Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [99,2,Mod(2,99)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(99, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("99.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 99.p (of order \(30\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.790518980011\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −1.66735 | − | 1.85178i | 1.13023 | + | 1.31247i | −0.439972 | + | 4.18606i | 1.05074 | + | 0.946093i | 0.545914 | − | 4.28128i | 1.27299 | + | 2.85917i | 4.45339 | − | 3.23558i | −0.445156 | + | 2.96679i | − | 3.52320i | |
2.2 | −1.65440 | − | 1.83740i | −0.642641 | − | 1.60842i | −0.429934 | + | 4.09055i | −1.51955 | − | 1.36821i | −1.89212 | + | 3.84176i | −0.441031 | − | 0.990572i | 4.22672 | − | 3.07089i | −2.17403 | + | 2.06727i | 5.05558i | ||
2.3 | −1.02662 | − | 1.14018i | −0.926210 | + | 1.46360i | −0.0369992 | + | 0.352024i | −2.07594 | − | 1.86918i | 2.61964 | − | 0.446523i | −1.07503 | − | 2.41456i | −2.04313 | + | 1.48442i | −1.28427 | − | 2.71121i | 4.28588i | ||
2.4 | −0.906431 | − | 1.00669i | 1.04844 | − | 1.37868i | 0.0172421 | − | 0.164047i | 2.90247 | + | 2.61340i | −2.33825 | + | 0.194222i | −0.686294 | − | 1.54144i | −2.37263 | + | 1.72381i | −0.801540 | − | 2.89094i | − | 5.29077i | |
2.5 | −0.536887 | − | 0.596273i | 1.73203 | + | 0.00818115i | 0.141763 | − | 1.34878i | −2.14661 | − | 1.93281i | −0.925027 | − | 1.03716i | 0.542079 | + | 1.21753i | −2.17861 | + | 1.58285i | 2.99987 | + | 0.0283400i | 2.31767i | ||
2.6 | 0.0350855 | + | 0.0389664i | −0.778272 | + | 1.54735i | 0.208770 | − | 1.98631i | 1.98818 | + | 1.79017i | −0.0876008 | + | 0.0239631i | 1.00434 | + | 2.25577i | 0.169565 | − | 0.123196i | −1.78858 | − | 2.40852i | 0.140281i | ||
2.7 | 0.148911 | + | 0.165382i | −1.37407 | − | 1.05449i | 0.203880 | − | 1.93979i | 0.397470 | + | 0.357884i | −0.0302197 | − | 0.384271i | −1.30165 | − | 2.92356i | 0.711251 | − | 0.516754i | 0.776111 | + | 2.89787i | 0.119027i | ||
2.8 | 0.780898 | + | 0.867275i | 0.189274 | − | 1.72168i | 0.0666926 | − | 0.634537i | −1.15400 | − | 1.03907i | 1.64097 | − | 1.18030i | 1.76474 | + | 3.96367i | 2.49070 | − | 1.80960i | −2.92835 | − | 0.651738i | − | 1.81224i | |
2.9 | 1.13824 | + | 1.26415i | 0.775984 | + | 1.54850i | −0.0934131 | + | 0.888766i | −1.30752 | − | 1.17729i | −1.07427 | + | 2.74352i | −1.14161 | − | 2.56410i | 1.52254 | − | 1.10619i | −1.79570 | + | 2.40322i | − | 2.99294i | |
2.10 | 1.48406 | + | 1.64822i | −1.61485 | + | 0.626310i | −0.305125 | + | 2.90307i | −0.217939 | − | 0.196233i | −3.42883 | − | 1.73214i | 0.539627 | + | 1.21202i | −1.64909 | + | 1.19814i | 2.21547 | − | 2.02279i | − | 0.650432i | |
29.1 | −2.46099 | + | 1.09570i | −1.72861 | + | 0.109172i | 3.51765 | − | 3.90675i | 0.588502 | − | 1.32180i | 4.13447 | − | 2.16271i | −0.300148 | + | 1.41209i | −2.71136 | + | 8.34470i | 2.97616 | − | 0.377431i | 3.89775i | ||
29.2 | −1.79897 | + | 0.800953i | 0.666085 | + | 1.59885i | 1.25651 | − | 1.39549i | −0.804185 | + | 1.80623i | −2.47887 | − | 2.34279i | 0.0659410 | − | 0.310228i | 0.0743474 | − | 0.228818i | −2.11266 | + | 2.12994i | − | 3.89347i | |
29.3 | −1.65764 | + | 0.738027i | −0.00460448 | − | 1.73204i | 0.864813 | − | 0.960472i | −0.488756 | + | 1.09776i | 1.28593 | + | 2.86770i | 1.00654 | − | 4.73540i | 0.396737 | − | 1.22103i | −2.99996 | + | 0.0159503i | − | 2.18041i | |
29.4 | −1.31398 | + | 0.585020i | 1.60559 | − | 0.649686i | 0.0460231 | − | 0.0511138i | 1.45099 | − | 3.25897i | −1.72962 | + | 1.79297i | −0.449955 | + | 2.11687i | 0.858363 | − | 2.64177i | 2.15582 | − | 2.08625i | 5.13106i | ||
29.5 | −0.571041 | + | 0.254244i | −1.42001 | − | 0.991749i | −1.07681 | + | 1.19592i | −0.518875 | + | 1.16541i | 1.06303 | + | 0.205300i | −1.00684 | + | 4.73680i | 0.697171 | − | 2.14567i | 1.03287 | + | 2.81659i | − | 0.797419i | |
29.6 | 0.337994 | − | 0.150485i | −1.17234 | + | 1.27500i | −1.24667 | + | 1.38456i | −0.966595 | + | 2.17101i | −0.204377 | + | 0.607361i | 0.327889 | − | 1.54259i | −0.441671 | + | 1.35932i | −0.251238 | − | 2.98946i | 0.879247i | ||
29.7 | 0.471493 | − | 0.209922i | 1.16254 | + | 1.28394i | −1.16002 | + | 1.28834i | 0.661751 | − | 1.48632i | 0.817657 | + | 0.361323i | 0.171735 | − | 0.807949i | −0.595467 | + | 1.83266i | −0.296983 | + | 2.98526i | − | 0.839703i | |
29.8 | 1.05233 | − | 0.468527i | 1.16424 | − | 1.28240i | −0.450383 | + | 0.500201i | −0.381354 | + | 0.856535i | 0.624322 | − | 1.89498i | 0.180225 | − | 0.847891i | −0.951517 | + | 2.92847i | −0.289100 | − | 2.98604i | 1.08003i | ||
29.9 | 1.93906 | − | 0.863327i | −1.27072 | + | 1.17698i | 1.67637 | − | 1.86180i | 1.21148 | − | 2.72104i | −1.44788 | + | 3.37928i | −0.664357 | + | 3.12555i | 0.331430 | − | 1.02004i | 0.229440 | − | 2.99121i | − | 6.32217i | |
29.10 | 2.14162 | − | 0.953512i | −1.25398 | − | 1.19479i | 2.33911 | − | 2.59784i | −1.18835 | + | 2.66909i | −3.82481 | − | 1.36311i | 0.273495 | − | 1.28669i | 1.08356 | − | 3.33484i | 0.144932 | + | 2.99650i | 6.84930i | ||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
11.d | odd | 10 | 1 | inner |
99.p | even | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.2.p.a | ✓ | 80 |
3.b | odd | 2 | 1 | 297.2.t.a | 80 | ||
9.c | even | 3 | 1 | 297.2.t.a | 80 | ||
9.c | even | 3 | 1 | 891.2.k.a | 80 | ||
9.d | odd | 6 | 1 | inner | 99.2.p.a | ✓ | 80 |
9.d | odd | 6 | 1 | 891.2.k.a | 80 | ||
11.d | odd | 10 | 1 | inner | 99.2.p.a | ✓ | 80 |
33.f | even | 10 | 1 | 297.2.t.a | 80 | ||
99.o | odd | 30 | 1 | 297.2.t.a | 80 | ||
99.o | odd | 30 | 1 | 891.2.k.a | 80 | ||
99.p | even | 30 | 1 | inner | 99.2.p.a | ✓ | 80 |
99.p | even | 30 | 1 | 891.2.k.a | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
99.2.p.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
99.2.p.a | ✓ | 80 | 9.d | odd | 6 | 1 | inner |
99.2.p.a | ✓ | 80 | 11.d | odd | 10 | 1 | inner |
99.2.p.a | ✓ | 80 | 99.p | even | 30 | 1 | inner |
297.2.t.a | 80 | 3.b | odd | 2 | 1 | ||
297.2.t.a | 80 | 9.c | even | 3 | 1 | ||
297.2.t.a | 80 | 33.f | even | 10 | 1 | ||
297.2.t.a | 80 | 99.o | odd | 30 | 1 | ||
891.2.k.a | 80 | 9.c | even | 3 | 1 | ||
891.2.k.a | 80 | 9.d | odd | 6 | 1 | ||
891.2.k.a | 80 | 99.o | odd | 30 | 1 | ||
891.2.k.a | 80 | 99.p | even | 30 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(99, [\chi])\).