Properties

Label 99.2.g.a.65.2
Level $99$
Weight $2$
Character 99.65
Analytic conductor $0.791$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(32,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 65.2
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 99.65
Dual form 99.2.g.a.32.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18614 - 1.26217i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-0.813859 + 0.469882i) q^{5} +(-0.186141 - 2.99422i) q^{9} +(-2.87228 - 1.65831i) q^{11} +(3.37228 + 0.792287i) q^{12} +(-0.372281 + 1.58457i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(-1.62772 - 0.939764i) q^{20} +(-2.87228 + 1.65831i) q^{23} +(-2.05842 + 3.56529i) q^{25} +(-4.00000 - 3.31662i) q^{27} +(-3.05842 - 5.29734i) q^{31} +(-5.50000 + 1.65831i) q^{33} +(5.00000 - 3.31662i) q^{36} +12.1168 q^{37} -6.63325i q^{44} +(1.55842 + 2.34941i) q^{45} +(11.8723 + 6.85446i) q^{47} +(2.00000 + 6.63325i) q^{48} +(-3.50000 - 6.06218i) q^{49} +11.8294i q^{53} +3.11684 q^{55} +(12.6861 - 7.32435i) q^{59} +(-3.11684 + 0.939764i) q^{60} -8.00000 q^{64} +(-7.55842 - 13.0916i) q^{67} +(-1.31386 + 5.59230i) q^{69} -10.8896i q^{71} +(2.05842 + 6.82701i) q^{75} -3.75906i q^{80} +(-8.93070 + 1.11469i) q^{81} +16.5831i q^{89} +(-5.74456 - 3.31662i) q^{92} +(-10.3139 - 2.42315i) q^{93} +(-0.0584220 + 0.101190i) q^{97} +(-4.43070 + 8.90892i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 4 q^{4} - 9 q^{5} + 5 q^{9} + 2 q^{12} + 10 q^{15} - 8 q^{16} - 18 q^{20} + 9 q^{25} - 16 q^{27} + 5 q^{31} - 22 q^{33} + 20 q^{36} + 14 q^{37} - 11 q^{45} + 36 q^{47} + 8 q^{48} - 14 q^{49}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 1.18614 1.26217i 0.684819 0.728714i
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) −0.813859 + 0.469882i −0.363969 + 0.210138i −0.670820 0.741620i \(-0.734058\pi\)
0.306851 + 0.951757i \(0.400725\pi\)
\(6\) 0 0
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 0 0
\(9\) −0.186141 2.99422i −0.0620469 0.998073i
\(10\) 0 0
\(11\) −2.87228 1.65831i −0.866025 0.500000i
\(12\) 3.37228 + 0.792287i 0.973494 + 0.228714i
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0 0
\(15\) −0.372281 + 1.58457i −0.0961226 + 0.409135i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −1.62772 0.939764i −0.363969 0.210138i
\(21\) 0 0
\(22\) 0 0
\(23\) −2.87228 + 1.65831i −0.598912 + 0.345782i −0.768613 0.639713i \(-0.779053\pi\)
0.169701 + 0.985496i \(0.445720\pi\)
\(24\) 0 0
\(25\) −2.05842 + 3.56529i −0.411684 + 0.713058i
\(26\) 0 0
\(27\) −4.00000 3.31662i −0.769800 0.638285i
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) −3.05842 5.29734i −0.549309 0.951431i −0.998322 0.0579057i \(-0.981558\pi\)
0.449013 0.893525i \(-0.351776\pi\)
\(32\) 0 0
\(33\) −5.50000 + 1.65831i −0.957427 + 0.288675i
\(34\) 0 0
\(35\) 0 0
\(36\) 5.00000 3.31662i 0.833333 0.552771i
\(37\) 12.1168 1.99200 0.995998 0.0893706i \(-0.0284856\pi\)
0.995998 + 0.0893706i \(0.0284856\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 6.63325i 1.00000i
\(45\) 1.55842 + 2.34941i 0.232316 + 0.350229i
\(46\) 0 0
\(47\) 11.8723 + 6.85446i 1.73175 + 0.999826i 0.875190 + 0.483779i \(0.160736\pi\)
0.856560 + 0.516047i \(0.172597\pi\)
\(48\) 2.00000 + 6.63325i 0.288675 + 0.957427i
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.8294i 1.62489i 0.583036 + 0.812447i \(0.301865\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 0 0
\(55\) 3.11684 0.420275
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.6861 7.32435i 1.65159 0.953549i 0.675178 0.737655i \(-0.264067\pi\)
0.976417 0.215894i \(-0.0692665\pi\)
\(60\) −3.11684 + 0.939764i −0.402383 + 0.121323i
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −7.55842 13.0916i −0.923408 1.59939i −0.794101 0.607785i \(-0.792058\pi\)
−0.129307 0.991605i \(-0.541275\pi\)
\(68\) 0 0
\(69\) −1.31386 + 5.59230i −0.158170 + 0.673233i
\(70\) 0 0
\(71\) 10.8896i 1.29236i −0.763184 0.646181i \(-0.776365\pi\)
0.763184 0.646181i \(-0.223635\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 2.05842 + 6.82701i 0.237686 + 0.788316i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 3.75906i 0.420275i
\(81\) −8.93070 + 1.11469i −0.992300 + 0.123855i
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.5831i 1.75781i 0.476999 + 0.878904i \(0.341725\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.74456 3.31662i −0.598912 0.345782i
\(93\) −10.3139 2.42315i −1.06950 0.251269i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.0584220 + 0.101190i −0.00593185 + 0.0102743i −0.868976 0.494854i \(-0.835222\pi\)
0.863044 + 0.505128i \(0.168555\pi\)
\(98\) 0 0
\(99\) −4.43070 + 8.90892i −0.445302 + 0.895380i
\(100\) −8.23369 −0.823369
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 7.61684 + 13.1928i 0.750510 + 1.29992i 0.947576 + 0.319531i \(0.103525\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 1.74456 10.2448i 0.167871 0.985809i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 14.3723 15.2935i 1.36416 1.45160i
\(112\) 0 0
\(113\) −14.3139 + 8.26411i −1.34653 + 0.777422i −0.987757 0.156001i \(-0.950140\pi\)
−0.358778 + 0.933423i \(0.616806\pi\)
\(114\) 0 0
\(115\) 1.55842 2.69927i 0.145324 0.251708i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 6.11684 10.5947i 0.549309 0.951431i
\(125\) 8.56768i 0.766317i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) −8.37228 7.86797i −0.728714 0.684819i
\(133\) 0 0
\(134\) 0 0
\(135\) 4.81386 + 0.819738i 0.414311 + 0.0705519i
\(136\) 0 0
\(137\) −7.80298 4.50506i −0.666654 0.384893i 0.128154 0.991754i \(-0.459095\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(140\) 0 0
\(141\) 22.7337 6.85446i 1.91452 0.577250i
\(142\) 0 0
\(143\) 0 0
\(144\) 10.7446 + 5.34363i 0.895380 + 0.445302i
\(145\) 0 0
\(146\) 0 0
\(147\) −11.8030 2.77300i −0.973494 0.228714i
\(148\) 12.1168 + 20.9870i 0.995998 + 1.72512i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.97825 + 2.87419i 0.399863 + 0.230861i
\(156\) 0 0
\(157\) 1.44158 + 2.49689i 0.115050 + 0.199273i 0.917800 0.397043i \(-0.129964\pi\)
−0.802749 + 0.596316i \(0.796630\pi\)
\(158\) 0 0
\(159\) 14.9307 + 14.0313i 1.18408 + 1.11276i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.23369 −0.723238 −0.361619 0.932326i \(-0.617776\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) 0 0
\(165\) 3.69702 3.93398i 0.287812 0.306260i
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 11.4891 6.63325i 0.866025 0.500000i
\(177\) 5.80298 24.6998i 0.436179 1.85655i
\(178\) 0 0
\(179\) 26.4781i 1.97907i −0.144308 0.989533i \(-0.546095\pi\)
0.144308 0.989533i \(-0.453905\pi\)
\(180\) −2.51087 + 5.04868i −0.187150 + 0.376306i
\(181\) 21.1168 1.56960 0.784801 0.619747i \(-0.212765\pi\)
0.784801 + 0.619747i \(0.212765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.86141 + 5.69349i −0.725025 + 0.418593i
\(186\) 0 0
\(187\) 0 0
\(188\) 27.4179i 1.99965i
\(189\) 0 0
\(190\) 0 0
\(191\) −21.3030 12.2993i −1.54143 0.889945i −0.998749 0.0500060i \(-0.984076\pi\)
−0.542681 0.839939i \(-0.682591\pi\)
\(192\) −9.48913 + 10.0974i −0.684819 + 0.728714i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 7.00000 12.1244i 0.500000 0.866025i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −27.2337 −1.93054 −0.965272 0.261245i \(-0.915867\pi\)
−0.965272 + 0.261245i \(0.915867\pi\)
\(200\) 0 0
\(201\) −25.4891 5.98844i −1.79786 0.422392i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.50000 + 8.29156i 0.382276 + 0.576303i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) −20.4891 + 11.8294i −1.40720 + 0.812447i
\(213\) −13.7446 12.9166i −0.941762 0.885034i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 3.11684 + 5.39853i 0.210138 + 0.363969i
\(221\) 0 0
\(222\) 0 0
\(223\) 0.500000 0.866025i 0.0334825 0.0579934i −0.848799 0.528716i \(-0.822674\pi\)
0.882281 + 0.470723i \(0.156007\pi\)
\(224\) 0 0
\(225\) 11.0584 + 5.49972i 0.737228 + 0.366648i
\(226\) 0 0
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) −2.50000 4.33013i −0.165205 0.286143i 0.771523 0.636201i \(-0.219495\pi\)
−0.936728 + 0.350058i \(0.886162\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.8832 −0.840404
\(236\) 25.3723 + 14.6487i 1.65159 + 0.953549i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) −4.74456 4.45877i −0.306260 0.287812i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) −9.18614 + 12.5942i −0.589291 + 0.807921i
\(244\) 0 0
\(245\) 5.69702 + 3.28917i 0.363969 + 0.210138i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.5831i 1.04672i 0.852112 + 0.523359i \(0.175321\pi\)
−0.852112 + 0.523359i \(0.824679\pi\)
\(252\) 0 0
\(253\) 11.0000 0.691564
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 22.9783 13.2665i 1.43334 0.827541i 0.435970 0.899961i \(-0.356405\pi\)
0.997374 + 0.0724199i \(0.0230722\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) −5.55842 9.62747i −0.341451 0.591411i
\(266\) 0 0
\(267\) 20.9307 + 19.6699i 1.28094 + 1.20378i
\(268\) 15.1168 26.1831i 0.923408 1.59939i
\(269\) 19.3475i 1.17964i −0.807535 0.589819i \(-0.799199\pi\)
0.807535 0.589819i \(-0.200801\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.8247 6.82701i 0.713058 0.411684i
\(276\) −11.0000 + 3.31662i −0.662122 + 0.199637i
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) −15.2921 + 10.1436i −0.915515 + 0.607284i
\(280\) 0 0
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 18.8614 10.8896i 1.11922 0.646181i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0.0584220 + 0.193764i 0.00342476 + 0.0113586i
\(292\) 0 0
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) −6.88316 + 11.9220i −0.400753 + 0.694124i
\(296\) 0 0
\(297\) 5.98913 + 16.1595i 0.347524 + 0.937671i
\(298\) 0 0
\(299\) 0 0
\(300\) −9.76631 + 10.3923i −0.563858 + 0.600000i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 25.6861 + 6.03473i 1.46123 + 0.343304i
\(310\) 0 0
\(311\) 5.36141 3.09541i 0.304017 0.175525i −0.340229 0.940343i \(-0.610505\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(312\) 0 0
\(313\) 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i \(-0.652902\pi\)
0.999065 0.0432311i \(-0.0137652\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.1060 + 11.6082i 1.12926 + 0.651981i 0.943750 0.330661i \(-0.107272\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 6.51087 3.75906i 0.363969 0.210138i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −10.8614 14.3537i −0.603411 0.797430i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.44158 7.69304i 0.244131 0.422848i −0.717756 0.696295i \(-0.754831\pi\)
0.961887 + 0.273447i \(0.0881639\pi\)
\(332\) 0 0
\(333\) −2.25544 36.2805i −0.123597 1.98816i
\(334\) 0 0
\(335\) 12.3030 + 7.10313i 0.672184 + 0.388086i
\(336\) 0 0
\(337\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(338\) 0 0
\(339\) −6.54755 + 27.8689i −0.355614 + 1.51363i
\(340\) 0 0
\(341\) 20.2873i 1.09862i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.55842 5.16870i −0.0839026 0.278274i
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −31.5951 18.2414i −1.68164 0.970894i −0.960574 0.278024i \(-0.910320\pi\)
−0.721063 0.692869i \(-0.756346\pi\)
\(354\) 0 0
\(355\) 5.11684 + 8.86263i 0.271574 + 0.470380i
\(356\) −28.7228 + 16.5831i −1.52231 + 0.878904i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 18.5475 + 4.35758i 0.973494 + 0.228714i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −13.5584 + 23.4839i −0.707744 + 1.22585i 0.257948 + 0.966159i \(0.416954\pi\)
−0.965692 + 0.259690i \(0.916380\pi\)
\(368\) 13.2665i 0.691564i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −6.11684 20.2873i −0.317144 1.05185i
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −10.8139 10.1625i −0.558425 0.524788i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −27.8139 + 16.0583i −1.42122 + 0.820543i −0.996403 0.0847358i \(-0.972995\pi\)
−0.424818 + 0.905279i \(0.639662\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −0.233688 −0.0118637
\(389\) 4.54755 + 2.62553i 0.230570 + 0.133120i 0.610835 0.791758i \(-0.290834\pi\)
−0.380265 + 0.924878i \(0.624167\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −19.8614 + 1.23472i −0.998073 + 0.0620469i
\(397\) 33.4674 1.67968 0.839840 0.542834i \(-0.182649\pi\)
0.839840 + 0.542834i \(0.182649\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −8.23369 14.2612i −0.411684 0.713058i
\(401\) −33.9891 + 19.6236i −1.69734 + 0.979957i −0.749064 + 0.662497i \(0.769497\pi\)
−0.948272 + 0.317460i \(0.897170\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 6.74456 5.10358i 0.335140 0.253599i
\(406\) 0 0
\(407\) −34.8030 20.0935i −1.72512 0.995998i
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) −14.9416 + 4.50506i −0.737014 + 0.222218i
\(412\) −15.2337 + 26.3855i −0.750510 + 1.29992i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.3614 18.6839i 1.58096 0.912767i 0.586238 0.810139i \(-0.300608\pi\)
0.994720 0.102628i \(-0.0327251\pi\)
\(420\) 0 0
\(421\) −19.7337 + 34.1798i −0.961761 + 1.66582i −0.243685 + 0.969854i \(0.578356\pi\)
−0.718076 + 0.695965i \(0.754977\pi\)
\(422\) 0 0
\(423\) 18.3139 36.8241i 0.890450 1.79045i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 19.4891 7.22316i 0.937671 0.347524i
\(433\) 29.0000 1.39365 0.696826 0.717241i \(-0.254595\pi\)
0.696826 + 0.717241i \(0.254595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) −17.5000 + 11.6082i −0.833333 + 0.552771i
\(442\) 0 0
\(443\) 31.5475 + 18.2140i 1.49887 + 0.865373i 0.999999 0.00130426i \(-0.000415158\pi\)
0.498870 + 0.866677i \(0.333748\pi\)
\(444\) 40.8614 + 9.60002i 1.93920 + 0.455597i
\(445\) −7.79211 13.4963i −0.369381 0.639787i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 42.0666i 1.98524i −0.121253 0.992622i \(-0.538691\pi\)
0.121253 0.992622i \(-0.461309\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −28.6277 16.5282i −1.34653 0.777422i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 6.23369 0.290647
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) 15.5000 + 26.8468i 0.720346 + 1.24768i 0.960861 + 0.277031i \(0.0893503\pi\)
−0.240515 + 0.970645i \(0.577316\pi\)
\(464\) 0 0
\(465\) 9.53262 2.87419i 0.442065 0.133288i
\(466\) 0 0
\(467\) 18.9600i 0.877363i 0.898642 + 0.438682i \(0.144554\pi\)
−0.898642 + 0.438682i \(0.855446\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.86141 + 1.14214i 0.224002 + 0.0526272i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 35.4198 2.20193i 1.62176 0.100820i
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0.109806i 0.00498602i
\(486\) 0 0
\(487\) 30.1168 1.36472 0.682362 0.731014i \(-0.260953\pi\)
0.682362 + 0.731014i \(0.260953\pi\)
\(488\) 0 0
\(489\) −10.9525 + 11.6545i −0.495287 + 0.527034i
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.580171 9.33252i −0.0260768 0.419465i
\(496\) 24.4674 1.09862
\(497\) 0 0
\(498\) 0 0
\(499\) −1.38316 2.39570i −0.0619186 0.107246i 0.833404 0.552664i \(-0.186389\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 14.8397 8.56768i 0.663650 0.383158i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.50000 + 21.5581i 0.288675 + 0.957427i
\(508\) 0 0
\(509\) −2.87228 + 1.65831i −0.127312 + 0.0735034i −0.562303 0.826931i \(-0.690085\pi\)
0.434992 + 0.900434i \(0.356751\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.3981 7.15803i −0.546325 0.315421i
\(516\) 0 0
\(517\) −22.7337 39.3759i −0.999826 1.73175i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.5484i 1.51359i 0.653650 + 0.756797i \(0.273237\pi\)
−0.653650 + 0.756797i \(0.726763\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 5.25544 22.3692i 0.228714 0.973494i
\(529\) −6.00000 + 10.3923i −0.260870 + 0.451839i
\(530\) 0 0
\(531\) −24.2921 36.6217i −1.05419 1.58925i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −33.4198 31.4067i −1.44217 1.35530i
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 3.39403 + 9.15759i 0.146056 + 0.394080i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 25.0475 26.6530i 1.07489 1.14379i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 18.0202i 0.769786i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.51087 + 19.2000i −0.191476 + 0.814996i
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 34.6060 + 32.5214i 1.45717 + 1.36940i
\(565\) 7.76631 13.4516i 0.326731 0.565915i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0 0
\(573\) −40.7921 + 12.2993i −1.70411 + 0.513810i
\(574\) 0 0
\(575\) 13.6540i 0.569412i
\(576\) 1.48913 + 23.9538i 0.0620469 + 0.998073i
\(577\) −14.8832 −0.619594 −0.309797 0.950803i \(-0.600261\pi\)
−0.309797 + 0.950803i \(0.600261\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 19.6168 33.9774i 0.812447 1.40720i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 38.8723 + 22.4429i 1.60443 + 0.926319i 0.990586 + 0.136892i \(0.0437113\pi\)
0.613845 + 0.789427i \(0.289622\pi\)
\(588\) −7.00000 23.2164i −0.288675 0.957427i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −24.2337 + 41.9740i −0.995998 + 1.72512i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −32.3030 + 34.3735i −1.32207 + 1.40681i
\(598\) 0 0
\(599\) −28.7228 + 16.5831i −1.17358 + 0.677568i −0.954521 0.298143i \(-0.903633\pi\)
−0.219061 + 0.975711i \(0.570299\pi\)
\(600\) 0 0
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) −37.7921 + 25.0684i −1.53901 + 1.02087i
\(604\) 0 0
\(605\) −8.95245 5.16870i −0.363969 0.210138i
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.0109 11.5533i 0.805607 0.465118i −0.0398207 0.999207i \(-0.512679\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) 21.2921 36.8790i 0.855802 1.48229i −0.0200967 0.999798i \(-0.506397\pi\)
0.875899 0.482495i \(-0.160269\pi\)
\(620\) 11.4968i 0.461722i
\(621\) 16.9891 + 2.89303i 0.681750 + 0.116093i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.26631 10.8536i −0.250652 0.434143i
\(626\) 0 0
\(627\) 0 0
\(628\) −2.88316 + 4.99377i −0.115050 + 0.199273i
\(629\) 0 0
\(630\) 0 0
\(631\) −39.5842 −1.57582 −0.787911 0.615789i \(-0.788838\pi\)
−0.787911 + 0.615789i \(0.788838\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −9.37228 + 39.8921i −0.371635 + 1.58182i
\(637\) 0 0
\(638\) 0 0
\(639\) −32.6060 + 2.02700i −1.28987 + 0.0801871i
\(640\) 0 0
\(641\) 20.1060 + 11.6082i 0.794138 + 0.458496i 0.841417 0.540386i \(-0.181722\pi\)
−0.0472793 + 0.998882i \(0.515055\pi\)
\(642\) 0 0
\(643\) −20.5000 35.5070i −0.808441 1.40026i −0.913943 0.405842i \(-0.866978\pi\)
0.105502 0.994419i \(-0.466355\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 43.1161i 1.69507i −0.530740 0.847535i \(-0.678086\pi\)
0.530740 0.847535i \(-0.321914\pi\)
\(648\) 0 0
\(649\) −48.5842 −1.90710
\(650\) 0 0
\(651\) 0 0
\(652\) −9.23369 15.9932i −0.361619 0.626343i
\(653\) 39.6861 22.9128i 1.55304 0.896647i 0.555147 0.831753i \(-0.312662\pi\)
0.997892 0.0648948i \(-0.0206712\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 10.5109 + 2.46943i 0.409135 + 0.0961226i
\(661\) 18.2921 + 31.6829i 0.711481 + 1.23232i 0.964301 + 0.264807i \(0.0853084\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.500000 1.65831i −0.0193311 0.0641141i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 20.0584 7.43415i 0.772049 0.286141i
\(676\) −26.0000 −1.00000
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.43176i 0.0930489i −0.998917 0.0465244i \(-0.985185\pi\)
0.998917 0.0465244i \(-0.0148145\pi\)
\(684\) 0 0
\(685\) 8.46738 0.323522
\(686\) 0 0
\(687\) −8.43070 1.98072i −0.321651 0.0755691i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 25.7921 44.6732i 0.981178 1.69945i 0.323355 0.946278i \(-0.395189\pi\)
0.657823 0.753173i \(-0.271478\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 22.9783 + 13.2665i 0.866025 + 0.500000i
\(705\) −15.2812 + 16.2607i −0.575525 + 0.612414i
\(706\) 0 0
\(707\) 0 0
\(708\) 48.5842 14.6487i 1.82591 0.550532i
\(709\) 16.7921 29.0848i 0.630641 1.09230i −0.356780 0.934188i \(-0.616125\pi\)
0.987421 0.158114i \(-0.0505412\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 17.5693 + 10.1436i 0.657975 + 0.379882i
\(714\) 0 0
\(715\) 0 0
\(716\) 45.8614 26.4781i 1.71392 0.989533i
\(717\) 0 0
\(718\) 0 0
\(719\) 35.8757i 1.33794i 0.743290 + 0.668970i \(0.233264\pi\)
−0.743290 + 0.668970i \(0.766736\pi\)
\(720\) −11.2554 + 0.699713i −0.419465 + 0.0260768i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 21.1168 + 36.5754i 0.784801 + 1.35932i
\(725\) 0 0
\(726\) 0 0
\(727\) 8.94158 15.4873i 0.331625 0.574391i −0.651206 0.758901i \(-0.725737\pi\)
0.982831 + 0.184510i \(0.0590699\pi\)
\(728\) 0 0
\(729\) 5.00000 + 26.5330i 0.185185 + 0.982704i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 10.9090 3.28917i 0.402383 0.121323i
\(736\) 0 0
\(737\) 50.1369i 1.84682i
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −19.7228 11.3870i −0.725025 0.418593i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 27.2921 + 47.2713i 0.995903 + 1.72496i 0.576262 + 0.817265i \(0.304511\pi\)
0.419641 + 0.907690i \(0.362156\pi\)
\(752\) −47.4891 + 27.4179i −1.73175 + 0.999826i
\(753\) 20.9307 + 19.6699i 0.762757 + 0.716812i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 15.4674 0.562171 0.281086 0.959683i \(-0.409305\pi\)
0.281086 + 0.959683i \(0.409305\pi\)
\(758\) 0 0
\(759\) 13.0475 13.8839i 0.473596 0.503952i
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 49.1971i 1.77989i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −26.9783 6.33830i −0.973494 0.228714i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) 10.5109 44.7384i 0.378540 1.61121i
\(772\) 0 0
\(773\) 13.2665i 0.477163i −0.971123 0.238581i \(-0.923318\pi\)
0.971123 0.238581i \(-0.0766824\pi\)
\(774\) 0 0
\(775\) 25.1821 0.904567
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −18.0584 + 31.2781i −0.646181 + 1.11922i
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) −2.34648 1.35474i −0.0837496 0.0483528i
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −18.7446 4.40387i −0.664801 0.156189i
\(796\) −27.2337 47.1701i −0.965272 1.67190i
\(797\) −26.6644 + 15.3947i −0.944501 + 0.545308i −0.891368 0.453279i \(-0.850254\pi\)
−0.0531327 + 0.998587i \(0.516921\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 49.6535 3.08679i 1.75442 0.109066i
\(802\) 0 0
\(803\) 0 0
\(804\) −15.1168 50.1369i −0.533130 1.76819i
\(805\) 0 0
\(806\) 0 0
\(807\) −24.4198 22.9489i −0.859619 0.807839i
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.51492 4.33874i 0.263236 0.151980i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) 24.5000 + 42.4352i 0.854016 + 1.47920i 0.877555 + 0.479477i \(0.159174\pi\)
−0.0235383 + 0.999723i \(0.507493\pi\)
\(824\) 0 0
\(825\) 5.40895 23.0226i 0.188316 0.801544i
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) −8.86141 + 17.8178i −0.307955 + 0.619213i
\(829\) −57.5842 −1.99998 −0.999991 0.00416865i \(-0.998673\pi\)
−0.999991 + 0.00416865i \(0.998673\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5.33561 + 31.3330i −0.184426 + 1.08303i
\(838\) 0 0
\(839\) −31.5951 18.2414i −1.09078 0.629764i −0.156999 0.987599i \(-0.550182\pi\)
−0.933785 + 0.357834i \(0.883515\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.2169i 0.420275i
\(846\) 0 0
\(847\) 0 0
\(848\) −40.9783 23.6588i −1.40720 0.812447i
\(849\) 0 0
\(850\) 0 0
\(851\) −34.8030 + 20.0935i −1.19303 + 0.688797i
\(852\) 8.62772 36.7229i 0.295581 1.25811i
\(853\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 13.7921 + 23.8886i 0.470581 + 0.815070i 0.999434 0.0336436i \(-0.0107111\pi\)
−0.528853 + 0.848713i \(0.677378\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 46.4327i 1.58059i 0.612727 + 0.790295i \(0.290072\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −20.1644 + 21.4569i −0.684819 + 0.728714i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.313859 + 0.156093i 0.0106225 + 0.00528294i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −6.23369 + 10.7971i −0.210138 + 0.363969i
\(881\) 57.6550i 1.94245i −0.238171 0.971223i \(-0.576548\pi\)
0.238171 0.971223i \(-0.423452\pi\)
\(882\) 0 0
\(883\) −45.2337 −1.52223 −0.761117 0.648614i \(-0.775349\pi\)
−0.761117 + 0.648614i \(0.775349\pi\)
\(884\) 0 0
\(885\) 6.88316 + 22.8288i 0.231375 + 0.767383i
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 27.5000 + 11.6082i 0.921285 + 0.388889i
\(892\) 2.00000 0.0669650
\(893\) 0 0
\(894\) 0 0
\(895\) 12.4416 + 21.5494i 0.415876 + 0.720319i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.53262 + 24.6535i 0.0510875 + 0.821782i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.1861 + 9.92242i −0.571287 + 0.329832i
\(906\) 0 0
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −42.1277 24.3224i −1.39575 0.805839i −0.401809 0.915723i \(-0.631619\pi\)
−0.993944 + 0.109885i \(0.964952\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 5.00000 8.66025i 0.165205 0.286143i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −24.9416 + 43.2001i −0.820074 + 1.42041i
\(926\) 0 0
\(927\) 38.0842 25.2622i 1.25085 0.829720i
\(928\) 0 0
\(929\) −0.478251 0.276118i −0.0156909 0.00905914i 0.492134 0.870519i \(-0.336217\pi\)
−0.507825 + 0.861460i \(0.669550\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.45245 10.4386i 0.0802897 0.341744i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) −9.50000 31.5079i −0.310021 1.02822i
\(940\) −12.8832 22.3143i −0.420202 0.727812i
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 58.5948i 1.90710i
\(945\) 0 0
\(946\) 0 0
\(947\) 32.6970 + 18.8776i 1.06251 + 0.613441i 0.926126 0.377215i \(-0.123118\pi\)
0.136385 + 0.990656i \(0.456452\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 38.5000 11.6082i 1.24845 0.376421i
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 23.1168 0.748044
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 2.97825 12.6766i 0.0961226 0.409135i
\(961\) −3.20789 + 5.55623i −0.103480 + 0.179233i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 43.1161i 1.38366i −0.722059 0.691831i \(-0.756804\pi\)
0.722059 0.691831i \(-0.243196\pi\)
\(972\) −31.0000 3.31662i −0.994325 0.106381i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 48.8288 28.1913i 1.56217 0.901920i 0.565134 0.824999i \(-0.308824\pi\)
0.997037 0.0769208i \(-0.0245089\pi\)
\(978\) 0 0
\(979\) 27.5000 47.6314i 0.878904 1.52231i
\(980\) 13.1567i 0.420275i
\(981\) 0 0
\(982\) 0 0
\(983\) −22.4525 12.9629i −0.716122 0.413453i 0.0972017 0.995265i \(-0.469011\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) −4.44158 14.7310i −0.140949 0.467476i
\(994\) 0 0
\(995\) 22.1644 12.7966i 0.702658 0.405680i
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) −48.4674 40.1870i −1.53344 1.27146i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.2.g.a.65.2 yes 4
3.2 odd 2 297.2.g.a.197.1 4
9.2 odd 6 891.2.d.a.890.3 4
9.4 even 3 297.2.g.a.98.1 4
9.5 odd 6 inner 99.2.g.a.32.2 4
9.7 even 3 891.2.d.a.890.2 4
11.10 odd 2 CM 99.2.g.a.65.2 yes 4
33.32 even 2 297.2.g.a.197.1 4
99.32 even 6 inner 99.2.g.a.32.2 4
99.43 odd 6 891.2.d.a.890.2 4
99.65 even 6 891.2.d.a.890.3 4
99.76 odd 6 297.2.g.a.98.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.g.a.32.2 4 9.5 odd 6 inner
99.2.g.a.32.2 4 99.32 even 6 inner
99.2.g.a.65.2 yes 4 1.1 even 1 trivial
99.2.g.a.65.2 yes 4 11.10 odd 2 CM
297.2.g.a.98.1 4 9.4 even 3
297.2.g.a.98.1 4 99.76 odd 6
297.2.g.a.197.1 4 3.2 odd 2
297.2.g.a.197.1 4 33.32 even 2
891.2.d.a.890.2 4 9.7 even 3
891.2.d.a.890.2 4 99.43 odd 6
891.2.d.a.890.3 4 9.2 odd 6
891.2.d.a.890.3 4 99.65 even 6