Properties

Label 99.2.p.a.29.5
Level $99$
Weight $2$
Character 99.29
Analytic conductor $0.791$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(2,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.p (of order \(30\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 29.5
Character \(\chi\) \(=\) 99.29
Dual form 99.2.p.a.41.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.571041 + 0.254244i) q^{2} +(-1.42001 - 0.991749i) q^{3} +(-1.07681 + 1.19592i) q^{4} +(-0.518875 + 1.16541i) q^{5} +(1.06303 + 0.205300i) q^{6} +(-1.00684 + 4.73680i) q^{7} +(0.697171 - 2.14567i) q^{8} +(1.03287 + 2.81659i) q^{9} -0.797419i q^{10} +(-2.53072 - 2.14370i) q^{11} +(2.71514 - 0.630296i) q^{12} +(-0.830415 - 0.0872801i) q^{13} +(-0.629356 - 2.96089i) q^{14} +(1.89260 - 1.14031i) q^{15} +(-0.189019 - 1.79839i) q^{16} +(-0.199958 + 0.145278i) q^{17} +(-1.30591 - 1.34579i) q^{18} +(2.08556 + 0.677640i) q^{19} +(-0.835011 - 1.87546i) q^{20} +(6.12743 - 5.72778i) q^{21} +(1.99017 + 0.580718i) q^{22} +(-4.19803 + 2.42373i) q^{23} +(-3.11796 + 2.35546i) q^{24} +(2.25670 + 2.50632i) q^{25} +(0.496392 - 0.161287i) q^{26} +(1.32667 - 5.02394i) q^{27} +(-4.58066 - 6.30474i) q^{28} +(7.60091 + 1.61562i) q^{29} +(-0.790839 + 1.13234i) q^{30} +(-0.183376 + 1.74470i) q^{31} +(2.82126 + 4.88657i) q^{32} +(1.46765 + 5.55392i) q^{33} +(0.0772482 - 0.133798i) q^{34} +(-4.99790 - 3.63118i) q^{35} +(-4.48063 - 1.79771i) q^{36} +(0.106959 + 0.329187i) q^{37} +(-1.36323 + 0.143281i) q^{38} +(1.09264 + 0.947502i) q^{39} +(2.13885 + 1.92583i) q^{40} +(4.75526 - 1.01076i) q^{41} +(-2.04276 + 4.82866i) q^{42} +(0.366648 + 0.211684i) q^{43} +(5.28881 - 0.718188i) q^{44} +(-3.81842 - 0.257741i) q^{45} +(1.78103 - 2.45137i) q^{46} +(-5.52692 + 4.97646i) q^{47} +(-1.51515 + 2.74120i) q^{48} +(-15.0287 - 6.69121i) q^{49} +(-1.92588 - 0.857459i) q^{50} +(0.428022 - 0.00798836i) q^{51} +(0.998582 - 0.899127i) q^{52} +(-6.95271 + 9.56959i) q^{53} +(0.519725 + 3.20617i) q^{54} +(3.81142 - 1.83703i) q^{55} +(9.46167 + 5.46270i) q^{56} +(-2.28947 - 3.03061i) q^{57} +(-4.75119 + 1.00990i) q^{58} +(-3.90386 - 3.51506i) q^{59} +(-0.674265 + 3.49130i) q^{60} +(13.8590 - 1.45664i) q^{61} +(-0.338865 - 1.04292i) q^{62} +(-14.3815 + 2.05664i) q^{63} +(0.0724543 + 0.0526411i) q^{64} +(0.532599 - 0.922488i) q^{65} +(-2.25014 - 2.79838i) q^{66} +(-0.252454 - 0.437263i) q^{67} +(0.0415762 - 0.395571i) q^{68} +(8.36498 + 0.721660i) q^{69} +(3.77721 + 0.802871i) q^{70} +(6.95402 + 9.57138i) q^{71} +(6.76356 - 0.252551i) q^{72} +(3.85174 - 1.25150i) q^{73} +(-0.144772 - 0.160786i) q^{74} +(-0.718902 - 5.79708i) q^{75} +(-3.05616 + 1.76448i) q^{76} +(12.7023 - 9.82917i) q^{77} +(-0.864839 - 0.263266i) q^{78} +(-0.900088 - 2.02163i) q^{79} +(2.19395 + 0.712856i) q^{80} +(-6.86637 + 5.81833i) q^{81} +(-2.45847 + 1.78618i) q^{82} +(-0.431414 - 4.10463i) q^{83} +(0.251876 + 13.4957i) q^{84} +(-0.0655555 - 0.308414i) q^{85} +(-0.263191 - 0.0276625i) q^{86} +(-9.19109 - 9.83239i) q^{87} +(-6.36402 + 3.93558i) q^{88} -13.5225i q^{89} +(2.24600 - 0.823629i) q^{90} +(1.24952 - 3.84563i) q^{91} +(1.62190 - 7.63042i) q^{92} +(1.99070 - 2.29564i) q^{93} +(1.89086 - 4.24695i) q^{94} +(-1.87187 + 2.07893i) q^{95} +(0.840023 - 9.73697i) q^{96} +(-7.26211 + 3.23330i) q^{97} +10.2832 q^{98} +(3.42401 - 9.34217i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 15 q^{2} - 3 q^{3} + 5 q^{4} - 6 q^{5} - 15 q^{6} - 5 q^{7} - q^{9} - 3 q^{11} - 54 q^{12} - 5 q^{13} - 9 q^{14} + 5 q^{16} - 50 q^{19} - 3 q^{20} - 11 q^{22} - 42 q^{23} - 5 q^{24} - 2 q^{25} + 3 q^{27}+ \cdots + 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.571041 + 0.254244i −0.403787 + 0.179778i −0.598573 0.801068i \(-0.704265\pi\)
0.194786 + 0.980846i \(0.437599\pi\)
\(3\) −1.42001 0.991749i −0.819844 0.572586i
\(4\) −1.07681 + 1.19592i −0.538407 + 0.597961i
\(5\) −0.518875 + 1.16541i −0.232048 + 0.521188i −0.991613 0.129243i \(-0.958745\pi\)
0.759565 + 0.650431i \(0.225412\pi\)
\(6\) 1.06303 + 0.205300i 0.433981 + 0.0838134i
\(7\) −1.00684 + 4.73680i −0.380549 + 1.79034i 0.203988 + 0.978973i \(0.434610\pi\)
−0.584537 + 0.811367i \(0.698724\pi\)
\(8\) 0.697171 2.14567i 0.246487 0.758609i
\(9\) 1.03287 + 2.81659i 0.344289 + 0.938864i
\(10\) 0.797419i 0.252166i
\(11\) −2.53072 2.14370i −0.763042 0.646349i
\(12\) 2.71514 0.630296i 0.783794 0.181951i
\(13\) −0.830415 0.0872801i −0.230316 0.0242071i −0.0113325 0.999936i \(-0.503607\pi\)
−0.218983 + 0.975729i \(0.570274\pi\)
\(14\) −0.629356 2.96089i −0.168203 0.791331i
\(15\) 1.89260 1.14031i 0.488668 0.294426i
\(16\) −0.189019 1.79839i −0.0472547 0.449598i
\(17\) −0.199958 + 0.145278i −0.0484969 + 0.0352351i −0.611770 0.791036i \(-0.709542\pi\)
0.563273 + 0.826271i \(0.309542\pi\)
\(18\) −1.30591 1.34579i −0.307806 0.317206i
\(19\) 2.08556 + 0.677640i 0.478461 + 0.155461i 0.538311 0.842746i \(-0.319062\pi\)
−0.0598507 + 0.998207i \(0.519062\pi\)
\(20\) −0.835011 1.87546i −0.186714 0.419367i
\(21\) 6.12743 5.72778i 1.33712 1.24990i
\(22\) 1.99017 + 0.580718i 0.424306 + 0.123810i
\(23\) −4.19803 + 2.42373i −0.875349 + 0.505383i −0.869122 0.494598i \(-0.835315\pi\)
−0.00622685 + 0.999981i \(0.501982\pi\)
\(24\) −3.11796 + 2.35546i −0.636451 + 0.480806i
\(25\) 2.25670 + 2.50632i 0.451340 + 0.501264i
\(26\) 0.496392 0.161287i 0.0973504 0.0316311i
\(27\) 1.32667 5.02394i 0.255317 0.966857i
\(28\) −4.58066 6.30474i −0.865664 1.19148i
\(29\) 7.60091 + 1.61562i 1.41145 + 0.300014i 0.849689 0.527284i \(-0.176790\pi\)
0.561764 + 0.827298i \(0.310123\pi\)
\(30\) −0.790839 + 1.13234i −0.144387 + 0.206737i
\(31\) −0.183376 + 1.74470i −0.0329353 + 0.313358i 0.965635 + 0.259902i \(0.0836903\pi\)
−0.998570 + 0.0534559i \(0.982976\pi\)
\(32\) 2.82126 + 4.88657i 0.498733 + 0.863831i
\(33\) 1.46765 + 5.55392i 0.255485 + 0.966813i
\(34\) 0.0772482 0.133798i 0.0132480 0.0229461i
\(35\) −4.99790 3.63118i −0.844799 0.613782i
\(36\) −4.48063 1.79771i −0.746772 0.299619i
\(37\) 0.106959 + 0.329187i 0.0175840 + 0.0541180i 0.959464 0.281833i \(-0.0909424\pi\)
−0.941879 + 0.335951i \(0.890942\pi\)
\(38\) −1.36323 + 0.143281i −0.221145 + 0.0232432i
\(39\) 1.09264 + 0.947502i 0.174962 + 0.151722i
\(40\) 2.13885 + 1.92583i 0.338181 + 0.304500i
\(41\) 4.75526 1.01076i 0.742647 0.157854i 0.178975 0.983854i \(-0.442722\pi\)
0.563671 + 0.825999i \(0.309388\pi\)
\(42\) −2.04276 + 4.82866i −0.315205 + 0.745078i
\(43\) 0.366648 + 0.211684i 0.0559133 + 0.0322816i 0.527696 0.849433i \(-0.323056\pi\)
−0.471783 + 0.881715i \(0.656389\pi\)
\(44\) 5.28881 0.718188i 0.797318 0.108271i
\(45\) −3.81842 0.257741i −0.569216 0.0384218i
\(46\) 1.78103 2.45137i 0.262598 0.361435i
\(47\) −5.52692 + 4.97646i −0.806184 + 0.725891i −0.965236 0.261379i \(-0.915823\pi\)
0.159053 + 0.987270i \(0.449156\pi\)
\(48\) −1.51515 + 2.74120i −0.218693 + 0.395658i
\(49\) −15.0287 6.69121i −2.14696 0.955887i
\(50\) −1.92588 0.857459i −0.272361 0.121263i
\(51\) 0.428022 0.00798836i 0.0599351 0.00111859i
\(52\) 0.998582 0.899127i 0.138478 0.124686i
\(53\) −6.95271 + 9.56959i −0.955029 + 1.31448i −0.00577155 + 0.999983i \(0.501837\pi\)
−0.949257 + 0.314501i \(0.898163\pi\)
\(54\) 0.519725 + 3.20617i 0.0707256 + 0.436305i
\(55\) 3.81142 1.83703i 0.513932 0.247704i
\(56\) 9.46167 + 5.46270i 1.26437 + 0.729984i
\(57\) −2.28947 3.03061i −0.303248 0.401414i
\(58\) −4.75119 + 1.00990i −0.623862 + 0.132606i
\(59\) −3.90386 3.51506i −0.508240 0.457621i 0.374674 0.927157i \(-0.377755\pi\)
−0.882914 + 0.469535i \(0.844421\pi\)
\(60\) −0.674265 + 3.49130i −0.0870472 + 0.450725i
\(61\) 13.8590 1.45664i 1.77446 0.186504i 0.840007 0.542576i \(-0.182551\pi\)
0.934458 + 0.356072i \(0.115884\pi\)
\(62\) −0.338865 1.04292i −0.0430359 0.132451i
\(63\) −14.3815 + 2.05664i −1.81190 + 0.259112i
\(64\) 0.0724543 + 0.0526411i 0.00905678 + 0.00658014i
\(65\) 0.532599 0.922488i 0.0660607 0.114421i
\(66\) −2.25014 2.79838i −0.276973 0.344456i
\(67\) −0.252454 0.437263i −0.0308421 0.0534201i 0.850192 0.526472i \(-0.176486\pi\)
−0.881034 + 0.473052i \(0.843152\pi\)
\(68\) 0.0415762 0.395571i 0.00504186 0.0479701i
\(69\) 8.36498 + 0.721660i 1.00703 + 0.0868776i
\(70\) 3.77721 + 0.802871i 0.451463 + 0.0959614i
\(71\) 6.95402 + 9.57138i 0.825290 + 1.13591i 0.988781 + 0.149370i \(0.0477244\pi\)
−0.163491 + 0.986545i \(0.552276\pi\)
\(72\) 6.76356 0.252551i 0.797094 0.0297634i
\(73\) 3.85174 1.25150i 0.450812 0.146478i −0.0748068 0.997198i \(-0.523834\pi\)
0.525618 + 0.850720i \(0.323834\pi\)
\(74\) −0.144772 0.160786i −0.0168294 0.0186910i
\(75\) −0.718902 5.79708i −0.0830116 0.669389i
\(76\) −3.05616 + 1.76448i −0.350566 + 0.202399i
\(77\) 12.7023 9.82917i 1.44756 1.12014i
\(78\) −0.864839 0.263266i −0.0979237 0.0298090i
\(79\) −0.900088 2.02163i −0.101268 0.227451i 0.855805 0.517298i \(-0.173062\pi\)
−0.957073 + 0.289847i \(0.906396\pi\)
\(80\) 2.19395 + 0.712856i 0.245291 + 0.0796998i
\(81\) −6.86637 + 5.81833i −0.762930 + 0.646482i
\(82\) −2.45847 + 1.78618i −0.271492 + 0.197251i
\(83\) −0.431414 4.10463i −0.0473538 0.450542i −0.992350 0.123459i \(-0.960601\pi\)
0.944996 0.327082i \(-0.106065\pi\)
\(84\) 0.251876 + 13.4957i 0.0274819 + 1.47250i
\(85\) −0.0655555 0.308414i −0.00711049 0.0334522i
\(86\) −0.263191 0.0276625i −0.0283806 0.00298292i
\(87\) −9.19109 9.83239i −0.985388 1.05414i
\(88\) −6.36402 + 3.93558i −0.678406 + 0.419534i
\(89\) 13.5225i 1.43338i −0.697393 0.716689i \(-0.745657\pi\)
0.697393 0.716689i \(-0.254343\pi\)
\(90\) 2.24600 0.823629i 0.236749 0.0868181i
\(91\) 1.24952 3.84563i 0.130985 0.403131i
\(92\) 1.62190 7.63042i 0.169094 0.795526i
\(93\) 1.99070 2.29564i 0.206426 0.238047i
\(94\) 1.89086 4.24695i 0.195028 0.438039i
\(95\) −1.87187 + 2.07893i −0.192050 + 0.213293i
\(96\) 0.840023 9.73697i 0.0857345 0.993775i
\(97\) −7.26211 + 3.23330i −0.737356 + 0.328292i −0.740821 0.671702i \(-0.765564\pi\)
0.00346562 + 0.999994i \(0.498897\pi\)
\(98\) 10.2832 1.03876
\(99\) 3.42401 9.34217i 0.344126 0.938923i
\(100\) −5.42741 −0.542741
\(101\) −4.92836 + 2.19425i −0.490390 + 0.218336i −0.637007 0.770858i \(-0.719828\pi\)
0.146618 + 0.989193i \(0.453161\pi\)
\(102\) −0.242387 + 0.113384i −0.0239999 + 0.0112267i
\(103\) 11.0119 12.2300i 1.08504 1.20505i 0.107517 0.994203i \(-0.465710\pi\)
0.977518 0.210850i \(-0.0676233\pi\)
\(104\) −0.766216 + 1.72095i −0.0751336 + 0.168753i
\(105\) 3.49585 + 10.1130i 0.341160 + 0.986926i
\(106\) 1.53728 7.23232i 0.149313 0.702465i
\(107\) −0.705070 + 2.16998i −0.0681617 + 0.209780i −0.979336 0.202242i \(-0.935177\pi\)
0.911174 + 0.412022i \(0.135177\pi\)
\(108\) 4.57967 + 6.99643i 0.440679 + 0.673232i
\(109\) 8.89941i 0.852409i 0.904627 + 0.426205i \(0.140150\pi\)
−0.904627 + 0.426205i \(0.859850\pi\)
\(110\) −1.70942 + 2.01805i −0.162987 + 0.192413i
\(111\) 0.174587 0.573527i 0.0165711 0.0544367i
\(112\) 8.70894 + 0.915346i 0.822917 + 0.0864921i
\(113\) 1.50551 + 7.08288i 0.141627 + 0.666301i 0.990478 + 0.137670i \(0.0439612\pi\)
−0.848852 + 0.528631i \(0.822705\pi\)
\(114\) 2.07790 + 1.14852i 0.194613 + 0.107569i
\(115\) −0.646395 6.15004i −0.0602767 0.573494i
\(116\) −10.1169 + 7.35037i −0.939332 + 0.682465i
\(117\) −0.611877 2.42909i −0.0565680 0.224569i
\(118\) 3.12295 + 1.01471i 0.287491 + 0.0934114i
\(119\) −0.486827 1.09343i −0.0446273 0.100235i
\(120\) −1.12725 4.85589i −0.102904 0.443281i
\(121\) 1.80913 + 10.8502i 0.164466 + 0.986383i
\(122\) −7.54373 + 4.35537i −0.682977 + 0.394317i
\(123\) −7.75494 3.28073i −0.699240 0.295813i
\(124\) −1.88907 2.09802i −0.169643 0.188408i
\(125\) −10.1582 + 3.30059i −0.908574 + 0.295213i
\(126\) 7.68957 4.83085i 0.685041 0.430366i
\(127\) 1.69280 + 2.32994i 0.150212 + 0.206749i 0.877491 0.479593i \(-0.159216\pi\)
−0.727279 + 0.686341i \(0.759216\pi\)
\(128\) −11.0932 2.35793i −0.980509 0.208414i
\(129\) −0.310707 0.664217i −0.0273562 0.0584811i
\(130\) −0.0695988 + 0.662188i −0.00610422 + 0.0580778i
\(131\) 0.281682 + 0.487887i 0.0246106 + 0.0426269i 0.878068 0.478535i \(-0.158832\pi\)
−0.853458 + 0.521162i \(0.825499\pi\)
\(132\) −8.22244 4.22534i −0.715671 0.367768i
\(133\) −5.30966 + 9.19661i −0.460406 + 0.797447i
\(134\) 0.255333 + 0.185510i 0.0220574 + 0.0160256i
\(135\) 5.16658 + 4.15291i 0.444669 + 0.357425i
\(136\) 0.172314 + 0.530328i 0.0147758 + 0.0454752i
\(137\) 4.61687 0.485253i 0.394446 0.0414579i 0.0947705 0.995499i \(-0.469788\pi\)
0.299675 + 0.954041i \(0.403122\pi\)
\(138\) −4.96023 + 1.71465i −0.422242 + 0.145961i
\(139\) 7.80918 + 7.03142i 0.662366 + 0.596397i 0.930193 0.367070i \(-0.119639\pi\)
−0.267827 + 0.963467i \(0.586306\pi\)
\(140\) 9.72441 2.06699i 0.821863 0.174692i
\(141\) 12.7837 1.58532i 1.07658 0.133508i
\(142\) −6.40450 3.69764i −0.537453 0.310299i
\(143\) 1.91445 + 2.00104i 0.160094 + 0.167335i
\(144\) 4.87011 2.38989i 0.405842 0.199158i
\(145\) −5.82678 + 8.01988i −0.483888 + 0.666015i
\(146\) −1.88131 + 1.69394i −0.155699 + 0.140192i
\(147\) 14.7049 + 24.4063i 1.21284 + 2.01300i
\(148\) −0.508858 0.226558i −0.0418278 0.0186230i
\(149\) −13.9085 6.19245i −1.13943 0.507305i −0.251758 0.967790i \(-0.581009\pi\)
−0.887667 + 0.460485i \(0.847675\pi\)
\(150\) 1.88440 + 3.12760i 0.153860 + 0.255367i
\(151\) −5.67861 + 5.11304i −0.462119 + 0.416093i −0.867025 0.498265i \(-0.833971\pi\)
0.404906 + 0.914358i \(0.367304\pi\)
\(152\) 2.90799 4.00250i 0.235869 0.324646i
\(153\) −0.615719 0.413147i −0.0497779 0.0334009i
\(154\) −4.75452 + 8.84234i −0.383130 + 0.712536i
\(155\) −1.93815 1.11899i −0.155676 0.0898795i
\(156\) −2.30971 + 0.286429i −0.184925 + 0.0229327i
\(157\) 4.23545 0.900272i 0.338026 0.0718495i −0.0357717 0.999360i \(-0.511389\pi\)
0.373797 + 0.927510i \(0.378056\pi\)
\(158\) 1.02798 + 0.925593i 0.0817813 + 0.0736362i
\(159\) 19.3636 6.69359i 1.53563 0.530836i
\(160\) −7.15874 + 0.752414i −0.565948 + 0.0594836i
\(161\) −7.25399 22.3255i −0.571695 1.75950i
\(162\) 2.44170 5.06824i 0.191838 0.398199i
\(163\) −5.76502 4.18853i −0.451551 0.328071i 0.338657 0.940910i \(-0.390027\pi\)
−0.790208 + 0.612839i \(0.790027\pi\)
\(164\) −3.91173 + 6.77532i −0.305455 + 0.529064i
\(165\) −7.23413 1.17137i −0.563176 0.0911912i
\(166\) 1.28993 + 2.23423i 0.100118 + 0.173410i
\(167\) 0.854845 8.13331i 0.0661499 0.629374i −0.910347 0.413845i \(-0.864186\pi\)
0.976497 0.215529i \(-0.0691477\pi\)
\(168\) −8.01806 17.1407i −0.618607 1.32243i
\(169\) −12.0339 2.55789i −0.925688 0.196761i
\(170\) 0.115847 + 0.159450i 0.00888509 + 0.0122293i
\(171\) 0.245476 + 6.57409i 0.0187720 + 0.502733i
\(172\) −0.647970 + 0.210538i −0.0494072 + 0.0160534i
\(173\) −4.52685 5.02758i −0.344170 0.382240i 0.546064 0.837744i \(-0.316126\pi\)
−0.890234 + 0.455504i \(0.849459\pi\)
\(174\) 7.74832 + 3.27792i 0.587398 + 0.248499i
\(175\) −14.1440 + 8.16607i −1.06919 + 0.617297i
\(176\) −3.37686 + 4.95644i −0.254540 + 0.373606i
\(177\) 2.05748 + 8.86307i 0.154650 + 0.666190i
\(178\) 3.43800 + 7.72188i 0.257689 + 0.578779i
\(179\) 6.85049 + 2.22586i 0.512030 + 0.166369i 0.553625 0.832766i \(-0.313244\pi\)
−0.0415954 + 0.999135i \(0.513244\pi\)
\(180\) 4.41996 4.28899i 0.329444 0.319682i
\(181\) 0.383330 0.278506i 0.0284927 0.0207012i −0.573448 0.819242i \(-0.694394\pi\)
0.601940 + 0.798541i \(0.294394\pi\)
\(182\) 0.264200 + 2.51370i 0.0195838 + 0.186328i
\(183\) −21.1246 11.6762i −1.56157 0.863131i
\(184\) 2.27379 + 10.6973i 0.167626 + 0.788618i
\(185\) −0.439137 0.0461552i −0.0322860 0.00339340i
\(186\) −0.553122 + 1.81703i −0.0405569 + 0.133231i
\(187\) 0.817470 + 0.0609908i 0.0597793 + 0.00446009i
\(188\) 11.9685i 0.872891i
\(189\) 22.4616 + 11.3424i 1.63384 + 0.825041i
\(190\) 0.540363 1.66307i 0.0392020 0.120651i
\(191\) −0.00844075 + 0.0397106i −0.000610751 + 0.00287336i −0.978452 0.206475i \(-0.933801\pi\)
0.977841 + 0.209348i \(0.0671342\pi\)
\(192\) −0.0506792 0.146607i −0.00365745 0.0105805i
\(193\) 4.57055 10.2656i 0.328996 0.738936i −0.671001 0.741456i \(-0.734135\pi\)
0.999997 + 0.00251988i \(0.000802102\pi\)
\(194\) 3.32492 3.69270i 0.238715 0.265120i
\(195\) −1.67117 + 0.781740i −0.119675 + 0.0559815i
\(196\) 24.1853 10.7680i 1.72752 0.769141i
\(197\) 20.8150 1.48301 0.741504 0.670948i \(-0.234113\pi\)
0.741504 + 0.670948i \(0.234113\pi\)
\(198\) 0.419938 + 6.20530i 0.0298437 + 0.440991i
\(199\) 14.4111 1.02158 0.510788 0.859707i \(-0.329354\pi\)
0.510788 + 0.859707i \(0.329354\pi\)
\(200\) 6.95104 3.09480i 0.491513 0.218836i
\(201\) −0.0751674 + 0.871289i −0.00530190 + 0.0614560i
\(202\) 2.25642 2.50601i 0.158761 0.176322i
\(203\) −15.3058 + 34.3773i −1.07425 + 2.41281i
\(204\) −0.451346 + 0.520483i −0.0316005 + 0.0364411i
\(205\) −1.28943 + 6.06629i −0.0900577 + 0.423688i
\(206\) −3.17886 + 9.78352i −0.221482 + 0.681650i
\(207\) −11.1627 9.32073i −0.775859 0.647835i
\(208\) 1.50991i 0.104693i
\(209\) −3.82533 6.18573i −0.264603 0.427876i
\(210\) −4.56744 4.88613i −0.315183 0.337175i
\(211\) 18.0772 + 1.89999i 1.24448 + 0.130800i 0.703783 0.710415i \(-0.251493\pi\)
0.540700 + 0.841216i \(0.318159\pi\)
\(212\) −3.95771 18.6196i −0.271817 1.27880i
\(213\) −0.382379 20.4881i −0.0262002 1.40382i
\(214\) −0.149081 1.41841i −0.0101910 0.0969605i
\(215\) −0.436944 + 0.317458i −0.0297993 + 0.0216505i
\(216\) −9.85481 6.34913i −0.670535 0.432004i
\(217\) −8.07968 2.62525i −0.548484 0.178213i
\(218\) −2.26262 5.08193i −0.153244 0.344192i
\(219\) −6.71069 2.04280i −0.453466 0.138040i
\(220\) −1.90725 + 6.53629i −0.128587 + 0.440677i
\(221\) 0.178728 0.103189i 0.0120225 0.00694122i
\(222\) 0.0461191 + 0.371895i 0.00309531 + 0.0249600i
\(223\) 0.504840 + 0.560682i 0.0338066 + 0.0375460i 0.759811 0.650144i \(-0.225291\pi\)
−0.726004 + 0.687690i \(0.758625\pi\)
\(224\) −25.9872 + 8.44376i −1.73634 + 0.564172i
\(225\) −4.72840 + 8.94490i −0.315227 + 0.596326i
\(226\) −2.66049 3.66185i −0.176973 0.243582i
\(227\) 16.2549 + 3.45509i 1.07888 + 0.229322i 0.712874 0.701292i \(-0.247393\pi\)
0.366002 + 0.930614i \(0.380726\pi\)
\(228\) 6.08971 + 0.525369i 0.403301 + 0.0347934i
\(229\) 2.29941 21.8774i 0.151949 1.44570i −0.607079 0.794641i \(-0.707659\pi\)
0.759028 0.651058i \(-0.225674\pi\)
\(230\) 1.93273 + 3.34759i 0.127440 + 0.220733i
\(231\) −27.7855 + 1.36006i −1.82815 + 0.0894857i
\(232\) 8.76573 15.1827i 0.575498 0.996792i
\(233\) 12.5102 + 9.08916i 0.819568 + 0.595451i 0.916589 0.399832i \(-0.130931\pi\)
−0.0970210 + 0.995282i \(0.530931\pi\)
\(234\) 0.966988 + 1.23154i 0.0632140 + 0.0805085i
\(235\) −2.93185 9.02329i −0.191252 0.588615i
\(236\) 8.40747 0.883660i 0.547279 0.0575214i
\(237\) −0.726815 + 3.76340i −0.0472117 + 0.244459i
\(238\) 0.555996 + 0.500621i 0.0360399 + 0.0324505i
\(239\) 18.3987 3.91077i 1.19011 0.252966i 0.430044 0.902808i \(-0.358498\pi\)
0.760070 + 0.649842i \(0.225165\pi\)
\(240\) −2.40846 3.18811i −0.155465 0.205792i
\(241\) −13.4825 7.78412i −0.868483 0.501419i −0.00163940 0.999999i \(-0.500522\pi\)
−0.866844 + 0.498580i \(0.833855\pi\)
\(242\) −3.79169 5.73596i −0.243739 0.368721i
\(243\) 15.5206 1.45239i 0.995650 0.0931710i
\(244\) −13.1815 + 18.1428i −0.843862 + 1.16148i
\(245\) 15.5960 14.0427i 0.996393 0.897157i
\(246\) 5.26250 0.0982163i 0.335525 0.00626205i
\(247\) −1.67274 0.744750i −0.106434 0.0473873i
\(248\) 3.61572 + 1.60982i 0.229598 + 0.102224i
\(249\) −3.45815 + 6.25648i −0.219151 + 0.396488i
\(250\) 4.96157 4.46742i 0.313798 0.282545i
\(251\) 8.32155 11.4536i 0.525252 0.722947i −0.461146 0.887324i \(-0.652562\pi\)
0.986397 + 0.164378i \(0.0525616\pi\)
\(252\) 13.0267 19.4138i 0.820602 1.22296i
\(253\) 15.8198 + 2.86550i 0.994582 + 0.180152i
\(254\) −1.55903 0.900107i −0.0978223 0.0564778i
\(255\) −0.212780 + 0.502967i −0.0133248 + 0.0314970i
\(256\) 6.75896 1.43666i 0.422435 0.0897913i
\(257\) 11.0616 + 9.95993i 0.690005 + 0.621283i 0.937656 0.347566i \(-0.112992\pi\)
−0.247650 + 0.968849i \(0.579658\pi\)
\(258\) 0.346300 + 0.300300i 0.0215597 + 0.0186959i
\(259\) −1.66698 + 0.175207i −0.103581 + 0.0108868i
\(260\) 0.529714 + 1.63029i 0.0328515 + 0.101106i
\(261\) 3.30019 + 23.0774i 0.204276 + 1.42845i
\(262\) −0.284894 0.206988i −0.0176008 0.0127877i
\(263\) −11.9506 + 20.6991i −0.736906 + 1.27636i 0.216976 + 0.976177i \(0.430381\pi\)
−0.953882 + 0.300181i \(0.902953\pi\)
\(264\) 12.9401 + 0.722937i 0.796407 + 0.0444937i
\(265\) −7.54492 13.0682i −0.463481 0.802773i
\(266\) 0.693855 6.60159i 0.0425430 0.404770i
\(267\) −13.4109 + 19.2020i −0.820732 + 1.17515i
\(268\) 0.794777 + 0.168935i 0.0485488 + 0.0103194i
\(269\) −4.62668 6.36807i −0.282093 0.388268i 0.644332 0.764745i \(-0.277135\pi\)
−0.926426 + 0.376477i \(0.877135\pi\)
\(270\) −4.00618 1.05791i −0.243809 0.0643822i
\(271\) −4.67871 + 1.52020i −0.284211 + 0.0923458i −0.447654 0.894207i \(-0.647740\pi\)
0.163442 + 0.986553i \(0.447740\pi\)
\(272\) 0.299063 + 0.332143i 0.0181333 + 0.0201391i
\(273\) −5.58823 + 4.22163i −0.338215 + 0.255505i
\(274\) −2.51305 + 1.45091i −0.151819 + 0.0876527i
\(275\) −0.338296 11.1805i −0.0204000 0.674208i
\(276\) −9.87057 + 9.22677i −0.594138 + 0.555386i
\(277\) −10.7414 24.1256i −0.645388 1.44957i −0.878801 0.477188i \(-0.841656\pi\)
0.233413 0.972378i \(-0.425010\pi\)
\(278\) −6.24706 2.02979i −0.374674 0.121739i
\(279\) −5.10352 + 1.28555i −0.305540 + 0.0769641i
\(280\) −11.2757 + 8.19229i −0.673853 + 0.489583i
\(281\) 1.66134 + 15.8066i 0.0991071 + 0.942941i 0.925219 + 0.379435i \(0.123881\pi\)
−0.826111 + 0.563507i \(0.809452\pi\)
\(282\) −6.89695 + 4.15546i −0.410708 + 0.247454i
\(283\) 2.28922 + 10.7700i 0.136080 + 0.640207i 0.992327 + 0.123640i \(0.0394569\pi\)
−0.856247 + 0.516567i \(0.827210\pi\)
\(284\) −18.9348 1.99013i −1.12357 0.118092i
\(285\) 4.71986 1.09567i 0.279580 0.0649020i
\(286\) −1.60198 0.655939i −0.0947271 0.0387865i
\(287\) 23.5424i 1.38966i
\(288\) −10.8495 + 12.9935i −0.639311 + 0.765650i
\(289\) −5.23441 + 16.1099i −0.307907 + 0.947639i
\(290\) 1.28833 6.06111i 0.0756532 0.355920i
\(291\) 13.5189 + 2.61087i 0.792492 + 0.153052i
\(292\) −2.65090 + 5.95401i −0.155132 + 0.348432i
\(293\) 9.48041 10.5291i 0.553852 0.615115i −0.399589 0.916694i \(-0.630847\pi\)
0.953441 + 0.301580i \(0.0975139\pi\)
\(294\) −14.6023 10.1984i −0.851622 0.594780i
\(295\) 6.12210 2.72574i 0.356443 0.158699i
\(296\) 0.780897 0.0453887
\(297\) −14.1272 + 9.87023i −0.819745 + 0.572729i
\(298\) 9.51670 0.551288
\(299\) 3.69765 1.64630i 0.213840 0.0952079i
\(300\) 7.70698 + 5.38262i 0.444963 + 0.310766i
\(301\) −1.37186 + 1.52361i −0.0790728 + 0.0878192i
\(302\) 1.94276 4.36351i 0.111793 0.251092i
\(303\) 9.17447 + 1.77184i 0.527059 + 0.101789i
\(304\) 0.824453 3.87875i 0.0472856 0.222461i
\(305\) −5.49351 + 16.9073i −0.314557 + 0.968108i
\(306\) 0.456641 + 0.0793810i 0.0261044 + 0.00453791i
\(307\) 11.5389i 0.658559i 0.944233 + 0.329279i \(0.106806\pi\)
−0.944233 + 0.329279i \(0.893194\pi\)
\(308\) −1.92306 + 25.7751i −0.109577 + 1.46867i
\(309\) −27.7661 + 6.44564i −1.57956 + 0.366680i
\(310\) 1.39126 + 0.146227i 0.0790182 + 0.00830515i
\(311\) 5.68898 + 26.7646i 0.322593 + 1.51768i 0.778496 + 0.627649i \(0.215983\pi\)
−0.455904 + 0.890029i \(0.650684\pi\)
\(312\) 2.79478 1.68387i 0.158223 0.0953306i
\(313\) −0.868593 8.26411i −0.0490958 0.467115i −0.991256 0.131952i \(-0.957875\pi\)
0.942160 0.335163i \(-0.108791\pi\)
\(314\) −2.18973 + 1.59093i −0.123573 + 0.0897814i
\(315\) 5.06539 17.8276i 0.285402 1.00447i
\(316\) 3.38694 + 1.10048i 0.190530 + 0.0619071i
\(317\) 6.17997 + 13.8804i 0.347102 + 0.779603i 0.999759 + 0.0219501i \(0.00698750\pi\)
−0.652657 + 0.757653i \(0.726346\pi\)
\(318\) −9.35559 + 8.74538i −0.524636 + 0.490417i
\(319\) −15.7724 20.3827i −0.883084 1.14121i
\(320\) −0.0989432 + 0.0571249i −0.00553110 + 0.00319338i
\(321\) 3.15329 2.38215i 0.175999 0.132959i
\(322\) 9.81845 + 10.9045i 0.547161 + 0.607684i
\(323\) −0.515471 + 0.167487i −0.0286816 + 0.00931920i
\(324\) 0.435519 14.4769i 0.0241955 0.804272i
\(325\) −1.65524 2.27825i −0.0918165 0.126375i
\(326\) 4.35697 + 0.926103i 0.241310 + 0.0512921i
\(327\) 8.82598 12.6373i 0.488078 0.698843i
\(328\) 1.14647 10.9079i 0.0633030 0.602288i
\(329\) −18.0078 31.1904i −0.992800 1.71958i
\(330\) 4.42880 1.17033i 0.243797 0.0644246i
\(331\) −7.20722 + 12.4833i −0.396145 + 0.686142i −0.993247 0.116023i \(-0.962985\pi\)
0.597102 + 0.802165i \(0.296319\pi\)
\(332\) 5.37337 + 3.90398i 0.294902 + 0.214259i
\(333\) −0.816711 + 0.641268i −0.0447555 + 0.0351413i
\(334\) 1.57969 + 4.86179i 0.0864369 + 0.266025i
\(335\) 0.640583 0.0673280i 0.0349988 0.00367852i
\(336\) −11.4590 9.93688i −0.625140 0.542101i
\(337\) −5.75411 5.18103i −0.313447 0.282228i 0.497358 0.867545i \(-0.334303\pi\)
−0.810805 + 0.585317i \(0.800970\pi\)
\(338\) 7.52221 1.59890i 0.409154 0.0869684i
\(339\) 4.88659 11.5509i 0.265403 0.627357i
\(340\) 0.439431 + 0.253705i 0.0238315 + 0.0137591i
\(341\) 4.20419 4.02226i 0.227670 0.217818i
\(342\) −1.81160 3.69166i −0.0979600 0.199622i
\(343\) 26.9014 37.0266i 1.45254 1.99925i
\(344\) 0.709822 0.639126i 0.0382710 0.0344594i
\(345\) −5.18141 + 9.37419i −0.278958 + 0.504690i
\(346\) 3.86325 + 1.72003i 0.207690 + 0.0924694i
\(347\) −7.91242 3.52284i −0.424761 0.189116i 0.183212 0.983073i \(-0.441351\pi\)
−0.607973 + 0.793958i \(0.708017\pi\)
\(348\) 21.6559 0.404173i 1.16088 0.0216659i
\(349\) −12.4580 + 11.2173i −0.666864 + 0.600447i −0.931430 0.363921i \(-0.881438\pi\)
0.264566 + 0.964368i \(0.414771\pi\)
\(350\) 6.00066 8.25920i 0.320749 0.441473i
\(351\) −1.54017 + 4.05616i −0.0822083 + 0.216502i
\(352\) 3.33549 18.4145i 0.177782 0.981495i
\(353\) 10.1385 + 5.85345i 0.539617 + 0.311548i 0.744924 0.667150i \(-0.232486\pi\)
−0.205307 + 0.978698i \(0.565819\pi\)
\(354\) −3.42829 4.53808i −0.182212 0.241196i
\(355\) −14.7629 + 3.13794i −0.783532 + 0.166545i
\(356\) 16.1718 + 14.5612i 0.857104 + 0.771740i
\(357\) −0.393109 + 2.03550i −0.0208055 + 0.107730i
\(358\) −4.47782 + 0.470638i −0.236660 + 0.0248740i
\(359\) −5.55436 17.0946i −0.293148 0.902217i −0.983837 0.179065i \(-0.942693\pi\)
0.690689 0.723152i \(-0.257307\pi\)
\(360\) −3.21512 + 8.01338i −0.169452 + 0.422342i
\(361\) −11.4810 8.34140i −0.604261 0.439021i
\(362\) −0.148089 + 0.256498i −0.00778339 + 0.0134812i
\(363\) 8.19170 17.2016i 0.429953 0.902851i
\(364\) 3.25357 + 5.63535i 0.170534 + 0.295373i
\(365\) −0.540050 + 5.13823i −0.0282675 + 0.268947i
\(366\) 15.0316 + 1.29680i 0.785715 + 0.0677849i
\(367\) 26.8679 + 5.71096i 1.40250 + 0.298110i 0.846196 0.532872i \(-0.178887\pi\)
0.556300 + 0.830982i \(0.312221\pi\)
\(368\) 5.15233 + 7.09157i 0.268584 + 0.369674i
\(369\) 7.75846 + 12.3496i 0.403889 + 0.642896i
\(370\) 0.262500 0.0852915i 0.0136467 0.00443409i
\(371\) −38.3289 42.5686i −1.98994 2.21005i
\(372\) 0.601788 + 4.85270i 0.0312012 + 0.251601i
\(373\) 14.6976 8.48568i 0.761015 0.439372i −0.0686452 0.997641i \(-0.521868\pi\)
0.829660 + 0.558269i \(0.188534\pi\)
\(374\) −0.482316 + 0.173009i −0.0249400 + 0.00894606i
\(375\) 17.6981 + 5.38747i 0.913924 + 0.278208i
\(376\) 6.82464 + 15.3284i 0.351954 + 0.790501i
\(377\) −6.17089 2.00505i −0.317817 0.103265i
\(378\) −15.7103 0.766261i −0.808049 0.0394122i
\(379\) 12.4374 9.03634i 0.638869 0.464165i −0.220593 0.975366i \(-0.570799\pi\)
0.859461 + 0.511201i \(0.170799\pi\)
\(380\) −0.470576 4.47723i −0.0241400 0.229677i
\(381\) −0.0930816 4.98737i −0.00476871 0.255511i
\(382\) −0.00527617 0.0248224i −0.000269952 0.00127003i
\(383\) 8.24491 + 0.866575i 0.421295 + 0.0442799i 0.312805 0.949818i \(-0.398732\pi\)
0.108491 + 0.994097i \(0.465398\pi\)
\(384\) 13.4140 + 14.3500i 0.684530 + 0.732293i
\(385\) 4.86414 + 19.9035i 0.247899 + 1.01438i
\(386\) 7.02414i 0.357519i
\(387\) −0.217529 + 1.25134i −0.0110576 + 0.0636092i
\(388\) 3.95316 12.1666i 0.200691 0.617665i
\(389\) 5.23608 24.6338i 0.265480 1.24898i −0.620109 0.784515i \(-0.712912\pi\)
0.885589 0.464469i \(-0.153755\pi\)
\(390\) 0.755556 0.871291i 0.0382591 0.0441195i
\(391\) 0.487314 1.09452i 0.0246445 0.0553525i
\(392\) −24.8347 + 27.5817i −1.25434 + 1.39309i
\(393\) 0.0838700 0.972163i 0.00423068 0.0490391i
\(394\) −11.8862 + 5.29209i −0.598820 + 0.266612i
\(395\) 2.82307 0.142044
\(396\) 7.48549 + 14.1546i 0.376160 + 0.711297i
\(397\) −26.0948 −1.30966 −0.654830 0.755776i \(-0.727260\pi\)
−0.654830 + 0.755776i \(0.727260\pi\)
\(398\) −8.22933 + 3.66393i −0.412499 + 0.183656i
\(399\) 16.6605 7.79344i 0.834069 0.390160i
\(400\) 4.08079 4.53218i 0.204039 0.226609i
\(401\) 1.71918 3.86134i 0.0858518 0.192826i −0.865518 0.500878i \(-0.833010\pi\)
0.951370 + 0.308052i \(0.0996771\pi\)
\(402\) −0.178596 0.516653i −0.00890757 0.0257683i
\(403\) 0.304556 1.43282i 0.0151710 0.0713740i
\(404\) 2.68277 8.25672i 0.133473 0.410787i
\(405\) −3.21797 11.0211i −0.159902 0.547644i
\(406\) 23.5222i 1.16739i
\(407\) 0.434993 1.06237i 0.0215618 0.0526598i
\(408\) 0.281264 0.923964i 0.0139246 0.0457430i
\(409\) −25.1567 2.64407i −1.24392 0.130741i −0.540393 0.841413i \(-0.681724\pi\)
−0.703524 + 0.710672i \(0.748391\pi\)
\(410\) −0.806000 3.79193i −0.0398055 0.187270i
\(411\) −7.03726 3.88971i −0.347122 0.191865i
\(412\) 2.76832 + 26.3388i 0.136385 + 1.29762i
\(413\) 20.5807 14.9527i 1.01271 0.735775i
\(414\) 8.74408 + 2.48448i 0.429748 + 0.122105i
\(415\) 5.00743 + 1.62701i 0.245805 + 0.0798669i
\(416\) −1.91632 4.30412i −0.0939552 0.211027i
\(417\) −4.11573 17.7295i −0.201548 0.868215i
\(418\) 3.75710 + 2.55974i 0.183766 + 0.125201i
\(419\) 13.4153 7.74533i 0.655381 0.378384i −0.135134 0.990827i \(-0.543146\pi\)
0.790515 + 0.612443i \(0.209813\pi\)
\(420\) −15.8587 6.70903i −0.773826 0.327367i
\(421\) −19.4252 21.5738i −0.946725 1.05144i −0.998606 0.0527908i \(-0.983188\pi\)
0.0518811 0.998653i \(-0.483478\pi\)
\(422\) −10.8059 + 3.51104i −0.526021 + 0.170915i
\(423\) −19.7252 10.4270i −0.959073 0.506980i
\(424\) 15.6860 + 21.5899i 0.761778 + 1.04850i
\(425\) −0.815358 0.173310i −0.0395507 0.00840675i
\(426\) 5.42733 + 11.6023i 0.262955 + 0.562135i
\(427\) −7.05396 + 67.1139i −0.341365 + 3.24787i
\(428\) −1.83590 3.17988i −0.0887417 0.153705i
\(429\) −0.734011 4.74015i −0.0354384 0.228857i
\(430\) 0.168801 0.292372i 0.00814032 0.0140994i
\(431\) 3.88324 + 2.82134i 0.187049 + 0.135899i 0.677369 0.735643i \(-0.263120\pi\)
−0.490320 + 0.871542i \(0.663120\pi\)
\(432\) −9.28578 1.43625i −0.446763 0.0691015i
\(433\) 8.34981 + 25.6981i 0.401266 + 1.23497i 0.923973 + 0.382458i \(0.124922\pi\)
−0.522706 + 0.852513i \(0.675078\pi\)
\(434\) 5.28128 0.555085i 0.253510 0.0266449i
\(435\) 16.2278 5.60962i 0.778064 0.268961i
\(436\) −10.6430 9.58301i −0.509708 0.458943i
\(437\) −10.3977 + 2.21009i −0.497387 + 0.105723i
\(438\) 4.35145 0.539627i 0.207920 0.0257844i
\(439\) 27.6193 + 15.9460i 1.31820 + 0.761061i 0.983438 0.181243i \(-0.0580122\pi\)
0.334758 + 0.942304i \(0.391346\pi\)
\(440\) −1.28444 9.45877i −0.0612334 0.450929i
\(441\) 3.32373 49.2408i 0.158273 2.34480i
\(442\) −0.0758259 + 0.104365i −0.00360667 + 0.00496416i
\(443\) −8.31449 + 7.48640i −0.395033 + 0.355690i −0.842580 0.538571i \(-0.818964\pi\)
0.447547 + 0.894260i \(0.352298\pi\)
\(444\) 0.497895 + 0.826374i 0.0236291 + 0.0392180i
\(445\) 15.7592 + 7.01646i 0.747059 + 0.332612i
\(446\) −0.430834 0.191820i −0.0204006 0.00908293i
\(447\) 13.6088 + 22.5871i 0.643676 + 1.06833i
\(448\) −0.322300 + 0.290200i −0.0152272 + 0.0137107i
\(449\) −14.9366 + 20.5585i −0.704903 + 0.970216i 0.294989 + 0.955501i \(0.404684\pi\)
−0.999892 + 0.0147150i \(0.995316\pi\)
\(450\) 0.425926 6.31007i 0.0200784 0.297460i
\(451\) −14.2010 7.63587i −0.668699 0.359559i
\(452\) −10.0917 5.82646i −0.474675 0.274054i
\(453\) 13.1345 1.62883i 0.617115 0.0765290i
\(454\) −10.1607 + 2.15971i −0.476863 + 0.101360i
\(455\) 3.83340 + 3.45161i 0.179712 + 0.161814i
\(456\) −8.09885 + 2.79960i −0.379263 + 0.131104i
\(457\) 14.8468 1.56046i 0.694503 0.0729952i 0.249302 0.968426i \(-0.419799\pi\)
0.445201 + 0.895431i \(0.353132\pi\)
\(458\) 4.24914 + 13.0775i 0.198549 + 0.611072i
\(459\) 0.464590 + 1.19731i 0.0216852 + 0.0558857i
\(460\) 8.05102 + 5.84941i 0.375381 + 0.272730i
\(461\) 6.50819 11.2725i 0.303117 0.525013i −0.673724 0.738983i \(-0.735306\pi\)
0.976840 + 0.213970i \(0.0686395\pi\)
\(462\) 15.5209 7.84094i 0.722096 0.364793i
\(463\) 2.01632 + 3.49236i 0.0937062 + 0.162304i 0.909068 0.416648i \(-0.136795\pi\)
−0.815362 + 0.578952i \(0.803462\pi\)
\(464\) 1.46881 13.9748i 0.0681879 0.648764i
\(465\) 1.64244 + 3.51114i 0.0761662 + 0.162825i
\(466\) −9.45468 2.00965i −0.437980 0.0930954i
\(467\) −24.7492 34.0643i −1.14525 1.57631i −0.755170 0.655529i \(-0.772446\pi\)
−0.390085 0.920779i \(-0.627554\pi\)
\(468\) 3.56388 + 1.88392i 0.164740 + 0.0870841i
\(469\) 2.32540 0.755569i 0.107377 0.0348889i
\(470\) 3.96832 + 4.40727i 0.183045 + 0.203292i
\(471\) −6.90723 2.92210i −0.318268 0.134643i
\(472\) −10.2638 + 5.92582i −0.472430 + 0.272758i
\(473\) −0.474098 1.32170i −0.0217991 0.0607717i
\(474\) −0.541781 2.33385i −0.0248848 0.107197i
\(475\) 3.00810 + 6.75631i 0.138021 + 0.310001i
\(476\) 1.83188 + 0.595214i 0.0839641 + 0.0272816i
\(477\) −34.1349 9.69882i −1.56293 0.444079i
\(478\) −9.51213 + 6.91097i −0.435075 + 0.316100i
\(479\) 0.777229 + 7.39484i 0.0355125 + 0.337879i 0.997824 + 0.0659302i \(0.0210015\pi\)
−0.962312 + 0.271949i \(0.912332\pi\)
\(480\) 10.9117 + 6.03124i 0.498049 + 0.275287i
\(481\) −0.0600892 0.282697i −0.00273983 0.0128899i
\(482\) 9.67812 + 1.01721i 0.440826 + 0.0463327i
\(483\) −11.8405 + 38.8966i −0.538763 + 1.76986i
\(484\) −14.9241 9.52007i −0.678368 0.432731i
\(485\) 10.1410i 0.460480i
\(486\) −8.49367 + 4.77541i −0.385281 + 0.216617i
\(487\) 4.00699 12.3322i 0.181574 0.558827i −0.818299 0.574793i \(-0.805082\pi\)
0.999873 + 0.0159664i \(0.00508249\pi\)
\(488\) 6.53663 30.7524i 0.295899 1.39210i
\(489\) 4.03243 + 11.6652i 0.182353 + 0.527520i
\(490\) −5.33570 + 11.9842i −0.241042 + 0.541390i
\(491\) −21.5483 + 23.9318i −0.972459 + 1.08003i 0.0243100 + 0.999704i \(0.492261\pi\)
−0.996769 + 0.0803207i \(0.974406\pi\)
\(492\) 12.2741 5.74158i 0.553360 0.258850i
\(493\) −1.75458 + 0.781188i −0.0790221 + 0.0351829i
\(494\) 1.14455 0.0514957
\(495\) 9.11084 + 8.83780i 0.409502 + 0.397230i
\(496\) 3.17233 0.142442
\(497\) −52.3393 + 23.3029i −2.34774 + 1.04528i
\(498\) 0.384074 4.45192i 0.0172108 0.199495i
\(499\) −17.3087 + 19.2233i −0.774845 + 0.860553i −0.993332 0.115287i \(-0.963221\pi\)
0.218487 + 0.975840i \(0.429888\pi\)
\(500\) 6.99120 15.7025i 0.312656 0.702236i
\(501\) −9.28009 + 10.7016i −0.414604 + 0.478112i
\(502\) −1.83993 + 8.65620i −0.0821202 + 0.386345i
\(503\) 0.339066 1.04354i 0.0151182 0.0465290i −0.943213 0.332189i \(-0.892213\pi\)
0.958331 + 0.285660i \(0.0922128\pi\)
\(504\) −5.61353 + 32.2919i −0.250046 + 1.43840i
\(505\) 6.88210i 0.306250i
\(506\) −9.76229 + 2.38577i −0.433987 + 0.106060i
\(507\) 14.5516 + 15.5669i 0.646258 + 0.691350i
\(508\) −4.60926 0.484452i −0.204503 0.0214941i
\(509\) −1.45591 6.84951i −0.0645320 0.303599i 0.934031 0.357192i \(-0.116266\pi\)
−0.998563 + 0.0535932i \(0.982933\pi\)
\(510\) −0.00637007 0.341313i −0.000282071 0.0151136i
\(511\) 2.05005 + 19.5049i 0.0906890 + 0.862848i
\(512\) 14.8558 10.7934i 0.656539 0.477003i
\(513\) 6.17126 9.57873i 0.272468 0.422911i
\(514\) −8.84890 2.87518i −0.390308 0.126819i
\(515\) 8.53914 + 19.1792i 0.376279 + 0.845137i
\(516\) 1.12893 + 0.343657i 0.0496982 + 0.0151286i
\(517\) 24.6551 0.746007i 1.08433 0.0328094i
\(518\) 0.907371 0.523871i 0.0398676 0.0230176i
\(519\) 1.44209 + 11.6287i 0.0633007 + 0.510444i
\(520\) −1.60804 1.78591i −0.0705174 0.0783175i
\(521\) 7.27467 2.36368i 0.318709 0.103555i −0.145294 0.989389i \(-0.546413\pi\)
0.464003 + 0.885834i \(0.346413\pi\)
\(522\) −7.75182 12.3391i −0.339288 0.540067i
\(523\) −18.3418 25.2453i −0.802029 1.10390i −0.992505 0.122206i \(-0.961003\pi\)
0.190476 0.981692i \(-0.438997\pi\)
\(524\) −0.886793 0.188494i −0.0387398 0.00823439i
\(525\) 28.1834 + 2.43143i 1.23002 + 0.106116i
\(526\) 1.56168 14.8584i 0.0680924 0.647856i
\(527\) −0.216799 0.375508i −0.00944393 0.0163574i
\(528\) 9.71072 3.68921i 0.422605 0.160552i
\(529\) 0.248947 0.431189i 0.0108238 0.0187473i
\(530\) 7.63097 + 5.54423i 0.331468 + 0.240826i
\(531\) 5.86830 14.6262i 0.254662 0.634722i
\(532\) −5.28091 16.2530i −0.228956 0.704656i
\(533\) −4.03706 + 0.424312i −0.174864 + 0.0183790i
\(534\) 2.77616 14.3748i 0.120136 0.622058i
\(535\) −2.16308 1.94765i −0.0935182 0.0842041i
\(536\) −1.11423 + 0.236836i −0.0481272 + 0.0102298i
\(537\) −7.52029 9.95472i −0.324524 0.429578i
\(538\) 4.26107 + 2.46013i 0.183708 + 0.106064i
\(539\) 23.6896 + 49.1506i 1.02038 + 2.11707i
\(540\) −10.5300 + 1.70693i −0.453139 + 0.0734545i
\(541\) −16.7402 + 23.0409i −0.719717 + 0.990605i 0.279817 + 0.960053i \(0.409726\pi\)
−0.999533 + 0.0305514i \(0.990274\pi\)
\(542\) 2.28523 2.05763i 0.0981591 0.0883829i
\(543\) −0.820541 + 0.0153141i −0.0352128 + 0.000657192i
\(544\) −1.27404 0.567241i −0.0546242 0.0243203i
\(545\) −10.3715 4.61768i −0.444265 0.197800i
\(546\) 2.11779 3.83150i 0.0906329 0.163973i
\(547\) 29.9893 27.0025i 1.28225 1.15454i 0.302756 0.953068i \(-0.402093\pi\)
0.979494 0.201475i \(-0.0645734\pi\)
\(548\) −4.39118 + 6.04394i −0.187582 + 0.258185i
\(549\) 18.4173 + 37.5307i 0.786031 + 1.60177i
\(550\) 3.03575 + 6.29851i 0.129445 + 0.268569i
\(551\) 14.7573 + 8.52016i 0.628684 + 0.362971i
\(552\) 7.38027 17.4454i 0.314125 0.742525i
\(553\) 10.4823 2.22808i 0.445753 0.0947477i
\(554\) 12.2676 + 11.0458i 0.521199 + 0.469289i
\(555\) 0.577806 + 0.501055i 0.0245265 + 0.0212686i
\(556\) −16.8181 + 1.76765i −0.713245 + 0.0749650i
\(557\) 5.23145 + 16.1007i 0.221664 + 0.682211i 0.998613 + 0.0526476i \(0.0167660\pi\)
−0.776950 + 0.629563i \(0.783234\pi\)
\(558\) 2.58748 2.03164i 0.109537 0.0860063i
\(559\) −0.285994 0.207787i −0.0120963 0.00878845i
\(560\) −5.58560 + 9.67455i −0.236035 + 0.408824i
\(561\) −1.10033 0.897333i −0.0464560 0.0378854i
\(562\) −4.96742 8.60382i −0.209538 0.362930i
\(563\) 2.43336 23.1519i 0.102554 0.975735i −0.815360 0.578955i \(-0.803461\pi\)
0.917914 0.396780i \(-0.129872\pi\)
\(564\) −11.8697 + 16.9954i −0.499806 + 0.715635i
\(565\) −9.03564 1.92058i −0.380132 0.0807996i
\(566\) −4.04544 5.56807i −0.170042 0.234043i
\(567\) −20.6470 38.3827i −0.867090 1.61192i
\(568\) 25.3852 8.24815i 1.06514 0.346085i
\(569\) 15.2249 + 16.9089i 0.638260 + 0.708859i 0.972310 0.233696i \(-0.0750821\pi\)
−0.334050 + 0.942555i \(0.608415\pi\)
\(570\) −2.41667 + 1.82567i −0.101223 + 0.0764689i
\(571\) 25.0248 14.4481i 1.04726 0.604634i 0.125377 0.992109i \(-0.459986\pi\)
0.921880 + 0.387475i \(0.126653\pi\)
\(572\) −4.45459 + 0.134786i −0.186256 + 0.00563567i
\(573\) 0.0513689 0.0480185i 0.00214597 0.00200600i
\(574\) −5.98550 13.4437i −0.249830 0.561127i
\(575\) −15.5483 5.05196i −0.648410 0.210681i
\(576\) −0.0734327 + 0.258445i −0.00305970 + 0.0107686i
\(577\) 25.9942 18.8859i 1.08215 0.786229i 0.104094 0.994567i \(-0.466806\pi\)
0.978057 + 0.208339i \(0.0668056\pi\)
\(578\) −1.10677 10.5302i −0.0460356 0.437999i
\(579\) −16.6712 + 10.0445i −0.692830 + 0.417434i
\(580\) −3.31679 15.6043i −0.137722 0.647933i
\(581\) 19.8772 + 2.08917i 0.824643 + 0.0866735i
\(582\) −8.38365 + 1.94619i −0.347514 + 0.0806721i
\(583\) 38.1097 9.31348i 1.57834 0.385725i
\(584\) 9.13707i 0.378095i
\(585\) 3.14837 + 0.547304i 0.130169 + 0.0226282i
\(586\) −2.73676 + 8.42287i −0.113054 + 0.347945i
\(587\) −0.771344 + 3.62889i −0.0318368 + 0.149780i −0.991195 0.132411i \(-0.957728\pi\)
0.959358 + 0.282192i \(0.0910614\pi\)
\(588\) −45.0225 8.69506i −1.85670 0.358578i
\(589\) −1.56472 + 3.51442i −0.0644733 + 0.144809i
\(590\) −2.80297 + 3.11302i −0.115397 + 0.128161i
\(591\) −29.5576 20.6433i −1.21584 0.849150i
\(592\) 0.571791 0.254578i 0.0235005 0.0104631i
\(593\) −38.2706 −1.57159 −0.785793 0.618490i \(-0.787745\pi\)
−0.785793 + 0.618490i \(0.787745\pi\)
\(594\) 5.55778 9.22807i 0.228039 0.378632i
\(595\) 1.52690 0.0625968
\(596\) 22.3825 9.96533i 0.916823 0.408196i
\(597\) −20.4639 14.2922i −0.837533 0.584940i
\(598\) −1.69295 + 1.88021i −0.0692298 + 0.0768874i
\(599\) 5.08435 11.4196i 0.207741 0.466594i −0.779384 0.626547i \(-0.784468\pi\)
0.987125 + 0.159953i \(0.0511343\pi\)
\(600\) −12.9398 2.49903i −0.528266 0.102022i
\(601\) −4.75323 + 22.3622i −0.193888 + 0.912173i 0.768364 + 0.640013i \(0.221071\pi\)
−0.962252 + 0.272159i \(0.912262\pi\)
\(602\) 0.396022 1.21883i 0.0161406 0.0496758i
\(603\) 0.970838 1.16269i 0.0395356 0.0473485i
\(604\) 12.2970i 0.500356i
\(605\) −13.5837 3.52152i −0.552255 0.143170i
\(606\) −5.68948 + 1.32076i −0.231119 + 0.0536522i
\(607\) −30.2294 3.17724i −1.22698 0.128960i −0.531217 0.847236i \(-0.678265\pi\)
−0.695759 + 0.718276i \(0.744932\pi\)
\(608\) 2.57258 + 12.1030i 0.104332 + 0.490843i
\(609\) 55.8280 33.6367i 2.26226 1.36303i
\(610\) −1.16155 11.0514i −0.0470299 0.447460i
\(611\) 5.02398 3.65013i 0.203248 0.147669i
\(612\) 1.15711 0.291470i 0.0467732 0.0117820i
\(613\) 1.41405 + 0.459451i 0.0571128 + 0.0185571i 0.337434 0.941349i \(-0.390441\pi\)
−0.280321 + 0.959906i \(0.590441\pi\)
\(614\) −2.93369 6.58918i −0.118394 0.265918i
\(615\) 7.84724 7.33542i 0.316431 0.295793i
\(616\) −12.2345 34.1075i −0.492942 1.37423i
\(617\) −29.1210 + 16.8130i −1.17237 + 0.676867i −0.954237 0.299052i \(-0.903330\pi\)
−0.218132 + 0.975919i \(0.569996\pi\)
\(618\) 14.2168 10.7401i 0.571884 0.432030i
\(619\) 1.89055 + 2.09967i 0.0759875 + 0.0843927i 0.779940 0.625855i \(-0.215250\pi\)
−0.703952 + 0.710247i \(0.748583\pi\)
\(620\) 3.42525 1.11293i 0.137561 0.0446964i
\(621\) 6.60730 + 24.3061i 0.265142 + 0.975370i
\(622\) −10.0534 13.8373i −0.403103 0.554824i
\(623\) 64.0531 + 13.6149i 2.56623 + 0.545470i
\(624\) 1.49745 2.14409i 0.0599461 0.0858323i
\(625\) −0.338385 + 3.21951i −0.0135354 + 0.128781i
\(626\) 2.59710 + 4.49831i 0.103801 + 0.179789i
\(627\) −0.702684 + 12.5776i −0.0280625 + 0.502300i
\(628\) −3.48413 + 6.03469i −0.139032 + 0.240810i
\(629\) −0.0692110 0.0502848i −0.00275962 0.00200498i
\(630\) 1.64000 + 11.4681i 0.0653393 + 0.456901i
\(631\) 2.32895 + 7.16777i 0.0927140 + 0.285344i 0.986651 0.162848i \(-0.0520680\pi\)
−0.893937 + 0.448192i \(0.852068\pi\)
\(632\) −4.96527 + 0.521871i −0.197508 + 0.0207589i
\(633\) −23.7855 20.6260i −0.945388 0.819810i
\(634\) −7.05804 6.35509i −0.280310 0.252393i
\(635\) −3.59369 + 0.763862i −0.142611 + 0.0303130i
\(636\) −12.8459 + 30.3651i −0.509374 + 1.20405i
\(637\) 11.8960 + 6.86818i 0.471338 + 0.272127i
\(638\) 14.1889 + 7.62935i 0.561743 + 0.302049i
\(639\) −19.7761 + 29.4726i −0.782330 + 1.16592i
\(640\) 8.50394 11.7047i 0.336148 0.462668i
\(641\) 14.3168 12.8909i 0.565479 0.509160i −0.336070 0.941837i \(-0.609098\pi\)
0.901549 + 0.432677i \(0.142431\pi\)
\(642\) −1.19501 + 2.16201i −0.0471633 + 0.0853277i
\(643\) −17.1490 7.63522i −0.676290 0.301104i 0.0397024 0.999212i \(-0.487359\pi\)
−0.715993 + 0.698108i \(0.754026\pi\)
\(644\) 34.5107 + 15.3652i 1.35991 + 0.605473i
\(645\) 0.935305 0.0174560i 0.0368276 0.000687330i
\(646\) 0.251773 0.226697i 0.00990586 0.00891928i
\(647\) 1.43599 1.97647i 0.0564545 0.0777030i −0.779856 0.625959i \(-0.784708\pi\)
0.836311 + 0.548256i \(0.184708\pi\)
\(648\) 7.69720 + 18.7893i 0.302375 + 0.738115i
\(649\) 2.34439 + 17.2643i 0.0920254 + 0.677685i
\(650\) 1.52444 + 0.880138i 0.0597936 + 0.0345219i
\(651\) 8.86965 + 11.7409i 0.347629 + 0.460162i
\(652\) 11.2170 2.38425i 0.439292 0.0933744i
\(653\) 14.8396 + 13.3616i 0.580717 + 0.522880i 0.906301 0.422634i \(-0.138894\pi\)
−0.325584 + 0.945513i \(0.605561\pi\)
\(654\) −1.82705 + 9.46036i −0.0714433 + 0.369929i
\(655\) −0.714747 + 0.0751229i −0.0279275 + 0.00293530i
\(656\) −2.71658 8.36077i −0.106065 0.326433i
\(657\) 7.50331 + 9.55612i 0.292732 + 0.372820i
\(658\) 18.2131 + 13.2326i 0.710022 + 0.515861i
\(659\) 17.8420 30.9032i 0.695024 1.20382i −0.275148 0.961402i \(-0.588727\pi\)
0.970172 0.242416i \(-0.0779398\pi\)
\(660\) 9.19067 7.39010i 0.357746 0.287659i
\(661\) 4.45874 + 7.72277i 0.173425 + 0.300381i 0.939615 0.342233i \(-0.111183\pi\)
−0.766190 + 0.642614i \(0.777850\pi\)
\(662\) 0.941823 8.96085i 0.0366050 0.348273i
\(663\) −0.356133 0.0307241i −0.0138311 0.00119323i
\(664\) −9.10795 1.93596i −0.353457 0.0751296i
\(665\) −7.96278 10.9598i −0.308783 0.425004i
\(666\) 0.303337 0.573834i 0.0117541 0.0222356i
\(667\) −35.8246 + 11.6401i −1.38714 + 0.450708i
\(668\) 8.80629 + 9.78038i 0.340726 + 0.378414i
\(669\) −0.160824 1.29685i −0.00621780 0.0501391i
\(670\) −0.348681 + 0.201311i −0.0134707 + 0.00777733i
\(671\) −38.1959 26.0232i −1.47454 1.00461i
\(672\) 45.2763 + 13.7826i 1.74657 + 0.531674i
\(673\) −4.44701 9.98814i −0.171419 0.385014i 0.807322 0.590111i \(-0.200916\pi\)
−0.978742 + 0.205096i \(0.934249\pi\)
\(674\) 4.60308 + 1.49563i 0.177304 + 0.0576096i
\(675\) 15.5855 8.01247i 0.599885 0.308400i
\(676\) 16.0174 11.6373i 0.616052 0.447588i
\(677\) 2.48430 + 23.6366i 0.0954796 + 0.908427i 0.932479 + 0.361224i \(0.117641\pi\)
−0.837000 + 0.547204i \(0.815692\pi\)
\(678\) 0.146292 + 7.83840i 0.00561829 + 0.301032i
\(679\) −8.00372 37.6546i −0.307155 1.44505i
\(680\) −0.707459 0.0743570i −0.0271298 0.00285146i
\(681\) −19.6556 21.0271i −0.753204 0.805758i
\(682\) −1.37813 + 3.36577i −0.0527713 + 0.128882i
\(683\) 24.2759i 0.928892i −0.885602 0.464446i \(-0.846254\pi\)
0.885602 0.464446i \(-0.153746\pi\)
\(684\) −8.12643 6.78549i −0.310722 0.259450i
\(685\) −1.83006 + 5.63234i −0.0699229 + 0.215201i
\(686\) −5.94802 + 27.9832i −0.227096 + 1.06840i
\(687\) −24.9621 + 28.7857i −0.952362 + 1.09824i
\(688\) 0.311389 0.699390i 0.0118716 0.0266640i
\(689\) 6.60887 7.33990i 0.251778 0.279628i
\(690\) 0.575465 6.67039i 0.0219076 0.253938i
\(691\) −29.8084 + 13.2716i −1.13397 + 0.504874i −0.885903 0.463870i \(-0.846460\pi\)
−0.248062 + 0.968744i \(0.579794\pi\)
\(692\) 10.8872 0.413868
\(693\) 40.8045 + 25.6249i 1.55004 + 0.973409i
\(694\) 5.41398 0.205512
\(695\) −12.2465 + 5.45249i −0.464536 + 0.206825i
\(696\) −27.5048 + 12.8662i −1.04257 + 0.487692i
\(697\) −0.804010 + 0.892944i −0.0304541 + 0.0338227i
\(698\) 4.26213 9.57291i 0.161324 0.362340i
\(699\) −8.75041 25.3137i −0.330971 0.957450i
\(700\) 5.46451 25.7085i 0.206539 0.971690i
\(701\) −11.0658 + 34.0571i −0.417951 + 1.28632i 0.491634 + 0.870802i \(0.336400\pi\)
−0.909585 + 0.415518i \(0.863600\pi\)
\(702\) −0.151752 2.70782i −0.00572753 0.102200i
\(703\) 0.759020i 0.0286270i
\(704\) −0.0705152 0.288540i −0.00265764 0.0108748i
\(705\) −4.78558 + 15.7208i −0.180236 + 0.592081i
\(706\) −7.27770 0.764917i −0.273900 0.0287880i
\(707\) −5.43164 25.5539i −0.204278 0.961052i
\(708\) −12.8151 7.08329i −0.481620 0.266206i
\(709\) −0.384443 3.65773i −0.0144381 0.137369i 0.984928 0.172963i \(-0.0553342\pi\)
−0.999366 + 0.0355944i \(0.988668\pi\)
\(710\) 7.63240 5.54527i 0.286439 0.208110i
\(711\) 4.76444 4.62326i 0.178680 0.173386i
\(712\) −29.0147 9.42746i −1.08737 0.353309i
\(713\) −3.45888 7.76876i −0.129536 0.290943i
\(714\) −0.293031 1.26230i −0.0109664 0.0472403i
\(715\) −3.32539 + 1.19283i −0.124363 + 0.0446094i
\(716\) −10.0387 + 5.79582i −0.375162 + 0.216600i
\(717\) −30.0049 12.6936i −1.12055 0.474050i
\(718\) 7.51796 + 8.34954i 0.280568 + 0.311602i
\(719\) −12.2052 + 3.96571i −0.455177 + 0.147896i −0.527627 0.849476i \(-0.676918\pi\)
0.0724502 + 0.997372i \(0.476918\pi\)
\(720\) 0.258233 + 6.91574i 0.00962377 + 0.257734i
\(721\) 46.8436 + 64.4747i 1.74455 + 2.40116i
\(722\) 8.67685 + 1.84432i 0.322919 + 0.0686385i
\(723\) 11.4254 + 24.4248i 0.424915 + 0.908367i
\(724\) −0.0797039 + 0.758332i −0.00296217 + 0.0281832i
\(725\) 13.1037 + 22.6963i 0.486659 + 0.842918i
\(726\) −0.304390 + 11.9055i −0.0112970 + 0.441856i
\(727\) 20.9562 36.2973i 0.777224 1.34619i −0.156312 0.987708i \(-0.549961\pi\)
0.933536 0.358484i \(-0.116706\pi\)
\(728\) −7.38033 5.36212i −0.273533 0.198733i
\(729\) −23.4799 13.3302i −0.869627 0.493710i
\(730\) −0.997974 3.07145i −0.0369367 0.113679i
\(731\) −0.104067 + 0.0109379i −0.00384907 + 0.000404553i
\(732\) 36.7111 12.6903i 1.35688 0.469046i
\(733\) 19.3286 + 17.4036i 0.713918 + 0.642815i 0.943843 0.330393i \(-0.107181\pi\)
−0.229925 + 0.973208i \(0.573848\pi\)
\(734\) −16.7947 + 3.56982i −0.619903 + 0.131764i
\(735\) −36.0734 + 4.47350i −1.33059 + 0.165007i
\(736\) −23.6875 13.6760i −0.873131 0.504102i
\(737\) −0.298468 + 1.64777i −0.0109942 + 0.0606966i
\(738\) −7.57022 5.07961i −0.278664 0.186983i
\(739\) −17.3756 + 23.9154i −0.639171 + 0.879744i −0.998571 0.0534398i \(-0.982981\pi\)
0.359400 + 0.933184i \(0.382981\pi\)
\(740\) 0.528067 0.475473i 0.0194121 0.0174787i
\(741\) 1.63670 + 2.71649i 0.0601257 + 0.0997927i
\(742\) 32.7102 + 14.5635i 1.20083 + 0.534644i
\(743\) 13.6345 + 6.07047i 0.500201 + 0.222704i 0.641298 0.767292i \(-0.278396\pi\)
−0.141097 + 0.989996i \(0.545063\pi\)
\(744\) −3.53782 5.87185i −0.129703 0.215272i
\(745\) 14.4335 12.9960i 0.528803 0.476136i
\(746\) −6.23552 + 8.58246i −0.228299 + 0.314226i
\(747\) 11.1155 5.45466i 0.406694 0.199575i
\(748\) −0.953203 + 0.911955i −0.0348525 + 0.0333444i
\(749\) −9.56888 5.52460i −0.349639 0.201864i
\(750\) −11.4761 + 1.42316i −0.419046 + 0.0519663i
\(751\) 17.7242 3.76740i 0.646766 0.137474i 0.127162 0.991882i \(-0.459413\pi\)
0.519603 + 0.854408i \(0.326080\pi\)
\(752\) 9.99432 + 8.99893i 0.364455 + 0.328157i
\(753\) −23.1758 + 8.01140i −0.844574 + 0.291952i
\(754\) 4.03361 0.423949i 0.146895 0.0154393i
\(755\) −3.01231 9.27095i −0.109629 0.337404i
\(756\) −37.7516 + 14.6487i −1.37301 + 0.532768i
\(757\) 5.28836 + 3.84222i 0.192209 + 0.139648i 0.679728 0.733465i \(-0.262098\pi\)
−0.487519 + 0.873112i \(0.662098\pi\)
\(758\) −4.80486 + 8.32227i −0.174520 + 0.302278i
\(759\) −19.6224 19.7583i −0.712249 0.717181i
\(760\) 3.15568 + 5.46580i 0.114469 + 0.198265i
\(761\) −3.40766 + 32.4217i −0.123528 + 1.17529i 0.740576 + 0.671972i \(0.234553\pi\)
−0.864104 + 0.503314i \(0.832114\pi\)
\(762\) 1.32116 + 2.82433i 0.0478607 + 0.102315i
\(763\) −42.1547 8.96026i −1.52610 0.324383i
\(764\) −0.0384017 0.0528554i −0.00138932 0.00191224i
\(765\) 0.800967 0.503194i 0.0289590 0.0181930i
\(766\) −4.92851 + 1.60137i −0.178074 + 0.0578598i
\(767\) 2.93503 + 3.25968i 0.105978 + 0.117700i
\(768\) −11.0226 4.66311i −0.397744 0.168266i
\(769\) 34.9046 20.1522i 1.25869 0.726707i 0.285873 0.958268i \(-0.407716\pi\)
0.972821 + 0.231560i \(0.0743831\pi\)
\(770\) −7.83797 10.1290i −0.282461 0.365025i
\(771\) −5.82989 25.1136i −0.209958 0.904443i
\(772\) 7.35526 + 16.5202i 0.264722 + 0.594575i
\(773\) 9.02009 + 2.93080i 0.324430 + 0.105414i 0.466704 0.884414i \(-0.345441\pi\)
−0.142274 + 0.989827i \(0.545441\pi\)
\(774\) −0.193928 0.769872i −0.00697058 0.0276725i
\(775\) −4.78661 + 3.47767i −0.171940 + 0.124922i
\(776\) 1.87467 + 17.8363i 0.0672966 + 0.640285i
\(777\) 2.54090 + 1.40443i 0.0911542 + 0.0503838i
\(778\) 3.27298 + 15.3982i 0.117342 + 0.552051i
\(779\) 10.6023 + 1.11435i 0.379867 + 0.0399257i
\(780\) 0.864641 2.84038i 0.0309591 0.101702i
\(781\) 2.91945 39.1298i 0.104466 1.40018i
\(782\) 0.748915i 0.0267812i
\(783\) 18.2007 36.0431i 0.650438 1.28808i
\(784\) −9.19272 + 28.2923i −0.328311 + 1.01044i
\(785\) −1.14848 + 5.40317i −0.0409910 + 0.192847i
\(786\) 0.199273 + 0.576469i 0.00710784 + 0.0205620i
\(787\) −16.7705 + 37.6671i −0.597802 + 1.34269i 0.320666 + 0.947192i \(0.396093\pi\)
−0.918469 + 0.395494i \(0.870574\pi\)
\(788\) −22.4139 + 24.8931i −0.798461 + 0.886781i
\(789\) 37.4983 17.5409i 1.33497 0.624473i
\(790\) −1.61209 + 0.717748i −0.0573555 + 0.0255363i
\(791\) −35.0659 −1.24680
\(792\) −17.6581 13.8599i −0.627453 0.492490i
\(793\) −11.6359 −0.413202
\(794\) 14.9012 6.63445i 0.528824 0.235448i
\(795\) −2.24648 + 26.0397i −0.0796745 + 0.923532i
\(796\) −15.5181 + 17.2345i −0.550023 + 0.610862i
\(797\) 5.19405 11.6660i 0.183983 0.413232i −0.797882 0.602813i \(-0.794046\pi\)
0.981865 + 0.189581i \(0.0607131\pi\)
\(798\) −7.53240 + 8.68621i −0.266644 + 0.307488i
\(799\) 0.382181 1.79802i 0.0135206 0.0636094i
\(800\) −5.88056 + 18.0985i −0.207909 + 0.639878i
\(801\) 38.0872 13.9669i 1.34575 0.493497i
\(802\) 2.64208i 0.0932950i
\(803\) −12.4305 5.08974i −0.438664 0.179613i
\(804\) −0.961052 1.02811i −0.0338937 0.0362586i
\(805\) 29.7823 + 3.13025i 1.04969 + 0.110327i
\(806\) 0.190373 + 0.895632i 0.00670559 + 0.0315473i
\(807\) 0.254406 + 13.6312i 0.00895551 + 0.479842i
\(808\) 1.27222 + 12.1044i 0.0447567 + 0.425831i
\(809\) 33.5935 24.4071i 1.18108 0.858107i 0.188790 0.982017i \(-0.439543\pi\)
0.992293 + 0.123910i \(0.0395435\pi\)
\(810\) 4.63965 + 5.47537i 0.163021 + 0.192385i
\(811\) 5.10222 + 1.65781i 0.179163 + 0.0582137i 0.397225 0.917721i \(-0.369973\pi\)
−0.218061 + 0.975935i \(0.569973\pi\)
\(812\) −24.6311 55.3224i −0.864383 1.94144i
\(813\) 8.15148 + 2.48139i 0.285885 + 0.0870263i
\(814\) 0.0217024 + 0.717252i 0.000760668 + 0.0251397i
\(815\) 7.87269 4.54530i 0.275768 0.159215i
\(816\) −0.0952704 0.768242i −0.00333513 0.0268938i
\(817\) 0.621222 + 0.689936i 0.0217338 + 0.0241378i
\(818\) 15.0377 4.88605i 0.525782 0.170837i
\(819\) 12.1222 0.452640i 0.423582 0.0158165i
\(820\) −5.86634 8.07432i −0.204861 0.281968i
\(821\) −31.1963 6.63097i −1.08876 0.231423i −0.371642 0.928376i \(-0.621205\pi\)
−0.717116 + 0.696954i \(0.754538\pi\)
\(822\) 5.00750 + 0.432005i 0.174657 + 0.0150679i
\(823\) 2.73014 25.9756i 0.0951667 0.905451i −0.837918 0.545795i \(-0.816228\pi\)
0.933085 0.359655i \(-0.117106\pi\)
\(824\) −18.5643 32.1543i −0.646718 1.12015i
\(825\) −10.6078 + 16.2119i −0.369318 + 0.564427i
\(826\) −7.95077 + 13.7711i −0.276643 + 0.479159i
\(827\) 31.8832 + 23.1645i 1.10869 + 0.805508i 0.982456 0.186493i \(-0.0597120\pi\)
0.126231 + 0.992001i \(0.459712\pi\)
\(828\) 23.1670 3.31300i 0.805108 0.115135i
\(829\) −10.5153 32.3627i −0.365211 1.12400i −0.949849 0.312710i \(-0.898763\pi\)
0.584638 0.811294i \(-0.301237\pi\)
\(830\) −3.27311 + 0.344018i −0.113611 + 0.0119410i
\(831\) −8.67360 + 44.9114i −0.300884 + 1.55796i
\(832\) −0.0555726 0.0500378i −0.00192663 0.00173475i
\(833\) 3.97719 0.845378i 0.137802 0.0292906i
\(834\) 6.85786 + 9.07785i 0.237468 + 0.314340i
\(835\) 9.03509 + 5.21641i 0.312672 + 0.180521i
\(836\) 11.5168 + 2.08609i 0.398317 + 0.0721488i
\(837\) 8.52201 + 3.23591i 0.294564 + 0.111849i
\(838\) −5.69149 + 7.83367i −0.196609 + 0.270610i
\(839\) −42.3611 + 38.1421i −1.46247 + 1.31681i −0.611917 + 0.790922i \(0.709601\pi\)
−0.850552 + 0.525890i \(0.823732\pi\)
\(840\) 24.1363 0.450467i 0.832783 0.0155426i
\(841\) 28.6707 + 12.7650i 0.988646 + 0.440174i
\(842\) 16.5776 + 7.38082i 0.571301 + 0.254360i
\(843\) 13.3170 24.0932i 0.458663 0.829812i
\(844\) −21.7380 + 19.5729i −0.748251 + 0.673728i
\(845\) 9.22511 12.6973i 0.317353 0.436800i
\(846\) 13.9149 + 0.939250i 0.478405 + 0.0322921i
\(847\) −53.2167 2.35493i −1.82855 0.0809163i
\(848\) 18.5241 + 10.6949i 0.636120 + 0.367264i
\(849\) 7.43036 17.5638i 0.255009 0.602788i
\(850\) 0.509666 0.108333i 0.0174814 0.00371578i
\(851\) −1.24688 1.12270i −0.0427425 0.0384855i
\(852\) 24.9139 + 21.6046i 0.853538 + 0.740161i
\(853\) −32.1650 + 3.38067i −1.10131 + 0.115752i −0.637697 0.770287i \(-0.720113\pi\)
−0.463610 + 0.886039i \(0.653446\pi\)
\(854\) −13.0352 40.1182i −0.446056 1.37282i
\(855\) −7.78889 3.12505i −0.266374 0.106874i
\(856\) 4.16452 + 3.02570i 0.142340 + 0.103416i
\(857\) 16.8286 29.1480i 0.574855 0.995678i −0.421202 0.906967i \(-0.638392\pi\)
0.996057 0.0887115i \(-0.0282749\pi\)
\(858\) 1.62431 + 2.52020i 0.0554529 + 0.0860384i
\(859\) 19.0213 + 32.9458i 0.648998 + 1.12410i 0.983363 + 0.181653i \(0.0581449\pi\)
−0.334365 + 0.942444i \(0.608522\pi\)
\(860\) 0.0908515 0.864394i 0.00309801 0.0294756i
\(861\) 23.3481 33.4304i 0.795701 1.13931i
\(862\) −2.93480 0.623810i −0.0999595 0.0212471i
\(863\) −9.20216 12.6657i −0.313245 0.431145i 0.623145 0.782107i \(-0.285855\pi\)
−0.936390 + 0.350962i \(0.885855\pi\)
\(864\) 28.2927 7.69100i 0.962537 0.261653i
\(865\) 8.20807 2.66696i 0.279083 0.0906795i
\(866\) −11.3017 12.5518i −0.384046 0.426527i
\(867\) 23.4099 17.6850i 0.795041 0.600613i
\(868\) 11.8399 6.83576i 0.401872 0.232021i
\(869\) −2.05589 + 7.04571i −0.0697413 + 0.239009i
\(870\) −7.84054 + 7.32915i −0.265819 + 0.248481i
\(871\) 0.171477 + 0.385143i 0.00581027 + 0.0130501i
\(872\) 19.0952 + 6.20441i 0.646646 + 0.210108i
\(873\) −16.6077 17.1148i −0.562085 0.579249i
\(874\) 5.37559 3.90559i 0.181832 0.132109i
\(875\) −5.40659 51.4403i −0.182776 1.73900i
\(876\) 9.66919 5.82574i 0.326692 0.196834i
\(877\) −3.06487 14.4191i −0.103493 0.486898i −0.999114 0.0420800i \(-0.986602\pi\)
0.895621 0.444818i \(-0.146732\pi\)
\(878\) −19.8259 2.08379i −0.669092 0.0703244i
\(879\) −23.9045 + 5.54921i −0.806278 + 0.187170i
\(880\) −4.02412 6.50720i −0.135653 0.219358i
\(881\) 29.1468i 0.981981i −0.871165 0.490990i \(-0.836635\pi\)
0.871165 0.490990i \(-0.163365\pi\)
\(882\) 10.6212 + 28.9636i 0.357634 + 0.975255i
\(883\) 0.109578 0.337245i 0.00368758 0.0113492i −0.949196 0.314686i \(-0.898101\pi\)
0.952883 + 0.303337i \(0.0981008\pi\)
\(884\) −0.0690510 + 0.324859i −0.00232244 + 0.0109262i
\(885\) −11.3967 2.20101i −0.383096 0.0739862i
\(886\) 2.84454 6.38895i 0.0955644 0.214641i
\(887\) −1.72548 + 1.91634i −0.0579361 + 0.0643445i −0.771416 0.636331i \(-0.780451\pi\)
0.713480 + 0.700676i \(0.247118\pi\)
\(888\) −1.10888 0.774453i −0.0372117 0.0259890i
\(889\) −12.7408 + 5.67258i −0.427313 + 0.190252i
\(890\) −10.7831 −0.361449
\(891\) 29.8496 0.00518836i 1.00000 0.000173816i
\(892\) −1.21415 −0.0406528
\(893\) −14.8990 + 6.63345i −0.498575 + 0.221980i
\(894\) −13.5138 9.43818i −0.451970 0.315660i
\(895\) −6.14859 + 6.82870i −0.205525 + 0.228258i
\(896\) 22.3381 50.1722i 0.746263 1.67613i
\(897\) −6.88342 1.32937i −0.229831 0.0443865i
\(898\) 3.30255 15.5373i 0.110208 0.518486i
\(899\) −4.21260 + 12.9651i −0.140498 + 0.432409i
\(900\) −5.60579 15.2868i −0.186860 0.509559i
\(901\) 2.92359i 0.0973989i
\(902\) 10.0507 + 0.749878i 0.334653 + 0.0249682i
\(903\) 3.45909 0.802997i 0.115111 0.0267221i
\(904\) 16.2471 + 1.70764i 0.540371 + 0.0567953i
\(905\) 0.125673 + 0.591247i 0.00417753 + 0.0196537i
\(906\) −7.08625 + 4.26951i −0.235425 + 0.141845i
\(907\) −1.96009 18.6490i −0.0650838 0.619231i −0.977641 0.210282i \(-0.932562\pi\)
0.912557 0.408950i \(-0.134105\pi\)
\(908\) −21.6355 + 15.7191i −0.718000 + 0.521657i
\(909\) −11.2706 11.6148i −0.373823 0.385238i
\(910\) −3.06658 0.996391i −0.101656 0.0330301i
\(911\) 4.98229 + 11.1904i 0.165071 + 0.370755i 0.977075 0.212897i \(-0.0682899\pi\)
−0.812004 + 0.583652i \(0.801623\pi\)
\(912\) −5.01748 + 4.69022i −0.166145 + 0.155309i
\(913\) −7.70729 + 11.3125i −0.255074 + 0.374389i
\(914\) −8.08139 + 4.66579i −0.267309 + 0.154331i
\(915\) 24.5686 18.5604i 0.812213 0.613586i
\(916\) 23.6876 + 26.3078i 0.782661 + 0.869233i
\(917\) −2.59463 + 0.843046i −0.0856822 + 0.0278398i
\(918\) −0.569709 0.565595i −0.0188032 0.0186674i
\(919\) −14.4656 19.9102i −0.477175 0.656775i 0.500784 0.865572i \(-0.333045\pi\)
−0.977959 + 0.208797i \(0.933045\pi\)
\(920\) −13.6466 2.90068i −0.449916 0.0956325i
\(921\) 11.4437 16.3853i 0.377082 0.539916i
\(922\) −0.850476 + 8.09174i −0.0280089 + 0.266487i
\(923\) −4.93933 8.55517i −0.162580 0.281597i
\(924\) 28.2932 34.6938i 0.930779 1.14134i
\(925\) −0.583673 + 1.01095i −0.0191910 + 0.0332399i
\(926\) −2.03931 1.48165i −0.0670160 0.0486899i
\(927\) 45.8206 + 18.3841i 1.50495 + 0.603813i
\(928\) 13.5493 + 41.7004i 0.444777 + 1.36888i
\(929\) 19.2123 2.01929i 0.630335 0.0662509i 0.216027 0.976387i \(-0.430690\pi\)
0.414308 + 0.910137i \(0.364023\pi\)
\(930\) −1.83058 1.58742i −0.0600272 0.0520537i
\(931\) −26.8090 24.1390i −0.878631 0.791123i
\(932\) −24.3410 + 5.17385i −0.797317 + 0.169475i
\(933\) 18.4653 43.6480i 0.604527 1.42897i
\(934\) 22.7934 + 13.1598i 0.745824 + 0.430602i
\(935\) −0.495244 + 0.921043i −0.0161962 + 0.0301213i
\(936\) −5.63861 0.380603i −0.184304 0.0124404i
\(937\) 29.8196 41.0432i 0.974165 1.34082i 0.0342499 0.999413i \(-0.489096\pi\)
0.939915 0.341409i \(-0.110904\pi\)
\(938\) −1.13580 + 1.02268i −0.0370853 + 0.0333917i
\(939\) −6.96251 + 12.5966i −0.227213 + 0.411073i
\(940\) 13.9482 + 6.21014i 0.454940 + 0.202552i
\(941\) −27.6089 12.2923i −0.900024 0.400717i −0.0960469 0.995377i \(-0.530620\pi\)
−0.803977 + 0.594660i \(0.797287\pi\)
\(942\) 4.68724 0.0874801i 0.152719 0.00285025i
\(943\) −17.5129 + 15.7687i −0.570298 + 0.513499i
\(944\) −5.58355 + 7.68510i −0.181729 + 0.250129i
\(945\) −24.8734 + 20.2918i −0.809131 + 0.660091i
\(946\) 0.606763 + 0.634207i 0.0197276 + 0.0206199i
\(947\) −9.86510 5.69562i −0.320573 0.185083i 0.331075 0.943604i \(-0.392589\pi\)
−0.651648 + 0.758522i \(0.725922\pi\)
\(948\) −3.71809 4.92170i −0.120758 0.159849i
\(949\) −3.30777 + 0.703088i −0.107375 + 0.0228232i
\(950\) −3.43550 3.09334i −0.111462 0.100361i
\(951\) 4.99028 25.8394i 0.161821 0.837899i
\(952\) −2.68555 + 0.282262i −0.0870390 + 0.00914817i
\(953\) 14.8543 + 45.7168i 0.481178 + 1.48091i 0.837441 + 0.546527i \(0.184051\pi\)
−0.356263 + 0.934386i \(0.615949\pi\)
\(954\) 21.9583 3.14015i 0.710925 0.101666i
\(955\) −0.0418995 0.0304418i −0.00135584 0.000985073i
\(956\) −15.1350 + 26.2146i −0.489501 + 0.847840i
\(957\) 2.18243 + 44.5860i 0.0705479 + 1.44126i
\(958\) −2.32392 4.02515i −0.0750826 0.130047i
\(959\) −2.34989 + 22.3577i −0.0758820 + 0.721969i
\(960\) 0.197154 + 0.0170088i 0.00636312 + 0.000548957i
\(961\) 27.3122 + 5.80539i 0.881039 + 0.187271i
\(962\) 0.106188 + 0.146155i 0.00342362 + 0.00471221i
\(963\) −6.84020 + 0.255412i −0.220422 + 0.00823055i
\(964\) 23.8273 7.74196i 0.767426 0.249352i
\(965\) 9.59214 + 10.6532i 0.308782 + 0.342937i
\(966\) −3.12780 25.2220i −0.100635 0.811503i
\(967\) −11.4552 + 6.61368i −0.368375 + 0.212681i −0.672748 0.739871i \(-0.734886\pi\)
0.304373 + 0.952553i \(0.401553\pi\)
\(968\) 24.5423 + 3.68266i 0.788818 + 0.118365i
\(969\) 0.898079 + 0.273385i 0.0288505 + 0.00878238i
\(970\) 2.57830 + 5.79095i 0.0827841 + 0.185936i
\(971\) −25.6742 8.34206i −0.823925 0.267710i −0.133441 0.991057i \(-0.542603\pi\)
−0.690484 + 0.723347i \(0.742603\pi\)
\(972\) −14.9759 + 20.1254i −0.480352 + 0.645524i
\(973\) −41.1690 + 29.9110i −1.31982 + 0.958903i
\(974\) 0.847242 + 8.06097i 0.0271474 + 0.258290i
\(975\) 0.0910165 + 4.87673i 0.00291486 + 0.156180i
\(976\) −5.23923 24.6486i −0.167704 0.788984i
\(977\) 39.2909 + 4.12964i 1.25703 + 0.132119i 0.709522 0.704684i \(-0.248911\pi\)
0.547505 + 0.836802i \(0.315578\pi\)
\(978\) −5.26849 5.63610i −0.168468 0.180223i
\(979\) −28.9880 + 34.2216i −0.926462 + 1.09373i
\(980\) 33.7730i 1.07884i
\(981\) −25.0660 + 9.19192i −0.800296 + 0.293475i
\(982\) 6.22044 19.1445i 0.198502 0.610927i
\(983\) 6.94207 32.6599i 0.221418 1.04169i −0.717237 0.696829i \(-0.754594\pi\)
0.938655 0.344859i \(-0.112073\pi\)
\(984\) −12.4459 + 14.3523i −0.396760 + 0.457536i
\(985\) −10.8004 + 24.2581i −0.344129 + 0.772926i
\(986\) 0.803323 0.892181i 0.0255830 0.0284128i
\(987\) −5.36177 + 62.1499i −0.170667 + 1.97825i
\(988\) 2.69189 1.19851i 0.0856404 0.0381295i
\(989\) −2.05226 −0.0652582
\(990\) −7.44962 2.73037i −0.236765 0.0867769i
\(991\) 0.780068 0.0247797 0.0123898 0.999923i \(-0.496056\pi\)
0.0123898 + 0.999923i \(0.496056\pi\)
\(992\) −9.04296 + 4.02619i −0.287114 + 0.127832i
\(993\) 22.6146 10.5786i 0.717653 0.335703i
\(994\) 23.9632 26.6139i 0.760068 0.844141i
\(995\) −7.47755 + 16.7949i −0.237054 + 0.532433i
\(996\) −3.75848 10.8727i −0.119092 0.344516i
\(997\) 9.12147 42.9131i 0.288880 1.35907i −0.559124 0.829084i \(-0.688863\pi\)
0.848004 0.529989i \(-0.177804\pi\)
\(998\) 4.99660 15.3779i 0.158164 0.486780i
\(999\) 1.79572 0.100636i 0.0568139 0.00318399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.2.p.a.29.5 80
3.2 odd 2 297.2.t.a.62.6 80
9.2 odd 6 891.2.k.a.161.8 80
9.4 even 3 297.2.t.a.260.6 80
9.5 odd 6 inner 99.2.p.a.95.5 yes 80
9.7 even 3 891.2.k.a.161.13 80
11.8 odd 10 inner 99.2.p.a.74.5 yes 80
33.8 even 10 297.2.t.a.8.6 80
99.41 even 30 inner 99.2.p.a.41.5 yes 80
99.52 odd 30 891.2.k.a.404.8 80
99.74 even 30 891.2.k.a.404.13 80
99.85 odd 30 297.2.t.a.206.6 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.5 80 1.1 even 1 trivial
99.2.p.a.41.5 yes 80 99.41 even 30 inner
99.2.p.a.74.5 yes 80 11.8 odd 10 inner
99.2.p.a.95.5 yes 80 9.5 odd 6 inner
297.2.t.a.8.6 80 33.8 even 10
297.2.t.a.62.6 80 3.2 odd 2
297.2.t.a.206.6 80 99.85 odd 30
297.2.t.a.260.6 80 9.4 even 3
891.2.k.a.161.8 80 9.2 odd 6
891.2.k.a.161.13 80 9.7 even 3
891.2.k.a.404.8 80 99.52 odd 30
891.2.k.a.404.13 80 99.74 even 30