Properties

Label 99.2.m.b
Level 99
Weight 2
Character orbit 99.m
Analytic conductor 0.791
Analytic rank 0
Dimension 72
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 99.m (of order \(15\), degree \(8\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 72q - q^{2} - 12q^{3} + 11q^{4} - 8q^{5} - 7q^{6} - 2q^{7} + 6q^{8} - 22q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 72q - q^{2} - 12q^{3} + 11q^{4} - 8q^{5} - 7q^{6} - 2q^{7} + 6q^{8} - 22q^{9} - 8q^{10} - 2q^{11} - 16q^{12} - 11q^{13} - 10q^{14} - 20q^{15} - 9q^{16} - 20q^{17} - 21q^{18} + 8q^{19} - 45q^{20} - 16q^{21} - 16q^{22} + 20q^{23} + 36q^{24} + 11q^{25} - 12q^{26} + 27q^{27} - 54q^{28} - 23q^{29} - 6q^{30} + 3q^{31} + 18q^{32} + 28q^{33} + 8q^{34} + 18q^{35} + 75q^{36} - 42q^{37} - q^{38} - 11q^{39} - 25q^{40} + 10q^{41} + 61q^{42} - 8q^{43} + 38q^{44} + 40q^{45} - 18q^{46} - 34q^{47} - 50q^{48} + q^{49} + 42q^{51} - 27q^{52} + 4q^{53} + 34q^{54} + 18q^{55} + 114q^{56} - 21q^{57} + q^{58} - 16q^{59} - 63q^{60} - 3q^{61} + 184q^{62} - 10q^{63} + 26q^{64} + 84q^{65} + 93q^{66} + 10q^{67} - 23q^{68} + 42q^{69} - 46q^{70} - 48q^{71} + 2q^{72} - 40q^{73} + 68q^{74} + 28q^{75} + 16q^{76} - 26q^{77} - 64q^{78} + 19q^{79} - 56q^{80} + 14q^{81} + 94q^{82} + 7q^{83} - 15q^{84} + 25q^{85} - 77q^{86} - 120q^{87} + 18q^{88} - 56q^{89} - 64q^{90} + 20q^{91} + 50q^{92} - 53q^{93} - 63q^{94} - 77q^{95} - 97q^{96} - 33q^{97} - 328q^{98} - 182q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −0.231548 + 2.20304i −0.679127 + 1.59336i −2.84345 0.604395i 0.0650661 + 0.619063i −3.35297 1.86508i 1.72584 1.91674i 0.620850 1.91078i −2.07757 2.16418i −1.37888
4.2 −0.161615 + 1.53767i 1.18421 1.26398i −0.382004 0.0811974i −0.0618842 0.588789i 1.75219 + 2.02520i 0.483079 0.536514i −0.768973 + 2.36665i −0.195290 2.99364i 0.915362
4.3 −0.150377 + 1.43074i −1.39014 1.03320i −0.0681222 0.0144798i 0.364652 + 3.46943i 1.68730 1.83357i −0.226061 + 0.251066i −0.858159 + 2.64114i 0.864983 + 2.87260i −5.01870
4.4 −0.0603978 + 0.574647i 0.641057 + 1.60905i 1.62972 + 0.346409i −0.314048 2.98797i −0.963355 + 0.271198i −0.779082 + 0.865259i −0.654602 + 2.01466i −2.17809 + 2.06299i 1.73599
4.5 0.0512706 0.487807i −1.72269 0.179809i 1.72097 + 0.365803i −0.178553 1.69882i −0.176036 + 0.831122i 2.28209 2.53451i 0.569818 1.75372i 2.93534 + 0.619512i −0.837851
4.6 0.0694404 0.660681i −0.106925 1.72875i 1.52462 + 0.324067i −0.116719 1.11051i −1.14958 0.0494014i −2.61265 + 2.90164i 0.730548 2.24840i −2.97713 + 0.369694i −0.741796
4.7 0.122179 1.16246i −0.613763 + 1.61966i 0.619915 + 0.131767i 0.331034 + 3.14958i 1.80780 + 0.911362i 0.166529 0.184949i 0.951310 2.92783i −2.24659 1.98817i 3.70170
4.8 0.209960 1.99763i 1.72741 + 0.126717i −1.99016 0.423021i −0.000569867 0.00542192i 0.615820 3.42412i −2.56130 + 2.84461i −0.0214877 + 0.0661323i 2.96789 + 0.437784i −0.0109507
4.9 0.255617 2.43204i −0.195654 1.72096i −3.89317 0.827519i 0.313886 + 2.98642i −4.23546 + 0.0359288i 2.60423 2.89229i −1.49636 + 4.60531i −2.92344 + 0.673427i 7.34333
16.1 −2.27811 0.484227i 1.65119 0.523037i 3.12821 + 1.39277i 0.310092 0.0659121i −4.01486 + 0.391985i 0.148273 + 1.41072i −2.68358 1.94973i 2.45286 1.72727i −0.738340
16.2 −2.09212 0.444695i −1.47961 0.900424i 2.35214 + 1.04724i −1.63936 + 0.348457i 2.69511 + 2.54177i 0.135431 + 1.28854i −0.994512 0.722555i 1.37847 + 2.66455i 3.58471
16.3 −0.984579 0.209279i −1.59971 + 0.664019i −0.901493 0.401371i 3.90391 0.829803i 1.71401 0.318993i −0.288110 2.74118i 2.43227 + 1.76714i 2.11816 2.12448i −4.01737
16.4 −0.662860 0.140895i 0.607840 1.62189i −1.40756 0.626686i −0.284440 + 0.0604596i −0.631430 + 0.989445i −0.350744 3.33711i 1.94121 + 1.41037i −2.26106 1.97170i 0.197063
16.5 −0.278917 0.0592857i −1.04736 + 1.37950i −1.75281 0.780402i −2.64954 + 0.563177i 0.373912 0.322674i 0.425779 + 4.05102i 0.904002 + 0.656796i −0.806061 2.88968i 0.772391
16.6 1.42554 + 0.303007i −1.06518 1.36579i 0.113254 + 0.0504238i 2.94034 0.624989i −1.10462 2.26974i 0.172491 + 1.64114i −2.21193 1.60706i −0.730763 + 2.90964i 4.38094
16.7 1.45109 + 0.308439i 0.266086 + 1.71149i 0.183441 + 0.0816732i 0.0707467 0.0150377i −0.141775 + 2.56560i −0.203853 1.93954i −2.15937 1.56887i −2.85840 + 0.910807i 0.107298
16.8 1.85327 + 0.393925i 0.886115 1.48822i 1.45235 + 0.646630i −3.43625 + 0.730397i 2.22846 2.40902i 0.358742 + 3.41320i −0.628765 0.456825i −1.42960 2.63747i −6.65603
16.9 2.54483 + 0.540921i −1.71102 + 0.269100i 4.35649 + 1.93963i −2.00724 + 0.426651i −4.49982 0.240711i −0.333407 3.17215i 5.82773 + 4.23409i 2.85517 0.920871i −5.33887
25.1 −0.231548 2.20304i −0.679127 1.59336i −2.84345 + 0.604395i 0.0650661 0.619063i −3.35297 + 1.86508i 1.72584 + 1.91674i 0.620850 + 1.91078i −2.07757 + 2.16418i −1.37888
25.2 −0.161615 1.53767i 1.18421 + 1.26398i −0.382004 + 0.0811974i −0.0618842 + 0.588789i 1.75219 2.02520i 0.483079 + 0.536514i −0.768973 2.36665i −0.195290 + 2.99364i 0.915362
See all 72 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 97.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
11.c even 5 1 inner
99.m even 15 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 99.2.m.b 72
3.b odd 2 1 297.2.n.b 72
9.c even 3 1 inner 99.2.m.b 72
9.c even 3 1 891.2.f.f 36
9.d odd 6 1 297.2.n.b 72
9.d odd 6 1 891.2.f.e 36
11.c even 5 1 inner 99.2.m.b 72
11.c even 5 1 1089.2.e.p 36
11.d odd 10 1 1089.2.e.o 36
33.h odd 10 1 297.2.n.b 72
99.m even 15 1 inner 99.2.m.b 72
99.m even 15 1 891.2.f.f 36
99.m even 15 1 1089.2.e.p 36
99.m even 15 1 9801.2.a.cm 18
99.n odd 30 1 297.2.n.b 72
99.n odd 30 1 891.2.f.e 36
99.n odd 30 1 9801.2.a.cp 18
99.o odd 30 1 1089.2.e.o 36
99.o odd 30 1 9801.2.a.co 18
99.p even 30 1 9801.2.a.cn 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.m.b 72 1.a even 1 1 trivial
99.2.m.b 72 9.c even 3 1 inner
99.2.m.b 72 11.c even 5 1 inner
99.2.m.b 72 99.m even 15 1 inner
297.2.n.b 72 3.b odd 2 1
297.2.n.b 72 9.d odd 6 1
297.2.n.b 72 33.h odd 10 1
297.2.n.b 72 99.n odd 30 1
891.2.f.e 36 9.d odd 6 1
891.2.f.e 36 99.n odd 30 1
891.2.f.f 36 9.c even 3 1
891.2.f.f 36 99.m even 15 1
1089.2.e.o 36 11.d odd 10 1
1089.2.e.o 36 99.o odd 30 1
1089.2.e.p 36 11.c even 5 1
1089.2.e.p 36 99.m even 15 1
9801.2.a.cm 18 99.m even 15 1
9801.2.a.cn 18 99.p even 30 1
9801.2.a.co 18 99.o odd 30 1
9801.2.a.cp 18 99.n odd 30 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{72} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(99, [\chi])\).

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database