Properties

Label 99.3.l.a.26.7
Level $99$
Weight $3$
Character 99.26
Analytic conductor $2.698$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 99.l (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.69755461717\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 26.7
Character \(\chi\) \(=\) 99.26
Dual form 99.3.l.a.80.7

$q$-expansion

\(f(q)\) \(=\) \(q+(1.75181 - 2.41117i) q^{2} +(-1.50880 - 4.64360i) q^{4} +(-4.61811 - 6.35629i) q^{5} +(0.867699 + 2.67050i) q^{7} +(-2.50164 - 0.812833i) q^{8} +O(q^{10})\) \(q+(1.75181 - 2.41117i) q^{2} +(-1.50880 - 4.64360i) q^{4} +(-4.61811 - 6.35629i) q^{5} +(0.867699 + 2.67050i) q^{7} +(-2.50164 - 0.812833i) q^{8} -23.4161 q^{10} +(8.89568 - 6.47047i) q^{11} +(1.22806 + 0.892235i) q^{13} +(7.95907 + 2.58606i) q^{14} +(9.45804 - 6.87167i) q^{16} +(15.5170 + 21.3573i) q^{17} +(-4.49342 + 13.8293i) q^{19} +(-22.5483 + 31.0350i) q^{20} +(-0.0177905 - 32.7840i) q^{22} -25.0726i q^{23} +(-11.3500 + 34.9317i) q^{25} +(4.30265 - 1.39802i) q^{26} +(11.0916 - 8.05850i) q^{28} +(-48.2284 + 15.6704i) q^{29} +(41.7844 + 30.3581i) q^{31} -45.3643i q^{32} +78.6790 q^{34} +(12.9674 - 17.8480i) q^{35} +(-6.04322 - 18.5991i) q^{37} +(25.4731 + 35.0608i) q^{38} +(6.38627 + 19.6549i) q^{40} +(29.4212 + 9.55953i) q^{41} +2.11848 q^{43} +(-43.4680 - 31.5454i) q^{44} +(-60.4543 - 43.9226i) q^{46} +(-38.2998 - 12.4444i) q^{47} +(33.2631 - 24.1671i) q^{49} +(64.3430 + 88.5605i) q^{50} +(2.29029 - 7.04880i) q^{52} +(-24.1836 + 33.2859i) q^{53} +(-82.2094 - 26.6621i) q^{55} -7.38594i q^{56} +(-46.7034 + 143.738i) q^{58} +(-91.3627 + 29.6855i) q^{59} +(2.34234 - 1.70181i) q^{61} +(146.397 - 47.5673i) q^{62} +(-71.5487 - 51.9832i) q^{64} -11.9263i q^{65} -88.2869 q^{67} +(75.7629 - 104.279i) q^{68} +(-20.3182 - 62.5329i) q^{70} +(-6.65733 - 9.16303i) q^{71} +(32.3776 + 99.6480i) q^{73} +(-55.4322 - 18.0110i) q^{74} +70.9975 q^{76} +(24.9982 + 18.1415i) q^{77} +(-13.5822 - 9.86808i) q^{79} +(-87.3566 - 28.3839i) q^{80} +(74.5901 - 54.1929i) q^{82} +(13.3848 + 18.4226i) q^{83} +(64.0940 - 197.261i) q^{85} +(3.71118 - 5.10801i) q^{86} +(-27.5132 + 8.95610i) q^{88} -30.7523i q^{89} +(-1.31713 + 4.05372i) q^{91} +(-116.427 + 37.8295i) q^{92} +(-97.0996 + 70.5470i) q^{94} +(108.654 - 35.3039i) q^{95} +(23.0800 + 16.7686i) q^{97} -122.539i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 16 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 16 q^{4} - 16 q^{7} + 48 q^{10} + 8 q^{13} + 96 q^{16} - 40 q^{19} - 60 q^{22} - 188 q^{25} - 348 q^{28} - 164 q^{31} + 296 q^{34} - 36 q^{37} + 48 q^{40} + 544 q^{43} + 296 q^{46} + 196 q^{49} - 640 q^{52} - 440 q^{55} - 208 q^{58} - 432 q^{61} - 328 q^{64} + 48 q^{67} + 112 q^{70} + 712 q^{73} + 2104 q^{76} + 432 q^{79} + 676 q^{82} - 68 q^{85} - 176 q^{88} + 64 q^{91} - 1360 q^{94} + 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75181 2.41117i 0.875907 1.20558i −0.101631 0.994822i \(-0.532406\pi\)
0.977538 0.210760i \(-0.0675940\pi\)
\(3\) 0 0
\(4\) −1.50880 4.64360i −0.377199 1.16090i
\(5\) −4.61811 6.35629i −0.923623 1.27126i −0.962296 0.272005i \(-0.912313\pi\)
0.0386732 0.999252i \(-0.487687\pi\)
\(6\) 0 0
\(7\) 0.867699 + 2.67050i 0.123957 + 0.381500i 0.993710 0.111988i \(-0.0357217\pi\)
−0.869753 + 0.493488i \(0.835722\pi\)
\(8\) −2.50164 0.812833i −0.312705 0.101604i
\(9\) 0 0
\(10\) −23.4161 −2.34161
\(11\) 8.89568 6.47047i 0.808698 0.588224i
\(12\) 0 0
\(13\) 1.22806 + 0.892235i 0.0944658 + 0.0686334i 0.634016 0.773320i \(-0.281406\pi\)
−0.539550 + 0.841954i \(0.681406\pi\)
\(14\) 7.95907 + 2.58606i 0.568505 + 0.184719i
\(15\) 0 0
\(16\) 9.45804 6.87167i 0.591128 0.429479i
\(17\) 15.5170 + 21.3573i 0.912765 + 1.25631i 0.966213 + 0.257743i \(0.0829789\pi\)
−0.0534480 + 0.998571i \(0.517021\pi\)
\(18\) 0 0
\(19\) −4.49342 + 13.8293i −0.236496 + 0.727859i 0.760424 + 0.649427i \(0.224991\pi\)
−0.996919 + 0.0784318i \(0.975009\pi\)
\(20\) −22.5483 + 31.0350i −1.12741 + 1.55175i
\(21\) 0 0
\(22\) −0.0177905 32.7840i −0.000808661 1.49018i
\(23\) 25.0726i 1.09011i −0.838399 0.545057i \(-0.816508\pi\)
0.838399 0.545057i \(-0.183492\pi\)
\(24\) 0 0
\(25\) −11.3500 + 34.9317i −0.454000 + 1.39727i
\(26\) 4.30265 1.39802i 0.165487 0.0537698i
\(27\) 0 0
\(28\) 11.0916 8.05850i 0.396127 0.287803i
\(29\) −48.2284 + 15.6704i −1.66305 + 0.540358i −0.981508 0.191422i \(-0.938690\pi\)
−0.681542 + 0.731779i \(0.738690\pi\)
\(30\) 0 0
\(31\) 41.7844 + 30.3581i 1.34788 + 0.979295i 0.999114 + 0.0420867i \(0.0134006\pi\)
0.348770 + 0.937208i \(0.386599\pi\)
\(32\) 45.3643i 1.41764i
\(33\) 0 0
\(34\) 78.6790 2.31409
\(35\) 12.9674 17.8480i 0.370496 0.509944i
\(36\) 0 0
\(37\) −6.04322 18.5991i −0.163330 0.502679i 0.835579 0.549370i \(-0.185132\pi\)
−0.998909 + 0.0466912i \(0.985132\pi\)
\(38\) 25.4731 + 35.0608i 0.670346 + 0.922652i
\(39\) 0 0
\(40\) 6.38627 + 19.6549i 0.159657 + 0.491373i
\(41\) 29.4212 + 9.55953i 0.717591 + 0.233159i 0.644978 0.764201i \(-0.276866\pi\)
0.0726124 + 0.997360i \(0.476866\pi\)
\(42\) 0 0
\(43\) 2.11848 0.0492670 0.0246335 0.999697i \(-0.492158\pi\)
0.0246335 + 0.999697i \(0.492158\pi\)
\(44\) −43.4680 31.5454i −0.987910 0.716940i
\(45\) 0 0
\(46\) −60.4543 43.9226i −1.31422 0.954839i
\(47\) −38.2998 12.4444i −0.814890 0.264774i −0.128222 0.991745i \(-0.540927\pi\)
−0.686667 + 0.726972i \(0.740927\pi\)
\(48\) 0 0
\(49\) 33.2631 24.1671i 0.678840 0.493206i
\(50\) 64.3430 + 88.5605i 1.28686 + 1.77121i
\(51\) 0 0
\(52\) 2.29029 7.04880i 0.0440441 0.135554i
\(53\) −24.1836 + 33.2859i −0.456295 + 0.628036i −0.973735 0.227683i \(-0.926885\pi\)
0.517441 + 0.855719i \(0.326885\pi\)
\(54\) 0 0
\(55\) −82.2094 26.6621i −1.49472 0.484766i
\(56\) 7.38594i 0.131892i
\(57\) 0 0
\(58\) −46.7034 + 143.738i −0.805231 + 2.47825i
\(59\) −91.3627 + 29.6855i −1.54852 + 0.503145i −0.953712 0.300723i \(-0.902772\pi\)
−0.594808 + 0.803868i \(0.702772\pi\)
\(60\) 0 0
\(61\) 2.34234 1.70181i 0.0383990 0.0278985i −0.568420 0.822738i \(-0.692445\pi\)
0.606819 + 0.794840i \(0.292445\pi\)
\(62\) 146.397 47.5673i 2.36124 0.767214i
\(63\) 0 0
\(64\) −71.5487 51.9832i −1.11795 0.812237i
\(65\) 11.9263i 0.183482i
\(66\) 0 0
\(67\) −88.2869 −1.31772 −0.658858 0.752268i \(-0.728960\pi\)
−0.658858 + 0.752268i \(0.728960\pi\)
\(68\) 75.7629 104.279i 1.11416 1.53351i
\(69\) 0 0
\(70\) −20.3182 62.5329i −0.290259 0.893326i
\(71\) −6.65733 9.16303i −0.0937652 0.129057i 0.759557 0.650441i \(-0.225416\pi\)
−0.853322 + 0.521384i \(0.825416\pi\)
\(72\) 0 0
\(73\) 32.3776 + 99.6480i 0.443529 + 1.36504i 0.884089 + 0.467318i \(0.154780\pi\)
−0.440560 + 0.897723i \(0.645220\pi\)
\(74\) −55.4322 18.0110i −0.749083 0.243392i
\(75\) 0 0
\(76\) 70.9975 0.934178
\(77\) 24.9982 + 18.1415i 0.324652 + 0.235604i
\(78\) 0 0
\(79\) −13.5822 9.86808i −0.171927 0.124912i 0.498494 0.866893i \(-0.333887\pi\)
−0.670421 + 0.741981i \(0.733887\pi\)
\(80\) −87.3566 28.3839i −1.09196 0.354799i
\(81\) 0 0
\(82\) 74.5901 54.1929i 0.909636 0.660889i
\(83\) 13.3848 + 18.4226i 0.161263 + 0.221959i 0.882000 0.471249i \(-0.156197\pi\)
−0.720738 + 0.693208i \(0.756197\pi\)
\(84\) 0 0
\(85\) 64.0940 197.261i 0.754048 2.32072i
\(86\) 3.71118 5.10801i 0.0431533 0.0593954i
\(87\) 0 0
\(88\) −27.5132 + 8.95610i −0.312650 + 0.101774i
\(89\) 30.7523i 0.345531i −0.984963 0.172766i \(-0.944730\pi\)
0.984963 0.172766i \(-0.0552703\pi\)
\(90\) 0 0
\(91\) −1.31713 + 4.05372i −0.0144740 + 0.0445463i
\(92\) −116.427 + 37.8295i −1.26551 + 0.411191i
\(93\) 0 0
\(94\) −97.0996 + 70.5470i −1.03297 + 0.750500i
\(95\) 108.654 35.3039i 1.14373 0.371620i
\(96\) 0 0
\(97\) 23.0800 + 16.7686i 0.237939 + 0.172872i 0.700364 0.713785i \(-0.253021\pi\)
−0.462426 + 0.886658i \(0.653021\pi\)
\(98\) 122.539i 1.25040i
\(99\) 0 0
\(100\) 179.334 1.79334
\(101\) 1.99764 2.74952i 0.0197786 0.0272230i −0.799013 0.601314i \(-0.794644\pi\)
0.818792 + 0.574091i \(0.194644\pi\)
\(102\) 0 0
\(103\) 6.89465 + 21.2195i 0.0669383 + 0.206015i 0.978931 0.204192i \(-0.0654566\pi\)
−0.911993 + 0.410207i \(0.865457\pi\)
\(104\) −2.34692 3.23026i −0.0225665 0.0310602i
\(105\) 0 0
\(106\) 37.8926 + 116.621i 0.357477 + 1.10020i
\(107\) 12.2413 + 3.97744i 0.114405 + 0.0371724i 0.365660 0.930749i \(-0.380843\pi\)
−0.251255 + 0.967921i \(0.580843\pi\)
\(108\) 0 0
\(109\) 109.301 1.00277 0.501383 0.865226i \(-0.332825\pi\)
0.501383 + 0.865226i \(0.332825\pi\)
\(110\) −208.302 + 151.513i −1.89366 + 1.37739i
\(111\) 0 0
\(112\) 26.5575 + 19.2952i 0.237121 + 0.172278i
\(113\) 87.5285 + 28.4397i 0.774589 + 0.251679i 0.669528 0.742787i \(-0.266496\pi\)
0.105061 + 0.994466i \(0.466496\pi\)
\(114\) 0 0
\(115\) −159.369 + 115.788i −1.38582 + 1.00685i
\(116\) 145.534 + 200.310i 1.25460 + 1.72681i
\(117\) 0 0
\(118\) −88.4737 + 272.294i −0.749777 + 2.30758i
\(119\) −43.5707 + 59.9700i −0.366141 + 0.503949i
\(120\) 0 0
\(121\) 37.2661 115.118i 0.307985 0.951391i
\(122\) 8.62901i 0.0707296i
\(123\) 0 0
\(124\) 77.9269 239.834i 0.628443 1.93415i
\(125\) 87.6447 28.4775i 0.701158 0.227820i
\(126\) 0 0
\(127\) 6.70109 4.86862i 0.0527645 0.0383356i −0.561090 0.827755i \(-0.689618\pi\)
0.613855 + 0.789419i \(0.289618\pi\)
\(128\) −78.1040 + 25.3775i −0.610187 + 0.198262i
\(129\) 0 0
\(130\) −28.7563 20.8927i −0.221202 0.160713i
\(131\) 1.63767i 0.0125013i 0.999980 + 0.00625065i \(0.00198966\pi\)
−0.999980 + 0.00625065i \(0.998010\pi\)
\(132\) 0 0
\(133\) −40.8302 −0.306994
\(134\) −154.662 + 212.874i −1.15420 + 1.58861i
\(135\) 0 0
\(136\) −21.4581 66.0412i −0.157780 0.485597i
\(137\) 116.451 + 160.281i 0.850008 + 1.16994i 0.983861 + 0.178935i \(0.0572651\pi\)
−0.133853 + 0.991001i \(0.542735\pi\)
\(138\) 0 0
\(139\) −57.9241 178.272i −0.416720 1.28253i −0.910703 0.413062i \(-0.864459\pi\)
0.493982 0.869472i \(-0.335541\pi\)
\(140\) −102.444 33.2861i −0.731744 0.237758i
\(141\) 0 0
\(142\) −33.7560 −0.237718
\(143\) 16.6976 0.00906108i 0.116766 6.33642e-5i
\(144\) 0 0
\(145\) 322.330 + 234.186i 2.22296 + 1.61508i
\(146\) 296.987 + 96.4970i 2.03416 + 0.660939i
\(147\) 0 0
\(148\) −77.2489 + 56.1246i −0.521952 + 0.379220i
\(149\) −140.590 193.505i −0.943555 1.29869i −0.954331 0.298750i \(-0.903430\pi\)
0.0107766 0.999942i \(-0.496570\pi\)
\(150\) 0 0
\(151\) 18.1318 55.8039i 0.120078 0.369562i −0.872894 0.487909i \(-0.837760\pi\)
0.992972 + 0.118347i \(0.0377596\pi\)
\(152\) 22.4819 30.9436i 0.147907 0.203577i
\(153\) 0 0
\(154\) 87.5343 28.4942i 0.568405 0.185027i
\(155\) 405.791i 2.61801i
\(156\) 0 0
\(157\) 6.31024 19.4209i 0.0401926 0.123700i −0.928947 0.370213i \(-0.879285\pi\)
0.969140 + 0.246513i \(0.0792847\pi\)
\(158\) −47.5871 + 15.4620i −0.301184 + 0.0978607i
\(159\) 0 0
\(160\) −288.349 + 209.498i −1.80218 + 1.30936i
\(161\) 66.9566 21.7555i 0.415879 0.135127i
\(162\) 0 0
\(163\) −84.5857 61.4551i −0.518931 0.377025i 0.297270 0.954793i \(-0.403924\pi\)
−0.816201 + 0.577768i \(0.803924\pi\)
\(164\) 151.044i 0.920999i
\(165\) 0 0
\(166\) 67.8676 0.408841
\(167\) 23.0472 31.7217i 0.138007 0.189950i −0.734419 0.678696i \(-0.762545\pi\)
0.872426 + 0.488746i \(0.162545\pi\)
\(168\) 0 0
\(169\) −51.5118 158.537i −0.304804 0.938089i
\(170\) −363.348 500.106i −2.13734 2.94180i
\(171\) 0 0
\(172\) −3.19636 9.83738i −0.0185835 0.0571940i
\(173\) 86.9529 + 28.2527i 0.502618 + 0.163310i 0.549342 0.835597i \(-0.314878\pi\)
−0.0467245 + 0.998908i \(0.514878\pi\)
\(174\) 0 0
\(175\) −103.134 −0.589334
\(176\) 39.6728 122.326i 0.225414 0.695035i
\(177\) 0 0
\(178\) −74.1488 53.8723i −0.416566 0.302653i
\(179\) 207.504 + 67.4220i 1.15924 + 0.376659i 0.824616 0.565693i \(-0.191391\pi\)
0.334623 + 0.942352i \(0.391391\pi\)
\(180\) 0 0
\(181\) 36.2608 26.3450i 0.200336 0.145553i −0.483094 0.875568i \(-0.660487\pi\)
0.683431 + 0.730016i \(0.260487\pi\)
\(182\) 7.46681 + 10.2772i 0.0410264 + 0.0564680i
\(183\) 0 0
\(184\) −20.3799 + 62.7228i −0.110760 + 0.340885i
\(185\) −90.3131 + 124.305i −0.488179 + 0.671921i
\(186\) 0 0
\(187\) 276.226 + 89.5857i 1.47715 + 0.479068i
\(188\) 196.625i 1.04588i
\(189\) 0 0
\(190\) 105.219 323.829i 0.553782 1.70436i
\(191\) −141.682 + 46.0353i −0.741790 + 0.241022i −0.655445 0.755243i \(-0.727519\pi\)
−0.0863454 + 0.996265i \(0.527519\pi\)
\(192\) 0 0
\(193\) −156.712 + 113.858i −0.811978 + 0.589936i −0.914403 0.404804i \(-0.867340\pi\)
0.102426 + 0.994741i \(0.467340\pi\)
\(194\) 80.8639 26.2743i 0.416824 0.135434i
\(195\) 0 0
\(196\) −162.410 117.998i −0.828621 0.602028i
\(197\) 331.307i 1.68176i 0.541220 + 0.840881i \(0.317963\pi\)
−0.541220 + 0.840881i \(0.682037\pi\)
\(198\) 0 0
\(199\) −294.829 −1.48155 −0.740775 0.671753i \(-0.765542\pi\)
−0.740775 + 0.671753i \(0.765542\pi\)
\(200\) 56.7873 78.1610i 0.283936 0.390805i
\(201\) 0 0
\(202\) −3.13005 9.63329i −0.0154953 0.0476896i
\(203\) −83.6955 115.197i −0.412293 0.567473i
\(204\) 0 0
\(205\) −75.1074 231.157i −0.366377 1.12759i
\(206\) 63.2420 + 20.5486i 0.307000 + 0.0997503i
\(207\) 0 0
\(208\) 17.7461 0.0853180
\(209\) 49.5102 + 152.096i 0.236891 + 0.727731i
\(210\) 0 0
\(211\) 93.6252 + 68.0227i 0.443721 + 0.322382i 0.787112 0.616810i \(-0.211575\pi\)
−0.343391 + 0.939193i \(0.611575\pi\)
\(212\) 191.055 + 62.0774i 0.901201 + 0.292818i
\(213\) 0 0
\(214\) 31.0348 22.5481i 0.145022 0.105365i
\(215\) −9.78338 13.4657i −0.0455041 0.0626310i
\(216\) 0 0
\(217\) −44.8152 + 137.927i −0.206522 + 0.635609i
\(218\) 191.476 263.544i 0.878329 1.20892i
\(219\) 0 0
\(220\) 0.228989 + 421.975i 0.00104086 + 1.91807i
\(221\) 40.0728i 0.181325i
\(222\) 0 0
\(223\) −75.4285 + 232.145i −0.338245 + 1.04101i 0.626857 + 0.779134i \(0.284341\pi\)
−0.965102 + 0.261876i \(0.915659\pi\)
\(224\) 121.146 39.3626i 0.540828 0.175726i
\(225\) 0 0
\(226\) 221.907 161.225i 0.981888 0.713383i
\(227\) −255.097 + 82.8861i −1.12378 + 0.365137i −0.811208 0.584758i \(-0.801189\pi\)
−0.312569 + 0.949895i \(0.601189\pi\)
\(228\) 0 0
\(229\) −150.551 109.382i −0.657430 0.477651i 0.208364 0.978051i \(-0.433186\pi\)
−0.865794 + 0.500401i \(0.833186\pi\)
\(230\) 587.104i 2.55263i
\(231\) 0 0
\(232\) 133.388 0.574947
\(233\) −95.3276 + 131.207i −0.409131 + 0.563121i −0.963006 0.269479i \(-0.913149\pi\)
0.553875 + 0.832600i \(0.313149\pi\)
\(234\) 0 0
\(235\) 97.7729 + 300.914i 0.416055 + 1.28049i
\(236\) 275.696 + 379.462i 1.16820 + 1.60789i
\(237\) 0 0
\(238\) 68.2697 + 210.112i 0.286847 + 0.882826i
\(239\) −67.6141 21.9692i −0.282904 0.0919212i 0.164128 0.986439i \(-0.447519\pi\)
−0.447032 + 0.894518i \(0.647519\pi\)
\(240\) 0 0
\(241\) 212.799 0.882984 0.441492 0.897265i \(-0.354449\pi\)
0.441492 + 0.897265i \(0.354449\pi\)
\(242\) −212.286 291.521i −0.877215 1.20463i
\(243\) 0 0
\(244\) −11.4366 8.30919i −0.0468714 0.0340541i
\(245\) −307.226 99.8238i −1.25398 0.407444i
\(246\) 0 0
\(247\) −17.8572 + 12.9740i −0.0722962 + 0.0525263i
\(248\) −79.8536 109.909i −0.321990 0.443181i
\(249\) 0 0
\(250\) 84.8733 261.213i 0.339493 1.04485i
\(251\) 110.272 151.777i 0.439332 0.604689i −0.530731 0.847540i \(-0.678083\pi\)
0.970064 + 0.242851i \(0.0780827\pi\)
\(252\) 0 0
\(253\) −162.232 223.038i −0.641232 0.881573i
\(254\) 24.6864i 0.0971904i
\(255\) 0 0
\(256\) 33.6825 103.664i 0.131572 0.404937i
\(257\) −276.561 + 89.8603i −1.07611 + 0.349651i −0.792866 0.609396i \(-0.791412\pi\)
−0.283248 + 0.959047i \(0.591412\pi\)
\(258\) 0 0
\(259\) 44.4253 32.2769i 0.171526 0.124621i
\(260\) −55.3810 + 17.9944i −0.213004 + 0.0692092i
\(261\) 0 0
\(262\) 3.94869 + 2.86889i 0.0150714 + 0.0109500i
\(263\) 458.564i 1.74359i −0.489870 0.871795i \(-0.662956\pi\)
0.489870 0.871795i \(-0.337044\pi\)
\(264\) 0 0
\(265\) 323.257 1.21984
\(266\) −71.5269 + 98.4483i −0.268898 + 0.370106i
\(267\) 0 0
\(268\) 133.207 + 409.969i 0.497041 + 1.52974i
\(269\) 122.701 + 168.884i 0.456139 + 0.627822i 0.973703 0.227823i \(-0.0731608\pi\)
−0.517563 + 0.855645i \(0.673161\pi\)
\(270\) 0 0
\(271\) −142.441 438.388i −0.525612 1.61767i −0.763102 0.646279i \(-0.776324\pi\)
0.237489 0.971390i \(-0.423676\pi\)
\(272\) 293.521 + 95.3708i 1.07912 + 0.350628i
\(273\) 0 0
\(274\) 590.465 2.15498
\(275\) 125.058 + 384.181i 0.454758 + 1.39702i
\(276\) 0 0
\(277\) 85.4746 + 62.1009i 0.308573 + 0.224191i 0.731284 0.682073i \(-0.238922\pi\)
−0.422711 + 0.906264i \(0.638922\pi\)
\(278\) −531.316 172.635i −1.91121 0.620989i
\(279\) 0 0
\(280\) −46.9472 + 34.1091i −0.167668 + 0.121818i
\(281\) −253.323 348.669i −0.901506 1.24082i −0.969985 0.243164i \(-0.921815\pi\)
0.0684794 0.997653i \(-0.478185\pi\)
\(282\) 0 0
\(283\) 93.2355 286.949i 0.329454 1.01396i −0.639935 0.768429i \(-0.721039\pi\)
0.969390 0.245527i \(-0.0789611\pi\)
\(284\) −32.5049 + 44.7391i −0.114454 + 0.157532i
\(285\) 0 0
\(286\) 29.2292 40.2765i 0.102200 0.140827i
\(287\) 86.8643i 0.302663i
\(288\) 0 0
\(289\) −126.052 + 387.949i −0.436167 + 1.34238i
\(290\) 1129.32 366.939i 3.89422 1.26531i
\(291\) 0 0
\(292\) 413.874 300.697i 1.41738 1.02979i
\(293\) 44.0479 14.3120i 0.150334 0.0488465i −0.232883 0.972505i \(-0.574816\pi\)
0.383217 + 0.923658i \(0.374816\pi\)
\(294\) 0 0
\(295\) 610.613 + 443.636i 2.06987 + 1.50385i
\(296\) 51.4405i 0.173786i
\(297\) 0 0
\(298\) −712.860 −2.39215
\(299\) 22.3707 30.7906i 0.0748183 0.102979i
\(300\) 0 0
\(301\) 1.83820 + 5.65741i 0.00610699 + 0.0187954i
\(302\) −102.789 141.477i −0.340360 0.468466i
\(303\) 0 0
\(304\) 52.5316 + 161.676i 0.172801 + 0.531828i
\(305\) −21.6343 7.02943i −0.0709323 0.0230473i
\(306\) 0 0
\(307\) −448.259 −1.46013 −0.730063 0.683379i \(-0.760509\pi\)
−0.730063 + 0.683379i \(0.760509\pi\)
\(308\) 46.5248 143.453i 0.151054 0.465758i
\(309\) 0 0
\(310\) −978.429 710.870i −3.15622 2.29313i
\(311\) −318.294 103.420i −1.02345 0.332540i −0.251255 0.967921i \(-0.580843\pi\)
−0.772199 + 0.635381i \(0.780843\pi\)
\(312\) 0 0
\(313\) −82.7752 + 60.1397i −0.264458 + 0.192140i −0.712110 0.702068i \(-0.752260\pi\)
0.447652 + 0.894208i \(0.352260\pi\)
\(314\) −35.7727 49.2369i −0.113926 0.156805i
\(315\) 0 0
\(316\) −25.3306 + 77.9594i −0.0801600 + 0.246707i
\(317\) 222.110 305.708i 0.700661 0.964377i −0.299287 0.954163i \(-0.596749\pi\)
0.999948 0.0102140i \(-0.00325128\pi\)
\(318\) 0 0
\(319\) −327.630 + 451.459i −1.02705 + 1.41523i
\(320\) 694.848i 2.17140i
\(321\) 0 0
\(322\) 64.8393 199.555i 0.201364 0.619736i
\(323\) −365.082 + 118.622i −1.13028 + 0.367252i
\(324\) 0 0
\(325\) −45.1057 + 32.7712i −0.138787 + 0.100834i
\(326\) −296.357 + 96.2922i −0.909070 + 0.295375i
\(327\) 0 0
\(328\) −65.8311 47.8291i −0.200705 0.145820i
\(329\) 113.078i 0.343701i
\(330\) 0 0
\(331\) −170.972 −0.516533 −0.258266 0.966074i \(-0.583151\pi\)
−0.258266 + 0.966074i \(0.583151\pi\)
\(332\) 65.3522 89.9496i 0.196844 0.270933i
\(333\) 0 0
\(334\) −36.1119 111.141i −0.108120 0.332758i
\(335\) 407.719 + 561.177i 1.21707 + 1.67516i
\(336\) 0 0
\(337\) 59.3115 + 182.542i 0.175999 + 0.541668i 0.999678 0.0253884i \(-0.00808224\pi\)
−0.823679 + 0.567056i \(0.808082\pi\)
\(338\) −472.498 153.524i −1.39792 0.454213i
\(339\) 0 0
\(340\) −1012.71 −2.97855
\(341\) 568.132 0.308302i 1.66608 0.000904111i
\(342\) 0 0
\(343\) 204.712 + 148.732i 0.596829 + 0.433622i
\(344\) −5.29968 1.72197i −0.0154061 0.00500573i
\(345\) 0 0
\(346\) 220.447 160.164i 0.637131 0.462903i
\(347\) 109.245 + 150.363i 0.314827 + 0.433322i 0.936879 0.349654i \(-0.113701\pi\)
−0.622052 + 0.782976i \(0.713701\pi\)
\(348\) 0 0
\(349\) −54.5075 + 167.757i −0.156182 + 0.480679i −0.998279 0.0586476i \(-0.981321\pi\)
0.842097 + 0.539327i \(0.181321\pi\)
\(350\) −180.671 + 248.672i −0.516202 + 0.710491i
\(351\) 0 0
\(352\) −293.528 403.546i −0.833887 1.14644i
\(353\) 232.825i 0.659561i 0.944058 + 0.329780i \(0.106975\pi\)
−0.944058 + 0.329780i \(0.893025\pi\)
\(354\) 0 0
\(355\) −27.4985 + 84.6318i −0.0774606 + 0.238399i
\(356\) −142.801 + 46.3989i −0.401127 + 0.130334i
\(357\) 0 0
\(358\) 526.074 382.215i 1.46948 1.06764i
\(359\) 383.394 124.572i 1.06795 0.346998i 0.278261 0.960506i \(-0.410242\pi\)
0.789689 + 0.613508i \(0.210242\pi\)
\(360\) 0 0
\(361\) 120.996 + 87.9086i 0.335168 + 0.243514i
\(362\) 133.583i 0.369012i
\(363\) 0 0
\(364\) 20.8111 0.0571734
\(365\) 483.868 665.987i 1.32567 1.82462i
\(366\) 0 0
\(367\) −167.337 515.010i −0.455959 1.40330i −0.870006 0.493041i \(-0.835885\pi\)
0.414047 0.910255i \(-0.364115\pi\)
\(368\) −172.291 237.138i −0.468182 0.644397i
\(369\) 0 0
\(370\) 141.509 + 435.520i 0.382456 + 1.17708i
\(371\) −109.874 35.7003i −0.296157 0.0962272i
\(372\) 0 0
\(373\) −160.025 −0.429021 −0.214510 0.976722i \(-0.568816\pi\)
−0.214510 + 0.976722i \(0.568816\pi\)
\(374\) 699.903 509.090i 1.87140 1.36120i
\(375\) 0 0
\(376\) 85.6973 + 62.2627i 0.227918 + 0.165592i
\(377\) −73.2089 23.7870i −0.194188 0.0630955i
\(378\) 0 0
\(379\) 306.310 222.547i 0.808206 0.587196i −0.105104 0.994461i \(-0.533517\pi\)
0.913310 + 0.407265i \(0.133517\pi\)
\(380\) −327.875 451.281i −0.862828 1.18758i
\(381\) 0 0
\(382\) −137.202 + 422.264i −0.359167 + 1.10540i
\(383\) −140.814 + 193.814i −0.367661 + 0.506041i −0.952263 0.305278i \(-0.901250\pi\)
0.584603 + 0.811320i \(0.301250\pi\)
\(384\) 0 0
\(385\) −0.131690 242.675i −0.000342051 0.630325i
\(386\) 577.315i 1.49564i
\(387\) 0 0
\(388\) 43.0437 132.475i 0.110937 0.341430i
\(389\) 478.020 155.318i 1.22884 0.399276i 0.378549 0.925581i \(-0.376423\pi\)
0.850295 + 0.526306i \(0.176423\pi\)
\(390\) 0 0
\(391\) 535.485 389.052i 1.36953 0.995019i
\(392\) −102.856 + 33.4201i −0.262389 + 0.0852552i
\(393\) 0 0
\(394\) 798.836 + 580.389i 2.02750 + 1.47307i
\(395\) 131.905i 0.333935i
\(396\) 0 0
\(397\) 97.1039 0.244594 0.122297 0.992494i \(-0.460974\pi\)
0.122297 + 0.992494i \(0.460974\pi\)
\(398\) −516.485 + 710.880i −1.29770 + 1.78613i
\(399\) 0 0
\(400\) 132.690 + 408.379i 0.331726 + 1.02095i
\(401\) −386.262 531.644i −0.963247 1.32580i −0.945385 0.325955i \(-0.894314\pi\)
−0.0178620 0.999840i \(-0.505686\pi\)
\(402\) 0 0
\(403\) 24.2270 + 74.5630i 0.0601166 + 0.185020i
\(404\) −15.7817 5.12779i −0.0390636 0.0126925i
\(405\) 0 0
\(406\) −424.378 −1.04527
\(407\) −174.104 126.349i −0.427773 0.310441i
\(408\) 0 0
\(409\) −82.1600 59.6928i −0.200880 0.145948i 0.482798 0.875732i \(-0.339621\pi\)
−0.683678 + 0.729784i \(0.739621\pi\)
\(410\) −688.931 223.847i −1.68032 0.545969i
\(411\) 0 0
\(412\) 88.1325 64.0320i 0.213914 0.155417i
\(413\) −158.551 218.226i −0.383900 0.528393i
\(414\) 0 0
\(415\) 55.2868 170.155i 0.133221 0.410013i
\(416\) 40.4756 55.7099i 0.0972972 0.133918i
\(417\) 0 0
\(418\) 453.460 + 147.066i 1.08483 + 0.351833i
\(419\) 0.439819i 0.00104969i −1.00000 0.000524844i \(-0.999833\pi\)
1.00000 0.000524844i \(-0.000167063\pi\)
\(420\) 0 0
\(421\) −129.343 + 398.076i −0.307227 + 0.945548i 0.671610 + 0.740905i \(0.265603\pi\)
−0.978837 + 0.204642i \(0.934397\pi\)
\(422\) 328.028 106.583i 0.777317 0.252566i
\(423\) 0 0
\(424\) 87.5547 63.6122i 0.206497 0.150029i
\(425\) −922.166 + 299.630i −2.16980 + 0.705011i
\(426\) 0 0
\(427\) 6.57712 + 4.77856i 0.0154031 + 0.0111910i
\(428\) 62.8449i 0.146834i
\(429\) 0 0
\(430\) −49.6066 −0.115364
\(431\) 148.162 203.928i 0.343764 0.473150i −0.601772 0.798668i \(-0.705538\pi\)
0.945536 + 0.325517i \(0.105538\pi\)
\(432\) 0 0
\(433\) −38.4570 118.359i −0.0888153 0.273345i 0.896777 0.442482i \(-0.145902\pi\)
−0.985593 + 0.169137i \(0.945902\pi\)
\(434\) 254.057 + 349.680i 0.585385 + 0.805713i
\(435\) 0 0
\(436\) −164.914 507.552i −0.378243 1.16411i
\(437\) 346.738 + 112.662i 0.793450 + 0.257807i
\(438\) 0 0
\(439\) −73.6933 −0.167866 −0.0839332 0.996471i \(-0.526748\pi\)
−0.0839332 + 0.996471i \(0.526748\pi\)
\(440\) 183.987 + 133.522i 0.418152 + 0.303458i
\(441\) 0 0
\(442\) 96.6222 + 70.2001i 0.218602 + 0.158824i
\(443\) 351.831 + 114.317i 0.794200 + 0.258051i 0.677892 0.735162i \(-0.262894\pi\)
0.116308 + 0.993213i \(0.462894\pi\)
\(444\) 0 0
\(445\) −195.470 + 142.017i −0.439259 + 0.319140i
\(446\) 427.604 + 588.546i 0.958753 + 1.31961i
\(447\) 0 0
\(448\) 76.7385 236.177i 0.171291 0.527180i
\(449\) −427.055 + 587.791i −0.951125 + 1.30911i −9.88759e−5 1.00000i \(0.500031\pi\)
−0.951026 + 0.309111i \(0.899969\pi\)
\(450\) 0 0
\(451\) 323.576 105.330i 0.717464 0.233549i
\(452\) 449.357i 0.994153i
\(453\) 0 0
\(454\) −247.031 + 760.283i −0.544121 + 1.67463i
\(455\) 31.8493 10.3485i 0.0699984 0.0227438i
\(456\) 0 0
\(457\) 295.712 214.847i 0.647072 0.470125i −0.215201 0.976570i \(-0.569041\pi\)
0.862272 + 0.506445i \(0.169041\pi\)
\(458\) −527.476 + 171.387i −1.15169 + 0.374208i
\(459\) 0 0
\(460\) 778.130 + 565.344i 1.69159 + 1.22901i
\(461\) 153.670i 0.333340i −0.986013 0.166670i \(-0.946699\pi\)
0.986013 0.166670i \(-0.0533014\pi\)
\(462\) 0 0
\(463\) 325.357 0.702714 0.351357 0.936242i \(-0.385720\pi\)
0.351357 + 0.936242i \(0.385720\pi\)
\(464\) −348.465 + 479.621i −0.751002 + 1.03367i
\(465\) 0 0
\(466\) 149.366 + 459.701i 0.320528 + 0.986484i
\(467\) 491.368 + 676.310i 1.05218 + 1.44820i 0.886904 + 0.461954i \(0.152851\pi\)
0.165275 + 0.986247i \(0.447149\pi\)
\(468\) 0 0
\(469\) −76.6065 235.771i −0.163340 0.502709i
\(470\) 896.834 + 291.399i 1.90816 + 0.619998i
\(471\) 0 0
\(472\) 252.686 0.535352
\(473\) 18.8453 13.7076i 0.0398421 0.0289800i
\(474\) 0 0
\(475\) −432.081 313.925i −0.909645 0.660896i
\(476\) 344.216 + 111.843i 0.723143 + 0.234963i
\(477\) 0 0
\(478\) −171.419 + 124.543i −0.358616 + 0.260550i
\(479\) 197.344 + 271.621i 0.411992 + 0.567058i 0.963703 0.266977i \(-0.0860249\pi\)
−0.551711 + 0.834035i \(0.686025\pi\)
\(480\) 0 0
\(481\) 9.17337 28.2327i 0.0190715 0.0586959i
\(482\) 372.785 513.094i 0.773412 1.06451i
\(483\) 0 0
\(484\) −590.791 + 0.641196i −1.22064 + 0.00132479i
\(485\) 224.143i 0.462150i
\(486\) 0 0
\(487\) 180.912 556.789i 0.371482 1.14330i −0.574340 0.818617i \(-0.694741\pi\)
0.945822 0.324686i \(-0.105259\pi\)
\(488\) −7.24298 + 2.35339i −0.0148422 + 0.00482251i
\(489\) 0 0
\(490\) −778.894 + 565.900i −1.58958 + 1.15490i
\(491\) −309.648 + 100.611i −0.630647 + 0.204910i −0.606862 0.794807i \(-0.707572\pi\)
−0.0237854 + 0.999717i \(0.507572\pi\)
\(492\) 0 0
\(493\) −1083.04 786.874i −2.19683 1.59609i
\(494\) 65.7846i 0.133167i
\(495\) 0 0
\(496\) 603.810 1.21736
\(497\) 18.6933 25.7292i 0.0376123 0.0517689i
\(498\) 0 0
\(499\) 124.634 + 383.583i 0.249767 + 0.768703i 0.994816 + 0.101693i \(0.0324261\pi\)
−0.745049 + 0.667010i \(0.767574\pi\)
\(500\) −264.476 364.020i −0.528953 0.728041i
\(501\) 0 0
\(502\) −172.783 531.770i −0.344188 1.05930i
\(503\) −643.433 209.064i −1.27919 0.415634i −0.410895 0.911683i \(-0.634784\pi\)
−0.868295 + 0.496048i \(0.834784\pi\)
\(504\) 0 0
\(505\) −26.7021 −0.0528754
\(506\) −821.981 + 0.446056i −1.62447 + 0.000881533i
\(507\) 0 0
\(508\) −32.7185 23.7714i −0.0644066 0.0467941i
\(509\) 639.693 + 207.849i 1.25677 + 0.408348i 0.860341 0.509720i \(-0.170251\pi\)
0.396425 + 0.918067i \(0.370251\pi\)
\(510\) 0 0
\(511\) −238.016 + 172.929i −0.465785 + 0.338413i
\(512\) −384.029 528.571i −0.750057 1.03236i
\(513\) 0 0
\(514\) −267.816 + 824.254i −0.521043 + 1.60361i
\(515\) 103.037 141.819i 0.200072 0.275376i
\(516\) 0 0
\(517\) −421.224 + 137.117i −0.814746 + 0.265216i
\(518\) 163.660i 0.315946i
\(519\) 0 0
\(520\) −9.69410 + 29.8354i −0.0186425 + 0.0573757i
\(521\) −70.0098 + 22.7476i −0.134376 + 0.0436613i −0.375433 0.926850i \(-0.622506\pi\)
0.241057 + 0.970511i \(0.422506\pi\)
\(522\) 0 0
\(523\) 432.771 314.426i 0.827478 0.601198i −0.0913670 0.995817i \(-0.529124\pi\)
0.918845 + 0.394620i \(0.129124\pi\)
\(524\) 7.60469 2.47091i 0.0145128 0.00471548i
\(525\) 0 0
\(526\) −1105.67 803.320i −2.10204 1.52722i
\(527\) 1363.47i 2.58723i
\(528\) 0 0
\(529\) −99.6371 −0.188350
\(530\) 566.287 779.427i 1.06847 1.47062i
\(531\) 0 0
\(532\) 61.6045 + 189.599i 0.115798 + 0.356389i
\(533\) 27.6016 + 37.9903i 0.0517853 + 0.0712763i
\(534\) 0 0
\(535\) −31.2500 96.1775i −0.0584112 0.179771i
\(536\) 220.862 + 71.7626i 0.412057 + 0.133885i
\(537\) 0 0
\(538\) 622.158 1.15643
\(539\) 139.526 430.211i 0.258861 0.798165i
\(540\) 0 0
\(541\) −12.4454 9.04213i −0.0230045 0.0167137i 0.576224 0.817292i \(-0.304526\pi\)
−0.599228 + 0.800578i \(0.704526\pi\)
\(542\) −1306.56 424.526i −2.41062 0.783258i
\(543\) 0 0
\(544\) 968.861 703.919i 1.78099 1.29397i
\(545\) −504.766 694.751i −0.926177 1.27477i
\(546\) 0 0
\(547\) −56.2850 + 173.227i −0.102898 + 0.316686i −0.989231 0.146361i \(-0.953244\pi\)
0.886334 + 0.463047i \(0.153244\pi\)
\(548\) 568.581 782.584i 1.03756 1.42807i
\(549\) 0 0
\(550\) 1145.40 + 371.477i 2.08255 + 0.675412i
\(551\) 737.380i 1.33826i
\(552\) 0 0
\(553\) 14.5674 44.8339i 0.0263425 0.0810740i
\(554\) 299.471 97.3041i 0.540562 0.175639i
\(555\) 0 0
\(556\) −740.429 + 537.953i −1.33171 + 0.967542i
\(557\) 255.810 83.1179i 0.459265 0.149224i −0.0702419 0.997530i \(-0.522377\pi\)
0.529507 + 0.848306i \(0.322377\pi\)
\(558\) 0 0
\(559\) 2.60161 + 1.89018i 0.00465405 + 0.00338136i
\(560\) 257.915i 0.460562i
\(561\) 0 0
\(562\) −1284.47 −2.28554
\(563\) 235.669 324.370i 0.418594 0.576146i −0.546694 0.837332i \(-0.684114\pi\)
0.965288 + 0.261187i \(0.0841139\pi\)
\(564\) 0 0
\(565\) −223.445 687.694i −0.395479 1.21716i
\(566\) −528.551 727.489i −0.933836 1.28532i
\(567\) 0 0
\(568\) 9.20625 + 28.3339i 0.0162082 + 0.0498837i
\(569\) −174.429 56.6756i −0.306554 0.0996056i 0.151700 0.988427i \(-0.451525\pi\)
−0.458255 + 0.888821i \(0.651525\pi\)
\(570\) 0 0
\(571\) 693.995 1.21540 0.607701 0.794166i \(-0.292092\pi\)
0.607701 + 0.794166i \(0.292092\pi\)
\(572\) −25.2353 77.5231i −0.0441177 0.135530i
\(573\) 0 0
\(574\) 209.444 + 152.170i 0.364885 + 0.265105i
\(575\) 875.829 + 284.574i 1.52318 + 0.494912i
\(576\) 0 0
\(577\) −429.878 + 312.325i −0.745023 + 0.541291i −0.894280 0.447507i \(-0.852312\pi\)
0.149257 + 0.988798i \(0.452312\pi\)
\(578\) 714.589 + 983.547i 1.23631 + 1.70164i
\(579\) 0 0
\(580\) 601.137 1850.11i 1.03644 3.18985i
\(581\) −37.5836 + 51.7294i −0.0646878 + 0.0890351i
\(582\) 0 0
\(583\) 0.245596 + 452.580i 0.000421263 + 0.776295i
\(584\) 275.601i 0.471920i
\(585\) 0 0
\(586\) 42.6551 131.279i 0.0727902 0.224025i
\(587\) −510.666 + 165.925i −0.869958 + 0.282667i −0.709782 0.704422i \(-0.751206\pi\)
−0.160177 + 0.987088i \(0.551206\pi\)
\(588\) 0 0
\(589\) −607.587 + 441.438i −1.03156 + 0.749470i
\(590\) 2139.36 695.120i 3.62603 1.17817i
\(591\) 0 0
\(592\) −184.964 134.384i −0.312439 0.227001i
\(593\) 228.398i 0.385156i 0.981282 + 0.192578i \(0.0616849\pi\)
−0.981282 + 0.192578i \(0.938315\pi\)
\(594\) 0 0
\(595\) 582.401 0.978825
\(596\) −686.439 + 944.802i −1.15174 + 1.58524i
\(597\) 0 0
\(598\) −35.0519 107.879i −0.0586153 0.180399i
\(599\) −350.082 481.846i −0.584444 0.804418i 0.409730 0.912207i \(-0.365623\pi\)
−0.994174 + 0.107789i \(0.965623\pi\)
\(600\) 0 0
\(601\) 245.022 + 754.101i 0.407691 + 1.25474i 0.918627 + 0.395125i \(0.129299\pi\)
−0.510936 + 0.859619i \(0.670701\pi\)
\(602\) 16.8611 + 5.47851i 0.0280085 + 0.00910052i
\(603\) 0 0
\(604\) −286.488 −0.474318
\(605\) −903.824 + 294.755i −1.49392 + 0.487199i
\(606\) 0 0
\(607\) 706.476 + 513.285i 1.16388 + 0.845610i 0.990264 0.139203i \(-0.0444542\pi\)
0.173618 + 0.984813i \(0.444454\pi\)
\(608\) 627.358 + 203.841i 1.03184 + 0.335265i
\(609\) 0 0
\(610\) −54.8485 + 39.8497i −0.0899155 + 0.0653274i
\(611\) −35.9310 49.4548i −0.0588069 0.0809408i
\(612\) 0 0
\(613\) 97.3458 299.600i 0.158802 0.488743i −0.839724 0.543014i \(-0.817283\pi\)
0.998526 + 0.0542702i \(0.0172832\pi\)
\(614\) −785.266 + 1080.83i −1.27894 + 1.76030i
\(615\) 0 0
\(616\) −47.7905 65.7029i −0.0775819 0.106661i
\(617\) 738.239i 1.19650i 0.801311 + 0.598249i \(0.204136\pi\)
−0.801311 + 0.598249i \(0.795864\pi\)
\(618\) 0 0
\(619\) 285.874 879.831i 0.461832 1.42137i −0.401090 0.916038i \(-0.631369\pi\)
0.862923 0.505336i \(-0.168631\pi\)
\(620\) −1884.33 + 612.256i −3.03924 + 0.987510i
\(621\) 0 0
\(622\) −806.955 + 586.287i −1.29736 + 0.942584i
\(623\) 82.1240 26.6837i 0.131820 0.0428310i
\(624\) 0 0
\(625\) 157.102 + 114.141i 0.251363 + 0.182626i
\(626\) 304.938i 0.487122i
\(627\) 0 0
\(628\) −99.7039 −0.158764
\(629\) 303.455 417.670i 0.482440 0.664022i
\(630\) 0 0
\(631\) −108.898 335.154i −0.172580 0.531147i 0.826935 0.562298i \(-0.190083\pi\)
−0.999515 + 0.0311513i \(0.990083\pi\)
\(632\) 25.9568 + 35.7265i 0.0410709 + 0.0565293i
\(633\) 0 0
\(634\) −348.017 1071.09i −0.548922 1.68941i
\(635\) −61.8927 20.1102i −0.0974689 0.0316696i
\(636\) 0 0
\(637\) 62.4117 0.0979776
\(638\) 514.595 + 1580.84i 0.806576 + 2.47781i
\(639\) 0 0
\(640\) 522.000 + 379.255i 0.815625 + 0.592586i
\(641\) 234.944 + 76.3379i 0.366527 + 0.119092i 0.486489 0.873687i \(-0.338277\pi\)
−0.119962 + 0.992778i \(0.538277\pi\)
\(642\) 0 0
\(643\) −531.828 + 386.395i −0.827104 + 0.600926i −0.918738 0.394867i \(-0.870791\pi\)
0.0916349 + 0.995793i \(0.470791\pi\)
\(644\) −202.048 278.095i −0.313739 0.431824i
\(645\) 0 0
\(646\) −353.538 + 1088.08i −0.547272 + 1.68433i
\(647\) 379.466 522.290i 0.586500 0.807249i −0.407889 0.913032i \(-0.633735\pi\)
0.994389 + 0.105783i \(0.0337349\pi\)
\(648\) 0 0
\(649\) −620.654 + 855.232i −0.956323 + 1.31777i
\(650\) 166.166i 0.255640i
\(651\) 0 0
\(652\) −157.750 + 485.506i −0.241948 + 0.744640i
\(653\) 33.8048 10.9839i 0.0517685 0.0168206i −0.283018 0.959115i \(-0.591336\pi\)
0.334787 + 0.942294i \(0.391336\pi\)
\(654\) 0 0
\(655\) 10.4095 7.56295i 0.0158924 0.0115465i
\(656\) 343.957 111.758i 0.524325 0.170363i
\(657\) 0 0
\(658\) −272.649 198.091i −0.414360 0.301050i
\(659\) 721.237i 1.09444i −0.836988 0.547221i \(-0.815686\pi\)
0.836988 0.547221i \(-0.184314\pi\)
\(660\) 0 0
\(661\) −617.542 −0.934253 −0.467127 0.884190i \(-0.654711\pi\)
−0.467127 + 0.884190i \(0.654711\pi\)
\(662\) −299.512 + 412.242i −0.452435 + 0.622723i
\(663\) 0 0
\(664\) −18.5095 56.9664i −0.0278757 0.0857927i
\(665\) 188.558 + 259.528i 0.283546 + 0.390268i
\(666\) 0 0
\(667\) 392.897 + 1209.21i 0.589052 + 1.81291i
\(668\) −182.077 59.1603i −0.272570 0.0885633i
\(669\) 0 0
\(670\) 2067.34 3.08558
\(671\) 9.82518 30.2947i 0.0146426 0.0451486i
\(672\) 0 0
\(673\) 679.954 + 494.016i 1.01033 + 0.734050i 0.964279 0.264889i \(-0.0853353\pi\)
0.0460541 + 0.998939i \(0.485335\pi\)
\(674\) 544.042 + 176.770i 0.807184 + 0.262270i
\(675\) 0 0
\(676\) −658.462 + 478.401i −0.974057 + 0.707694i
\(677\) 227.212 + 312.730i 0.335615 + 0.461935i 0.943154 0.332355i \(-0.107843\pi\)
−0.607539 + 0.794290i \(0.707843\pi\)
\(678\) 0 0
\(679\) −24.7541 + 76.1854i −0.0364568 + 0.112202i
\(680\) −320.681 + 441.379i −0.471589 + 0.649087i
\(681\) 0 0
\(682\) 994.518 1370.40i 1.45824 2.00938i
\(683\) 122.406i 0.179219i 0.995977 + 0.0896094i \(0.0285619\pi\)
−0.995977 + 0.0896094i \(0.971438\pi\)
\(684\) 0 0
\(685\) 481.009 1480.39i 0.702203 2.16116i
\(686\) 717.236 233.044i 1.04553 0.339714i
\(687\) 0 0
\(688\) 20.0367 14.5575i 0.0291231 0.0211592i
\(689\) −59.3977 + 19.2995i −0.0862085 + 0.0280108i
\(690\) 0 0
\(691\) −198.194 143.996i −0.286822 0.208388i 0.435065 0.900399i \(-0.356725\pi\)
−0.721888 + 0.692010i \(0.756725\pi\)
\(692\) 446.402i 0.645090i
\(693\) 0 0
\(694\) 553.926 0.798165
\(695\) −865.649 + 1191.46i −1.24554 + 1.71434i
\(696\) 0 0
\(697\) 252.363 + 776.694i 0.362071 + 1.11434i
\(698\) 309.003 + 425.306i 0.442697 + 0.609320i
\(699\) 0 0
\(700\) 155.608 + 478.911i 0.222297 + 0.684159i
\(701\) −187.720 60.9938i −0.267788 0.0870097i 0.172045 0.985089i \(-0.444963\pi\)
−0.439833 + 0.898079i \(0.644963\pi\)
\(702\) 0 0
\(703\) 284.368 0.404506
\(704\) −972.830 + 0.527915i −1.38186 + 0.000749879i
\(705\) 0 0
\(706\) 561.379 + 407.866i 0.795155 + 0.577714i
\(707\) 9.07595 + 2.94896i 0.0128373 + 0.00417108i
\(708\) 0 0
\(709\) 425.433 309.095i 0.600046 0.435959i −0.245849 0.969308i \(-0.579067\pi\)
0.845895 + 0.533349i \(0.179067\pi\)
\(710\) 155.889 + 214.563i 0.219562 + 0.302201i
\(711\) 0 0
\(712\) −24.9965 + 76.9312i −0.0351074 + 0.108049i
\(713\) 761.159 1047.65i 1.06754 1.46935i
\(714\) 0 0
\(715\) −77.1688 106.093i −0.107928 0.148381i
\(716\) 1065.29i 1.48784i
\(717\) 0 0
\(718\) 371.271 1142.65i 0.517090 1.59144i
\(719\) 51.7903 16.8277i 0.0720311 0.0234043i −0.272780 0.962076i \(-0.587943\pi\)
0.344811 + 0.938672i \(0.387943\pi\)
\(720\) 0 0
\(721\) −50.6844 + 36.8244i −0.0702973 + 0.0510740i
\(722\) 423.924 137.741i 0.587153 0.190777i
\(723\) 0 0
\(724\) −177.046 128.632i −0.244539 0.177668i
\(725\) 1862.56i 2.56905i
\(726\) 0 0
\(727\) 1312.96 1.80600 0.902999 0.429642i \(-0.141360\pi\)
0.902999 + 0.429642i \(0.141360\pi\)
\(728\) 6.58999 9.07035i 0.00905219 0.0124593i
\(729\) 0 0
\(730\) −758.158 2333.37i −1.03857 3.19640i
\(731\) 32.8725 + 45.2451i 0.0449692 + 0.0618948i
\(732\) 0 0
\(733\) 122.245 + 376.231i 0.166774 + 0.513276i 0.999163 0.0409155i \(-0.0130275\pi\)
−0.832389 + 0.554192i \(0.813027\pi\)
\(734\) −1534.92 498.725i −2.09117 0.679461i
\(735\) 0 0
\(736\) −1137.40 −1.54538
\(737\) −785.372 + 571.258i −1.06563 + 0.775112i
\(738\) 0 0
\(739\) −1153.17 837.830i −1.56045 1.13374i −0.935637 0.352963i \(-0.885174\pi\)
−0.624816 0.780772i \(-0.714826\pi\)
\(740\) 713.488 + 231.826i 0.964174 + 0.313279i
\(741\) 0 0
\(742\) −278.558 + 202.385i −0.375416 + 0.272755i
\(743\) 381.078 + 524.508i 0.512890 + 0.705933i 0.984403 0.175926i \(-0.0562920\pi\)
−0.471513 + 0.881859i \(0.656292\pi\)
\(744\) 0 0
\(745\) −580.715 + 1787.26i −0.779483 + 2.39900i
\(746\) −280.334 + 385.846i −0.375783 + 0.517220i
\(747\) 0 0
\(748\) −0.769410 1417.85i −0.00102862 1.89552i
\(749\) 36.1417i 0.0482532i
\(750\) 0 0
\(751\) −160.859 + 495.074i −0.214193 + 0.659220i 0.785016 + 0.619475i \(0.212654\pi\)
−0.999210 + 0.0397446i \(0.987346\pi\)
\(752\) −447.755 + 145.484i −0.595419 + 0.193463i
\(753\) 0 0
\(754\) −185.603 + 134.848i −0.246157 + 0.178844i
\(755\) −438.440 + 142.458i −0.580715 + 0.188686i
\(756\) 0 0
\(757\) 442.250 + 321.314i 0.584214 + 0.424456i 0.840241 0.542213i \(-0.182414\pi\)
−0.256027 + 0.966670i \(0.582414\pi\)
\(758\) 1128.43i 1.48869i
\(759\) 0 0
\(760\) −300.510 −0.395408
\(761\) 485.510 668.247i 0.637990 0.878118i −0.360517 0.932753i \(-0.617400\pi\)
0.998506 + 0.0546352i \(0.0173996\pi\)
\(762\) 0 0
\(763\) 94.8408 + 291.890i 0.124300 + 0.382555i
\(764\) 427.539 + 588.457i 0.559606 + 0.770231i
\(765\) 0 0
\(766\) 220.637 + 679.052i 0.288038 + 0.886491i
\(767\) −138.685 45.0615i −0.180815 0.0587503i
\(768\) 0 0
\(769\) 712.096 0.926003 0.463001 0.886358i \(-0.346772\pi\)
0.463001 + 0.886358i \(0.346772\pi\)
\(770\) −585.360 424.804i −0.760208 0.551694i
\(771\) 0 0
\(772\) 765.156 + 555.918i 0.991135 + 0.720102i
\(773\) −262.790 85.3856i −0.339961 0.110460i 0.134061 0.990973i \(-0.457198\pi\)
−0.474022 + 0.880513i \(0.657198\pi\)
\(774\) 0 0
\(775\) −1534.71 + 1115.03i −1.98028 + 1.43875i
\(776\) −44.1079 60.7094i −0.0568401 0.0782337i
\(777\) 0 0
\(778\) 462.905 1424.67i 0.594993 1.83120i
\(779\) −264.404 + 363.921i −0.339414 + 0.467164i
\(780\) 0 0
\(781\) −118.510 38.4353i −0.151742 0.0492129i
\(782\) 1972.69i 2.52262i
\(783\) 0 0
\(784\) 148.536 457.147i 0.189459 0.583095i
\(785\) −152.586 + 49.5783i −0.194377 + 0.0631571i
\(786\) 0 0
\(787\) −773.348 + 561.870i &mi