Properties

Label 99.2.m
Level $99$
Weight $2$
Character orbit 99.m
Rep. character $\chi_{99}(4,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $80$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.m (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 99 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(99, [\chi])\).

Total New Old
Modular forms 112 112 0
Cusp forms 80 80 0
Eisenstein series 32 32 0

Trace form

\( 80 q - 5 q^{2} - 9 q^{3} + 5 q^{4} - 2 q^{5} - 7 q^{6} - 3 q^{7} - 8 q^{8} - 25 q^{9} - 40 q^{10} - q^{11} + 2 q^{12} - 3 q^{13} - 11 q^{14} - 8 q^{15} + 5 q^{16} - 8 q^{17} - 24 q^{18} + 6 q^{19} - 21 q^{20}+ \cdots - 185 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(99, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
99.2.m.a 99.m 99.m $8$ $0.791$ \(\Q(\zeta_{15})\) None 99.2.m.a \(-4\) \(3\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{15}]$ \(q+(1-2\zeta_{15}^{2}+\zeta_{15}^{3}-\zeta_{15}^{4}+\zeta_{15}^{5}+\cdots)q^{2}+\cdots\)
99.2.m.b 99.m 99.m $72$ $0.791$ None 99.2.m.b \(-1\) \(-12\) \(-8\) \(-2\) $\mathrm{SU}(2)[C_{15}]$