Newspace parameters
Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 99.h (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.69755461717\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −3.30671 | − | 1.90913i | 0.253226 | − | 2.98929i | 5.28955 | + | 9.16177i | −2.91356 | − | 5.04644i | −6.54430 | + | 9.40128i | −5.33694 | − | 3.08128i | − | 25.1207i | −8.87175 | − | 1.51394i | 22.2495i | |||
43.2 | −3.03057 | − | 1.74970i | −2.16106 | + | 2.08083i | 4.12292 | + | 7.14111i | −0.198992 | − | 0.344665i | 10.1901 | − | 2.52489i | 2.03014 | + | 1.17210i | − | 14.8579i | 0.340331 | − | 8.99356i | 1.39271i | |||
43.3 | −2.67675 | − | 1.54542i | 2.53282 | + | 1.60774i | 2.77667 | + | 4.80934i | −1.89480 | − | 3.28189i | −4.29510 | − | 8.21780i | 5.27354 | + | 3.04468i | − | 4.80116i | 3.83037 | + | 8.14422i | 11.7131i | |||
43.4 | −2.41819 | − | 1.39614i | 1.93703 | − | 2.29083i | 1.89841 | + | 3.28815i | 3.95412 | + | 6.84874i | −7.88243 | + | 2.83528i | 11.3316 | + | 6.54229i | 0.567308i | −1.49581 | − | 8.87483i | − | 22.0820i | |||
43.5 | −2.38735 | − | 1.37834i | −2.62560 | − | 1.45128i | 1.79962 | + | 3.11703i | 3.89274 | + | 6.74242i | 4.26788 | + | 7.08367i | −6.72208 | − | 3.88100i | 1.10477i | 4.78758 | + | 7.62097i | − | 21.4620i | |||
43.6 | −1.81513 | − | 1.04797i | 0.432421 | + | 2.96867i | 0.196474 | + | 0.340304i | 1.28105 | + | 2.21884i | 2.32617 | − | 5.84170i | −4.60933 | − | 2.66120i | 7.56015i | −8.62602 | + | 2.56743i | − | 5.37000i | |||
43.7 | −1.64469 | − | 0.949563i | −2.45615 | − | 1.72260i | −0.196660 | − | 0.340626i | −3.05607 | − | 5.29326i | 2.40389 | + | 5.16541i | 4.13935 | + | 2.38985i | 8.34347i | 3.06532 | + | 8.46190i | 11.6077i | ||||
43.8 | −1.10231 | − | 0.636421i | 2.90522 | − | 0.748144i | −1.18994 | − | 2.06103i | −1.84774 | − | 3.20038i | −3.67859 | − | 1.02425i | −6.26503 | − | 3.61711i | 8.12057i | 7.88056 | − | 4.34704i | 4.70376i | ||||
43.9 | −0.981412 | − | 0.566618i | 0.439224 | − | 2.96767i | −1.35789 | − | 2.35193i | 0.0827703 | + | 0.143362i | −2.11260 | + | 2.66364i | −3.82724 | − | 2.20966i | 7.61056i | −8.61416 | − | 2.60695i | − | 0.187597i | |||
43.10 | −0.491166 | − | 0.283575i | −2.75714 | + | 1.18246i | −1.83917 | − | 3.18554i | 1.20048 | + | 2.07930i | 1.68953 | + | 0.201072i | 10.1718 | + | 5.87270i | 4.35477i | 6.20359 | − | 6.52039i | − | 1.36171i | |||
43.11 | 0.491166 | + | 0.283575i | −2.75714 | + | 1.18246i | −1.83917 | − | 3.18554i | 1.20048 | + | 2.07930i | −1.68953 | − | 0.201072i | −10.1718 | − | 5.87270i | − | 4.35477i | 6.20359 | − | 6.52039i | 1.36171i | |||
43.12 | 0.981412 | + | 0.566618i | 0.439224 | − | 2.96767i | −1.35789 | − | 2.35193i | 0.0827703 | + | 0.143362i | 2.11260 | − | 2.66364i | 3.82724 | + | 2.20966i | − | 7.61056i | −8.61416 | − | 2.60695i | 0.187597i | |||
43.13 | 1.10231 | + | 0.636421i | 2.90522 | − | 0.748144i | −1.18994 | − | 2.06103i | −1.84774 | − | 3.20038i | 3.67859 | + | 1.02425i | 6.26503 | + | 3.61711i | − | 8.12057i | 7.88056 | − | 4.34704i | − | 4.70376i | ||
43.14 | 1.64469 | + | 0.949563i | −2.45615 | − | 1.72260i | −0.196660 | − | 0.340626i | −3.05607 | − | 5.29326i | −2.40389 | − | 5.16541i | −4.13935 | − | 2.38985i | − | 8.34347i | 3.06532 | + | 8.46190i | − | 11.6077i | ||
43.15 | 1.81513 | + | 1.04797i | 0.432421 | + | 2.96867i | 0.196474 | + | 0.340304i | 1.28105 | + | 2.21884i | −2.32617 | + | 5.84170i | 4.60933 | + | 2.66120i | − | 7.56015i | −8.62602 | + | 2.56743i | 5.37000i | |||
43.16 | 2.38735 | + | 1.37834i | −2.62560 | − | 1.45128i | 1.79962 | + | 3.11703i | 3.89274 | + | 6.74242i | −4.26788 | − | 7.08367i | 6.72208 | + | 3.88100i | − | 1.10477i | 4.78758 | + | 7.62097i | 21.4620i | |||
43.17 | 2.41819 | + | 1.39614i | 1.93703 | − | 2.29083i | 1.89841 | + | 3.28815i | 3.95412 | + | 6.84874i | 7.88243 | − | 2.83528i | −11.3316 | − | 6.54229i | − | 0.567308i | −1.49581 | − | 8.87483i | 22.0820i | |||
43.18 | 2.67675 | + | 1.54542i | 2.53282 | + | 1.60774i | 2.77667 | + | 4.80934i | −1.89480 | − | 3.28189i | 4.29510 | + | 8.21780i | −5.27354 | − | 3.04468i | 4.80116i | 3.83037 | + | 8.14422i | − | 11.7131i | |||
43.19 | 3.03057 | + | 1.74970i | −2.16106 | + | 2.08083i | 4.12292 | + | 7.14111i | −0.198992 | − | 0.344665i | −10.1901 | + | 2.52489i | −2.03014 | − | 1.17210i | 14.8579i | 0.340331 | − | 8.99356i | − | 1.39271i | |||
43.20 | 3.30671 | + | 1.90913i | 0.253226 | − | 2.98929i | 5.28955 | + | 9.16177i | −2.91356 | − | 5.04644i | 6.54430 | − | 9.40128i | 5.33694 | + | 3.08128i | 25.1207i | −8.87175 | − | 1.51394i | − | 22.2495i | |||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
11.b | odd | 2 | 1 | inner |
99.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.3.h.b | ✓ | 40 |
3.b | odd | 2 | 1 | 297.3.h.b | 40 | ||
9.c | even | 3 | 1 | inner | 99.3.h.b | ✓ | 40 |
9.c | even | 3 | 1 | 891.3.c.e | 20 | ||
9.d | odd | 6 | 1 | 297.3.h.b | 40 | ||
9.d | odd | 6 | 1 | 891.3.c.f | 20 | ||
11.b | odd | 2 | 1 | inner | 99.3.h.b | ✓ | 40 |
33.d | even | 2 | 1 | 297.3.h.b | 40 | ||
99.g | even | 6 | 1 | 297.3.h.b | 40 | ||
99.g | even | 6 | 1 | 891.3.c.f | 20 | ||
99.h | odd | 6 | 1 | inner | 99.3.h.b | ✓ | 40 |
99.h | odd | 6 | 1 | 891.3.c.e | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
99.3.h.b | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
99.3.h.b | ✓ | 40 | 9.c | even | 3 | 1 | inner |
99.3.h.b | ✓ | 40 | 11.b | odd | 2 | 1 | inner |
99.3.h.b | ✓ | 40 | 99.h | odd | 6 | 1 | inner |
297.3.h.b | 40 | 3.b | odd | 2 | 1 | ||
297.3.h.b | 40 | 9.d | odd | 6 | 1 | ||
297.3.h.b | 40 | 33.d | even | 2 | 1 | ||
297.3.h.b | 40 | 99.g | even | 6 | 1 | ||
891.3.c.e | 20 | 9.c | even | 3 | 1 | ||
891.3.c.e | 20 | 99.h | odd | 6 | 1 | ||
891.3.c.f | 20 | 9.d | odd | 6 | 1 | ||
891.3.c.f | 20 | 99.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{40} - 63 T_{2}^{38} + 2289 T_{2}^{36} - 56286 T_{2}^{34} + 1039872 T_{2}^{32} + \cdots + 1148217259401 \)
acting on \(S_{3}^{\mathrm{new}}(99, [\chi])\).