Newspace parameters
Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 99.k (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.69755461717\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{10})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
Defining polynomial: |
\( x^{16} - 21x^{14} + 227x^{12} - 1488x^{10} + 24225x^{8} - 62832x^{6} + 64372x^{4} + 7986x^{2} + 14641 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 21x^{14} + 227x^{12} - 1488x^{10} + 24225x^{8} - 62832x^{6} + 64372x^{4} + 7986x^{2} + 14641 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( 95551278 \nu^{14} - 126822633412 \nu^{12} + 2507387635134 \nu^{10} - 25685652894720 \nu^{8} + 157339424200095 \nu^{6} + \cdots - 29\!\cdots\!58 ) / 39\!\cdots\!45 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 32130978280 \nu^{15} + 31948404670 \nu^{13} + 5924614934588 \nu^{11} - 93193803417051 \nu^{9} + 133796302845113 \nu^{7} + \cdots - 43\!\cdots\!77 \nu ) / 39\!\cdots\!45 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 5854282560 \nu^{14} + 125428263227 \nu^{12} - 1388833610400 \nu^{10} + 9410848624160 \nu^{8} - 146776049383200 \nu^{6} + \cdots + 88541185404320 ) / 355575559329595 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 5854282560 \nu^{15} + 125428263227 \nu^{13} - 1388833610400 \nu^{11} + 9410848624160 \nu^{9} - 146776049383200 \nu^{7} + \cdots + 88541185404320 \nu ) / 355575559329595 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 7530891822 \nu^{14} - 161922628410 \nu^{12} + 1773071437239 \nu^{10} - 11760003820535 \nu^{8} + 185084618505135 \nu^{6} + \cdots + 243765923221832 ) / 355575559329595 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 115291499597 \nu^{14} - 2410283199611 \nu^{12} + 25350978529100 \nu^{10} - 157438624000303 \nu^{8} + \cdots + 13\!\cdots\!07 ) / 39\!\cdots\!45 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 147141366924 \nu^{15} + 3034037174595 \nu^{13} - 32273567888895 \nu^{11} + 207193723996925 \nu^{9} + \cdots - 753747908220945 \nu ) / 39\!\cdots\!45 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 13385174382 \nu^{15} - 287350891637 \nu^{13} + 3161905047639 \nu^{11} - 21170852444695 \nu^{9} + 331860667888335 \nu^{7} + \cdots + 155224737817512 \nu ) / 355575559329595 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 298410148268 \nu^{14} + 6273343728321 \nu^{12} - 67973023670350 \nu^{10} + 448617912246188 \nu^{8} + \cdots + 12\!\cdots\!73 ) / 39\!\cdots\!45 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 312289527222 \nu^{14} + 6157499382802 \nu^{12} - 62836567910801 \nu^{10} + 380954707458452 \nu^{8} + \cdots - 13\!\cdots\!26 ) / 39\!\cdots\!45 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 88180182 \nu^{14} + 1926186986 \nu^{12} - 21449350233 \nu^{10} + 145597396588 \nu^{8} - 2222070588469 \nu^{6} + \cdots - 484613427771 ) / 924883223605 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 598241835319 \nu^{15} - 13289199325505 \nu^{13} + 150985563543754 \nu^{11} + \cdots - 26\!\cdots\!82 \nu ) / 39\!\cdots\!45 \)
|
\(\beta_{14}\) | \(=\) |
\( ( - 689220968556 \nu^{15} + 13753077377678 \nu^{13} - 141872714227952 \nu^{11} + 873330891688747 \nu^{9} + \cdots - 27\!\cdots\!29 \nu ) / 39\!\cdots\!45 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 699614355640 \nu^{15} - 14626335417890 \nu^{13} + 156853985883961 \nu^{11} + \cdots + 42\!\cdots\!97 \nu ) / 39\!\cdots\!45 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{12} + \beta_{11} - \beta_{10} + 2\beta_{7} - 2\beta_{6} - 5\beta_{4} - \beta_{2} + 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{15} - 2\beta_{13} - \beta_{9} - 11\beta_{5} + 2\beta_{3} + \beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -12\beta_{12} + 6\beta_{11} - 3\beta_{10} + 18\beta_{7} - 82\beta_{6} - 19\beta_{4} - 25\beta_{2} + 3 \)
|
\(\nu^{5}\) | \(=\) |
\( 30\beta_{15} + 3\beta_{14} - 18\beta_{13} - 149\beta_{9} - 37\beta_{8} - 146\beta_{5} + 33\beta_{3} + 37\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -212\beta_{12} + 212\beta_{11} + 70\beta_{10} + 70\beta_{7} - 282\beta_{6} - 364\beta_{4} - 1191\beta_{2} - 434 \)
|
\(\nu^{7}\) | \(=\) |
\( 282 \beta_{15} + 282 \beta_{14} - 70 \beta_{13} - 2321 \beta_{9} - 2321 \beta_{8} - 714 \beta_{5} + 212 \beta_{3} + 1607 \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( - 2556 \beta_{12} + 1749 \beta_{11} + 4305 \beta_{10} - 1278 \beta_{7} + 6413 \beta_{6} - 7691 \beta_{4} - 15755 \beta_{2} - 18311 \)
|
\(\nu^{9}\) | \(=\) |
\( 1278\beta_{15} + 6054\beta_{14} + 1278\beta_{13} - 18759\beta_{9} - 35195\beta_{8} - 3027\beta_{3} + 6054\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( - 43805 \beta_{12} - 22490 \beta_{11} + 87610 \beta_{10} - 65120 \beta_{7} + 124340 \beta_{6} - 80535 \beta_{2} - 291103 \)
|
\(\nu^{11}\) | \(=\) |
\( - 21315 \beta_{15} + 65120 \beta_{14} + 65120 \beta_{13} - 65120 \beta_{9} - 274720 \beta_{8} + 209600 \beta_{5} - 108925 \beta_{3} - 147798 \beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( - 300528 \beta_{12} - 640368 \beta_{11} + 980208 \beta_{10} - 1280736 \beta_{7} + 2603456 \beta_{6} + 1360625 \beta_{4} + 640368 \beta_{2} - 2603456 \)
|
\(\nu^{13}\) | \(=\) |
\( - 980208 \beta_{15} + 339840 \beta_{14} + 1280736 \beta_{13} + 2982608 \beta_{9} - 339840 \beta_{8} + 6185713 \beta_{5} - 1960416 \beta_{3} - 2982608 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( 4144001 \beta_{12} - 10565728 \beta_{11} + 5282864 \beta_{10} - 14709729 \beta_{7} + 37812551 \beta_{6} + 25058897 \beta_{4} + 35624625 \beta_{2} - 5282864 \)
|
\(\nu^{15}\) | \(=\) |
\( - 18853730 \beta_{15} - 5282864 \beta_{14} + 14709729 \beta_{13} + 96434907 \beta_{9} + 56756081 \beta_{8} + 91152043 \beta_{5} - 24136594 \beta_{3} - 56756081 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).
\(n\) | \(46\) | \(56\) |
\(\chi(n)\) | \(-\beta_{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−2.27075 | − | 3.12541i | 0 | −3.37586 | + | 10.3898i | 3.35774 | + | 2.43954i | 0 | 7.08028 | + | 2.30052i | 25.4416 | − | 8.26648i | 0 | − | 16.0339i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
19.2 | −0.816494 | − | 1.12381i | 0 | 0.639787 | − | 1.96906i | −3.53770 | − | 2.57029i | 0 | 0.582836 | + | 0.189375i | −8.01969 | + | 2.60575i | 0 | 6.07432i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
19.3 | 0.816494 | + | 1.12381i | 0 | 0.639787 | − | 1.96906i | 3.53770 | + | 2.57029i | 0 | 0.582836 | + | 0.189375i | 8.01969 | − | 2.60575i | 0 | 6.07432i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
19.4 | 2.27075 | + | 3.12541i | 0 | −3.37586 | + | 10.3898i | −3.35774 | − | 2.43954i | 0 | 7.08028 | + | 2.30052i | −25.4416 | + | 8.26648i | 0 | − | 16.0339i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28.1 | −2.96408 | + | 0.963089i | 0 | 4.62219 | − | 3.35821i | −0.439256 | + | 1.35189i | 0 | 2.23863 | + | 3.08121i | −3.13867 | + | 4.32000i | 0 | − | 4.43016i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28.2 | −0.625505 | + | 0.203239i | 0 | −2.88612 | + | 2.09689i | 2.50346 | − | 7.70484i | 0 | −2.40175 | − | 3.30573i | 2.92545 | − | 4.02653i | 0 | 5.32822i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28.3 | 0.625505 | − | 0.203239i | 0 | −2.88612 | + | 2.09689i | −2.50346 | + | 7.70484i | 0 | −2.40175 | − | 3.30573i | −2.92545 | + | 4.02653i | 0 | 5.32822i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28.4 | 2.96408 | − | 0.963089i | 0 | 4.62219 | − | 3.35821i | 0.439256 | − | 1.35189i | 0 | 2.23863 | + | 3.08121i | 3.13867 | − | 4.32000i | 0 | − | 4.43016i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.1 | −2.96408 | − | 0.963089i | 0 | 4.62219 | + | 3.35821i | −0.439256 | − | 1.35189i | 0 | 2.23863 | − | 3.08121i | −3.13867 | − | 4.32000i | 0 | 4.43016i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.2 | −0.625505 | − | 0.203239i | 0 | −2.88612 | − | 2.09689i | 2.50346 | + | 7.70484i | 0 | −2.40175 | + | 3.30573i | 2.92545 | + | 4.02653i | 0 | − | 5.32822i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.3 | 0.625505 | + | 0.203239i | 0 | −2.88612 | − | 2.09689i | −2.50346 | − | 7.70484i | 0 | −2.40175 | + | 3.30573i | −2.92545 | − | 4.02653i | 0 | − | 5.32822i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.4 | 2.96408 | + | 0.963089i | 0 | 4.62219 | + | 3.35821i | 0.439256 | + | 1.35189i | 0 | 2.23863 | − | 3.08121i | 3.13867 | + | 4.32000i | 0 | 4.43016i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
73.1 | −2.27075 | + | 3.12541i | 0 | −3.37586 | − | 10.3898i | 3.35774 | − | 2.43954i | 0 | 7.08028 | − | 2.30052i | 25.4416 | + | 8.26648i | 0 | 16.0339i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
73.2 | −0.816494 | + | 1.12381i | 0 | 0.639787 | + | 1.96906i | −3.53770 | + | 2.57029i | 0 | 0.582836 | − | 0.189375i | −8.01969 | − | 2.60575i | 0 | − | 6.07432i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
73.3 | 0.816494 | − | 1.12381i | 0 | 0.639787 | + | 1.96906i | 3.53770 | − | 2.57029i | 0 | 0.582836 | − | 0.189375i | 8.01969 | + | 2.60575i | 0 | − | 6.07432i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
73.4 | 2.27075 | − | 3.12541i | 0 | −3.37586 | − | 10.3898i | −3.35774 | + | 2.43954i | 0 | 7.08028 | − | 2.30052i | −25.4416 | − | 8.26648i | 0 | 16.0339i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
33.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.3.k.b | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 99.3.k.b | ✓ | 16 |
11.c | even | 5 | 1 | 1089.3.c.l | 16 | ||
11.d | odd | 10 | 1 | inner | 99.3.k.b | ✓ | 16 |
11.d | odd | 10 | 1 | 1089.3.c.l | 16 | ||
33.f | even | 10 | 1 | inner | 99.3.k.b | ✓ | 16 |
33.f | even | 10 | 1 | 1089.3.c.l | 16 | ||
33.h | odd | 10 | 1 | 1089.3.c.l | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
99.3.k.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
99.3.k.b | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
99.3.k.b | ✓ | 16 | 11.d | odd | 10 | 1 | inner |
99.3.k.b | ✓ | 16 | 33.f | even | 10 | 1 | inner |
1089.3.c.l | 16 | 11.c | even | 5 | 1 | ||
1089.3.c.l | 16 | 11.d | odd | 10 | 1 | ||
1089.3.c.l | 16 | 33.f | even | 10 | 1 | ||
1089.3.c.l | 16 | 33.h | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} - 6T_{2}^{14} + 172T_{2}^{12} - 2568T_{2}^{10} + 20265T_{2}^{8} + 1848T_{2}^{6} + 71027T_{2}^{4} - 51909T_{2}^{2} + 14641 \)
acting on \(S_{3}^{\mathrm{new}}(99, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} - 6 T^{14} + 172 T^{12} + \cdots + 14641 \)
$3$
\( T^{16} \)
$5$
\( T^{16} + 87 T^{14} + \cdots + 1908029761 \)
$7$
\( (T^{8} - 15 T^{7} + 77 T^{6} - 200 T^{5} + \cdots + 5041)^{2} \)
$11$
\( T^{16} + 417 T^{14} + \cdots + 45\!\cdots\!61 \)
$13$
\( (T^{8} + 15 T^{7} - 403 T^{6} + \cdots + 441168016)^{2} \)
$17$
\( T^{16} + \cdots + 803437664440576 \)
$19$
\( (T^{8} - 640 T^{6} - 16235 T^{5} + \cdots + 5628000400)^{2} \)
$23$
\( (T^{8} - 1430 T^{6} + \cdots + 1301766400)^{2} \)
$29$
\( T^{16} - 1115 T^{14} + \cdots + 18\!\cdots\!00 \)
$31$
\( (T^{8} - 65 T^{7} + \cdots + 350813367025)^{2} \)
$37$
\( (T^{8} - 45 T^{7} + 1615 T^{6} + \cdots + 474368400)^{2} \)
$41$
\( T^{16} - 5155 T^{14} + \cdots + 10\!\cdots\!00 \)
$43$
\( (T^{8} + 5102 T^{6} + \cdots + 431696305296)^{2} \)
$47$
\( T^{16} + 2455 T^{14} + \cdots + 11\!\cdots\!00 \)
$53$
\( T^{16} + 12905 T^{14} + \cdots + 17\!\cdots\!25 \)
$59$
\( T^{16} + 4320 T^{14} + \cdots + 41\!\cdots\!25 \)
$61$
\( (T^{8} - 105 T^{7} + \cdots + 3114589632400)^{2} \)
$67$
\( (T^{4} - 75 T^{3} - 3655 T^{2} + \cdots - 3482380)^{4} \)
$71$
\( T^{16} + 1575 T^{14} + \cdots + 16\!\cdots\!00 \)
$73$
\( (T^{8} + 85 T^{7} + \cdots + 494466201667216)^{2} \)
$79$
\( (T^{8} - 15 T^{7} + \cdots + 436852010010025)^{2} \)
$83$
\( T^{16} - 23291 T^{14} + \cdots + 21\!\cdots\!01 \)
$89$
\( (T^{8} - 29246 T^{6} + \cdots + 33083847444736)^{2} \)
$97$
\( (T^{8} - 435 T^{7} + \cdots + 20\!\cdots\!25)^{2} \)
show more
show less