.71047 + 0.0190275i
\(716\) 560.706i 0.783109i
\(717\) 0 0
\(718\) −108.114 78.5497i −0.150577 0.109401i
\(719\) −445.256 612.843i −0.619272 0.852354i 0.378028 0.925794i \(-0.376602\pi\)
−0.997300 + 0.0734400i \(0.976602\pi\)
\(720\) 0 0
\(721\) −304.493 + 937.134i −0.422321 + 1.29977i
\(722\) −59.9880 82.5664i −0.0830859 0.114358i
\(723\) 0 0
\(724\) −289.112 889.794i −0.399326 1.22900i
\(725\) 179.983i 0.248252i
\(726\) 0 0
\(727\) 845.080 1.16242 0.581211 0.813753i \(-0.302579\pi\)
0.581211 + 0.813753i \(0.302579\pi\)
\(728\) 379.428 123.284i 0.521192 0.169346i
\(729\) 0 0
\(730\) −79.3044 + 57.6180i −0.108636 + 0.0789288i
\(731\) −395.937 128.648i −0.541637 0.175989i
\(732\) 0 0
\(733\) −1098.71 + 798.262i −1.49893 + 1.08903i −0.528121 + 0.849169i \(0.677103\pi\)
−0.970806 + 0.239865i \(0.922897\pi\)
\(734\) −24.2235 + 33.3408i −0.0330021 + 0.0454235i
\(735\) 0 0
\(736\) 601.502 0.817258
\(737\) 11.1971 + 1006.56i 0.0151928 + 1.36575i
\(738\) 0 0
\(739\) 247.582 + 761.978i 0.335023 + 1.03109i 0.966711 + 0.255871i \(0.0823623\pi\)
−0.631688 + 0.775223i \(0.717638\pi\)
\(740\) 98.4122 135.453i 0.132989 0.183044i
\(741\) 0 0
\(742\) 45.5111 140.069i 0.0613357 0.188772i
\(743\) −849.861 276.136i −1.14382 0.371651i −0.325010 0.945711i \(-0.605368\pi\)
−0.818813 + 0.574060i \(0.805368\pi\)
\(744\) 0 0
\(745\) −20.3847 14.8103i −0.0273620 0.0198796i
\(746\) −141.598 + 46.0078i −0.189809 + 0.0616727i
\(747\) 0 0
\(748\) −131.711 390.528i −0.176084 0.522096i
\(749\) 721.189i 0.962868i
\(750\) 0 0
\(751\) −321.208 233.372i −0.427708 0.310748i 0.353024 0.935614i \(-0.385153\pi\)
−0.780732 + 0.624867i \(0.785153\pi\)
\(752\) −164.438 226.329i −0.218667 0.300970i
\(753\) 0 0
\(754\) 31.2552 96.1936i 0.0414525 0.127578i
\(755\) 329.904 + 454.073i 0.436958 + 0.601422i
\(756\) 0 0
\(757\) 183.281 + 564.081i 0.242115 + 0.745153i 0.996098 + 0.0882586i \(0.0281302\pi\)
−0.753983 + 0.656894i \(0.771870\pi\)
\(758\) 82.2622i 0.108525i
\(759\) 0 0
\(760\) −84.3296 −0.110960
\(761\) −389.495 + 126.555i −0.511820 + 0.166301i −0.553530 0.832829i \(-0.686720\pi\)
0.0417096 + 0.999130i \(0.486720\pi\)
\(762\) 0 0
\(763\) −879.906 + 639.289i −1.15322 + 0.837862i
\(764\) −139.319 45.2674i −0.182354 0.0592506i
\(765\) 0 0
\(766\) −59.5552 + 43.2694i −0.0777483 + 0.0564874i
\(767\) 388.308 534.461i 0.506269 0.696820i
\(768\) 0 0
\(769\) 119.029 0.154784 0.0773921 0.997001i \(-0.475341\pi\)
0.0773921 + 0.997001i \(0.475341\pi\)
\(770\) −105.382 141.704i −0.136859 0.184031i
\(771\) 0 0
\(772\) 245.530 + 755.665i 0.318045 + 0.978841i
\(773\) 412.352 567.554i 0.533444 0.734222i −0.454207 0.890896i \(-0.650077\pi\)
0.987650 + 0.156674i \(0.0500773\pi\)
\(774\) 0 0
\(775\) 43.7852 134.757i 0.0564970 0.173880i
\(776\) 23.3468 + 7.58583i 0.0300861 + 0.00977556i
\(777\) 0 0
\(778\) 128.772 + 93.5582i 0.165516 + 0.120255i
\(779\) 291.252 94.6334i 0.373879 0.121481i
\(780\) 0 0
\(781\) −380.177 + 1215.92i −0.486782 + 1.55688i
\(782\) 124.286i 0.158933i
\(783\) 0 0
\(784\) −314.518 228.511i −0.401171 0.291468i
\(785\) −519.680 715.278i −0.662012 0.911182i
\(786\) 0 0
\(787\) 475.616 1463.80i 0.604341 1.85997i 0.103080 0.994673i \(-0.467130\pi\)
0.501261 0.865296i \(-0.332870\pi\)