Properties

Label 99.2.f.c.64.1
Level $99$
Weight $2$
Character 99.64
Analytic conductor $0.791$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.484000000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 16x^{4} + 66x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 64.1
Root \(-0.476925 + 1.46782i\) of defining polynomial
Character \(\chi\) \(=\) 99.64
Dual form 99.2.f.c.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.476925 + 1.46782i) q^{2} +(-0.309017 - 0.224514i) q^{4} +(0.476925 + 1.46782i) q^{5} +(-0.190983 - 0.138757i) q^{7} +(-2.02029 + 1.46782i) q^{8} -2.38197 q^{10} +(2.31504 - 2.37499i) q^{11} +(-1.30902 + 4.02874i) q^{13} +(0.294756 - 0.214153i) q^{14} +(-1.42705 - 4.39201i) q^{16} +(-1.83812 - 5.65714i) q^{17} +(3.73607 - 2.71441i) q^{19} +(0.182169 - 0.560659i) q^{20} +(2.38197 + 4.53077i) q^{22} +7.49164 q^{23} +(2.11803 - 1.53884i) q^{25} +(-5.28918 - 3.84281i) q^{26} +(0.0278640 + 0.0857567i) q^{28} +(-1.54336 - 1.12132i) q^{29} +(-0.736068 + 2.26538i) q^{31} +2.13287 q^{32} +9.18034 q^{34} +(0.112587 - 0.346506i) q^{35} +(-5.04508 - 3.66547i) q^{37} +(2.20246 + 6.77846i) q^{38} +(-3.11803 - 2.26538i) q^{40} +(-4.51750 + 3.28216i) q^{41} -10.7082 q^{43} +(-1.24861 + 0.214153i) q^{44} +(-3.57295 + 10.9964i) q^{46} +(-0.771681 + 0.560659i) q^{47} +(-2.14590 - 6.60440i) q^{49} +(1.24861 + 3.84281i) q^{50} +(1.30902 - 0.951057i) q^{52} +(-2.79197 + 8.59279i) q^{53} +(4.59017 + 2.26538i) q^{55} +0.589512 q^{56} +(2.38197 - 1.73060i) q^{58} +(6.83254 + 4.96413i) q^{59} +(1.33688 + 4.11450i) q^{61} +(-2.97414 - 2.16084i) q^{62} +(1.83688 - 5.65334i) q^{64} -6.53779 q^{65} +3.85410 q^{67} +(-0.702099 + 2.16084i) q^{68} +(0.454915 + 0.330515i) q^{70} +(-2.38463 - 7.33912i) q^{71} +(5.23607 + 3.80423i) q^{73} +(7.78639 - 5.65714i) q^{74} -1.76393 q^{76} +(-0.771681 + 0.132354i) q^{77} +(-0.163119 + 0.502029i) q^{79} +(5.76611 - 4.18932i) q^{80} +(-2.66312 - 8.19624i) q^{82} +(1.36119 + 4.18932i) q^{83} +(7.42705 - 5.39607i) q^{85} +(5.10701 - 15.7178i) q^{86} +(-1.19098 + 8.19624i) q^{88} -16.7518 q^{89} +(0.809017 - 0.587785i) q^{91} +(-2.31504 - 1.68198i) q^{92} +(-0.454915 - 1.40008i) q^{94} +(5.76611 + 4.18932i) q^{95} +(-3.95492 + 12.1720i) q^{97} +10.7175 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} - 6 q^{7} - 28 q^{10} - 6 q^{13} + 2 q^{16} + 12 q^{19} + 28 q^{22} + 8 q^{25} + 36 q^{28} + 12 q^{31} - 16 q^{34} - 18 q^{37} - 16 q^{40} - 32 q^{43} - 42 q^{46} - 44 q^{49} + 6 q^{52} - 8 q^{55}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.476925 + 1.46782i −0.337237 + 1.03791i 0.628373 + 0.777912i \(0.283721\pi\)
−0.965610 + 0.259996i \(0.916279\pi\)
\(3\) 0 0
\(4\) −0.309017 0.224514i −0.154508 0.112257i
\(5\) 0.476925 + 1.46782i 0.213287 + 0.656431i 0.999271 + 0.0381834i \(0.0121571\pi\)
−0.785983 + 0.618248i \(0.787843\pi\)
\(6\) 0 0
\(7\) −0.190983 0.138757i −0.0721848 0.0524453i 0.551108 0.834434i \(-0.314205\pi\)
−0.623292 + 0.781989i \(0.714205\pi\)
\(8\) −2.02029 + 1.46782i −0.714279 + 0.518954i
\(9\) 0 0
\(10\) −2.38197 −0.753244
\(11\) 2.31504 2.37499i 0.698012 0.716086i
\(12\) 0 0
\(13\) −1.30902 + 4.02874i −0.363056 + 1.11737i 0.588133 + 0.808764i \(0.299863\pi\)
−0.951189 + 0.308608i \(0.900137\pi\)
\(14\) 0.294756 0.214153i 0.0787768 0.0572347i
\(15\) 0 0
\(16\) −1.42705 4.39201i −0.356763 1.09800i
\(17\) −1.83812 5.65714i −0.445809 1.37206i −0.881594 0.472008i \(-0.843529\pi\)
0.435785 0.900051i \(-0.356471\pi\)
\(18\) 0 0
\(19\) 3.73607 2.71441i 0.857113 0.622729i −0.0699852 0.997548i \(-0.522295\pi\)
0.927098 + 0.374819i \(0.122295\pi\)
\(20\) 0.182169 0.560659i 0.0407343 0.125367i
\(21\) 0 0
\(22\) 2.38197 + 4.53077i 0.507837 + 0.965963i
\(23\) 7.49164 1.56211 0.781057 0.624460i \(-0.214681\pi\)
0.781057 + 0.624460i \(0.214681\pi\)
\(24\) 0 0
\(25\) 2.11803 1.53884i 0.423607 0.307768i
\(26\) −5.28918 3.84281i −1.03729 0.753638i
\(27\) 0 0
\(28\) 0.0278640 + 0.0857567i 0.00526581 + 0.0162065i
\(29\) −1.54336 1.12132i −0.286595 0.208224i 0.435194 0.900337i \(-0.356680\pi\)
−0.721789 + 0.692113i \(0.756680\pi\)
\(30\) 0 0
\(31\) −0.736068 + 2.26538i −0.132202 + 0.406875i −0.995144 0.0984270i \(-0.968619\pi\)
0.862943 + 0.505302i \(0.168619\pi\)
\(32\) 2.13287 0.377042
\(33\) 0 0
\(34\) 9.18034 1.57442
\(35\) 0.112587 0.346506i 0.0190306 0.0585703i
\(36\) 0 0
\(37\) −5.04508 3.66547i −0.829407 0.602599i 0.0899846 0.995943i \(-0.471318\pi\)
−0.919391 + 0.393344i \(0.871318\pi\)
\(38\) 2.20246 + 6.77846i 0.357286 + 1.09961i
\(39\) 0 0
\(40\) −3.11803 2.26538i −0.493004 0.358189i
\(41\) −4.51750 + 3.28216i −0.705515 + 0.512587i −0.881724 0.471766i \(-0.843617\pi\)
0.176209 + 0.984353i \(0.443617\pi\)
\(42\) 0 0
\(43\) −10.7082 −1.63299 −0.816493 0.577355i \(-0.804085\pi\)
−0.816493 + 0.577355i \(0.804085\pi\)
\(44\) −1.24861 + 0.214153i −0.188234 + 0.0322847i
\(45\) 0 0
\(46\) −3.57295 + 10.9964i −0.526803 + 1.62133i
\(47\) −0.771681 + 0.560659i −0.112561 + 0.0817805i −0.642642 0.766167i \(-0.722162\pi\)
0.530081 + 0.847947i \(0.322162\pi\)
\(48\) 0 0
\(49\) −2.14590 6.60440i −0.306557 0.943485i
\(50\) 1.24861 + 3.84281i 0.176580 + 0.543456i
\(51\) 0 0
\(52\) 1.30902 0.951057i 0.181528 0.131888i
\(53\) −2.79197 + 8.59279i −0.383506 + 1.18031i 0.554052 + 0.832482i \(0.313081\pi\)
−0.937558 + 0.347829i \(0.886919\pi\)
\(54\) 0 0
\(55\) 4.59017 + 2.26538i 0.618938 + 0.305464i
\(56\) 0.589512 0.0787768
\(57\) 0 0
\(58\) 2.38197 1.73060i 0.312767 0.227239i
\(59\) 6.83254 + 4.96413i 0.889521 + 0.646275i 0.935753 0.352656i \(-0.114721\pi\)
−0.0462319 + 0.998931i \(0.514721\pi\)
\(60\) 0 0
\(61\) 1.33688 + 4.11450i 0.171170 + 0.526807i 0.999438 0.0335251i \(-0.0106734\pi\)
−0.828268 + 0.560332i \(0.810673\pi\)
\(62\) −2.97414 2.16084i −0.377716 0.274427i
\(63\) 0 0
\(64\) 1.83688 5.65334i 0.229610 0.706667i
\(65\) −6.53779 −0.810913
\(66\) 0 0
\(67\) 3.85410 0.470853 0.235427 0.971892i \(-0.424351\pi\)
0.235427 + 0.971892i \(0.424351\pi\)
\(68\) −0.702099 + 2.16084i −0.0851420 + 0.262040i
\(69\) 0 0
\(70\) 0.454915 + 0.330515i 0.0543727 + 0.0395041i
\(71\) −2.38463 7.33912i −0.283003 0.870994i −0.986990 0.160781i \(-0.948599\pi\)
0.703987 0.710213i \(-0.251401\pi\)
\(72\) 0 0
\(73\) 5.23607 + 3.80423i 0.612835 + 0.445251i 0.850412 0.526118i \(-0.176353\pi\)
−0.237576 + 0.971369i \(0.576353\pi\)
\(74\) 7.78639 5.65714i 0.905150 0.657630i
\(75\) 0 0
\(76\) −1.76393 −0.202337
\(77\) −0.771681 + 0.132354i −0.0879412 + 0.0150831i
\(78\) 0 0
\(79\) −0.163119 + 0.502029i −0.0183523 + 0.0564826i −0.959813 0.280639i \(-0.909453\pi\)
0.941461 + 0.337122i \(0.109453\pi\)
\(80\) 5.76611 4.18932i 0.644670 0.468380i
\(81\) 0 0
\(82\) −2.66312 8.19624i −0.294092 0.905123i
\(83\) 1.36119 + 4.18932i 0.149410 + 0.459838i 0.997552 0.0699322i \(-0.0222783\pi\)
−0.848141 + 0.529770i \(0.822278\pi\)
\(84\) 0 0
\(85\) 7.42705 5.39607i 0.805577 0.585286i
\(86\) 5.10701 15.7178i 0.550703 1.69489i
\(87\) 0 0
\(88\) −1.19098 + 8.19624i −0.126959 + 0.873722i
\(89\) −16.7518 −1.77569 −0.887844 0.460145i \(-0.847798\pi\)
−0.887844 + 0.460145i \(0.847798\pi\)
\(90\) 0 0
\(91\) 0.809017 0.587785i 0.0848080 0.0616166i
\(92\) −2.31504 1.68198i −0.241360 0.175358i
\(93\) 0 0
\(94\) −0.454915 1.40008i −0.0469209 0.144408i
\(95\) 5.76611 + 4.18932i 0.591590 + 0.429815i
\(96\) 0 0
\(97\) −3.95492 + 12.1720i −0.401561 + 1.23588i 0.522172 + 0.852840i \(0.325122\pi\)
−0.923733 + 0.383037i \(0.874878\pi\)
\(98\) 10.7175 1.08263
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 3.26889 10.0606i 0.325267 1.00107i −0.646053 0.763293i \(-0.723581\pi\)
0.971320 0.237776i \(-0.0764185\pi\)
\(102\) 0 0
\(103\) −5.61803 4.08174i −0.553561 0.402186i 0.275535 0.961291i \(-0.411145\pi\)
−0.829097 + 0.559105i \(0.811145\pi\)
\(104\) −3.26889 10.0606i −0.320541 0.986525i
\(105\) 0 0
\(106\) −11.2812 8.19624i −1.09572 0.796089i
\(107\) 7.60422 5.52479i 0.735128 0.534102i −0.156054 0.987749i \(-0.549877\pi\)
0.891182 + 0.453647i \(0.149877\pi\)
\(108\) 0 0
\(109\) −0.291796 −0.0279490 −0.0139745 0.999902i \(-0.504448\pi\)
−0.0139745 + 0.999902i \(0.504448\pi\)
\(110\) −5.51435 + 5.65714i −0.525773 + 0.539388i
\(111\) 0 0
\(112\) −0.336881 + 1.03681i −0.0318323 + 0.0979696i
\(113\) −9.14758 + 6.64611i −0.860532 + 0.625213i −0.928030 0.372506i \(-0.878499\pi\)
0.0674974 + 0.997719i \(0.478499\pi\)
\(114\) 0 0
\(115\) 3.57295 + 10.9964i 0.333179 + 1.02542i
\(116\) 0.225173 + 0.693013i 0.0209068 + 0.0643446i
\(117\) 0 0
\(118\) −10.5451 + 7.66145i −0.970754 + 0.705294i
\(119\) −0.433921 + 1.33547i −0.0397775 + 0.122422i
\(120\) 0 0
\(121\) −0.281153 10.9964i −0.0255594 0.999673i
\(122\) −6.67695 −0.604503
\(123\) 0 0
\(124\) 0.736068 0.534785i 0.0661009 0.0480251i
\(125\) 9.51192 + 6.91082i 0.850772 + 0.618122i
\(126\) 0 0
\(127\) −2.23607 6.88191i −0.198419 0.610671i −0.999920 0.0126769i \(-0.995965\pi\)
0.801501 0.597994i \(-0.204035\pi\)
\(128\) 10.8731 + 7.89978i 0.961057 + 0.698249i
\(129\) 0 0
\(130\) 3.11803 9.59632i 0.273470 0.841653i
\(131\) −12.1217 −1.05908 −0.529540 0.848285i \(-0.677635\pi\)
−0.529540 + 0.848285i \(0.677635\pi\)
\(132\) 0 0
\(133\) −1.09017 −0.0945297
\(134\) −1.83812 + 5.65714i −0.158789 + 0.488703i
\(135\) 0 0
\(136\) 12.0172 + 8.73102i 1.03047 + 0.748679i
\(137\) −3.26889 10.0606i −0.279280 0.859537i −0.988055 0.154102i \(-0.950752\pi\)
0.708775 0.705435i \(-0.249248\pi\)
\(138\) 0 0
\(139\) 11.0172 + 8.00448i 0.934468 + 0.678931i 0.947083 0.320989i \(-0.104015\pi\)
−0.0126143 + 0.999920i \(0.504015\pi\)
\(140\) −0.112587 + 0.0817991i −0.00951532 + 0.00691328i
\(141\) 0 0
\(142\) 11.9098 0.999451
\(143\) 6.53779 + 12.4356i 0.546717 + 1.03992i
\(144\) 0 0
\(145\) 0.909830 2.80017i 0.0755573 0.232541i
\(146\) −8.08115 + 5.87130i −0.668801 + 0.485912i
\(147\) 0 0
\(148\) 0.736068 + 2.26538i 0.0605044 + 0.186213i
\(149\) 4.22274 + 12.9963i 0.345941 + 1.06470i 0.961078 + 0.276276i \(0.0891004\pi\)
−0.615138 + 0.788420i \(0.710900\pi\)
\(150\) 0 0
\(151\) 7.09017 5.15131i 0.576990 0.419208i −0.260648 0.965434i \(-0.583936\pi\)
0.837638 + 0.546226i \(0.183936\pi\)
\(152\) −3.56365 + 10.9678i −0.289050 + 0.889605i
\(153\) 0 0
\(154\) 0.173762 1.19581i 0.0140021 0.0963615i
\(155\) −3.67624 −0.295282
\(156\) 0 0
\(157\) −8.61803 + 6.26137i −0.687794 + 0.499712i −0.875934 0.482431i \(-0.839754\pi\)
0.188140 + 0.982142i \(0.439754\pi\)
\(158\) −0.659094 0.478860i −0.0524347 0.0380961i
\(159\) 0 0
\(160\) 1.01722 + 3.13068i 0.0804184 + 0.247502i
\(161\) −1.43078 1.03952i −0.112761 0.0819256i
\(162\) 0 0
\(163\) 1.11803 3.44095i 0.0875712 0.269516i −0.897675 0.440657i \(-0.854745\pi\)
0.985247 + 0.171141i \(0.0547454\pi\)
\(164\) 2.13287 0.166549
\(165\) 0 0
\(166\) −6.79837 −0.527656
\(167\) 2.38463 7.33912i 0.184528 0.567918i −0.815412 0.578881i \(-0.803490\pi\)
0.999940 + 0.0109626i \(0.00348959\pi\)
\(168\) 0 0
\(169\) −4.00000 2.90617i −0.307692 0.223552i
\(170\) 4.37833 + 13.4751i 0.335803 + 1.03350i
\(171\) 0 0
\(172\) 3.30902 + 2.40414i 0.252310 + 0.183314i
\(173\) −2.20246 + 1.60018i −0.167450 + 0.121659i −0.668354 0.743843i \(-0.733001\pi\)
0.500904 + 0.865503i \(0.333001\pi\)
\(174\) 0 0
\(175\) −0.618034 −0.0467190
\(176\) −13.7347 6.77846i −1.03529 0.510946i
\(177\) 0 0
\(178\) 7.98936 24.5887i 0.598828 1.84300i
\(179\) 15.0959 10.9678i 1.12832 0.819771i 0.142868 0.989742i \(-0.454367\pi\)
0.985449 + 0.169971i \(0.0543674\pi\)
\(180\) 0 0
\(181\) 2.39919 + 7.38394i 0.178330 + 0.548844i 0.999770 0.0214515i \(-0.00682876\pi\)
−0.821440 + 0.570295i \(0.806829\pi\)
\(182\) 0.476925 + 1.46782i 0.0353520 + 0.108802i
\(183\) 0 0
\(184\) −15.1353 + 10.9964i −1.11579 + 0.810666i
\(185\) 2.97414 9.15345i 0.218663 0.672975i
\(186\) 0 0
\(187\) −17.6910 8.73102i −1.29369 0.638476i
\(188\) 0.364338 0.0265721
\(189\) 0 0
\(190\) −8.89919 + 6.46564i −0.645615 + 0.469067i
\(191\) −2.97414 2.16084i −0.215201 0.156353i 0.474963 0.880006i \(-0.342462\pi\)
−0.690164 + 0.723653i \(0.742462\pi\)
\(192\) 0 0
\(193\) 2.97214 + 9.14729i 0.213939 + 0.658437i 0.999227 + 0.0393062i \(0.0125148\pi\)
−0.785288 + 0.619130i \(0.787485\pi\)
\(194\) −15.9801 11.6102i −1.14731 0.833567i
\(195\) 0 0
\(196\) −0.819660 + 2.52265i −0.0585472 + 0.180190i
\(197\) 12.1217 0.863637 0.431818 0.901961i \(-0.357872\pi\)
0.431818 + 0.901961i \(0.357872\pi\)
\(198\) 0 0
\(199\) −26.4164 −1.87261 −0.936305 0.351189i \(-0.885778\pi\)
−0.936305 + 0.351189i \(0.885778\pi\)
\(200\) −2.02029 + 6.21780i −0.142856 + 0.439665i
\(201\) 0 0
\(202\) 13.2082 + 9.59632i 0.929326 + 0.675195i
\(203\) 0.139165 + 0.428305i 0.00976746 + 0.0300611i
\(204\) 0 0
\(205\) −6.97214 5.06555i −0.486955 0.353794i
\(206\) 8.67066 6.29960i 0.604113 0.438914i
\(207\) 0 0
\(208\) 19.5623 1.35640
\(209\) 2.20246 15.1571i 0.152347 1.04844i
\(210\) 0 0
\(211\) 3.40983 10.4944i 0.234742 0.722463i −0.762413 0.647091i \(-0.775986\pi\)
0.997155 0.0753721i \(-0.0240145\pi\)
\(212\) 2.79197 2.02848i 0.191753 0.139317i
\(213\) 0 0
\(214\) 4.48278 + 13.7966i 0.306436 + 0.943114i
\(215\) −5.10701 15.7178i −0.348295 1.07194i
\(216\) 0 0
\(217\) 0.454915 0.330515i 0.0308816 0.0224368i
\(218\) 0.139165 0.428305i 0.00942543 0.0290085i
\(219\) 0 0
\(220\) −0.909830 1.73060i −0.0613407 0.116677i
\(221\) 25.1973 1.69495
\(222\) 0 0
\(223\) 15.5172 11.2739i 1.03911 0.754958i 0.0689984 0.997617i \(-0.478020\pi\)
0.970112 + 0.242659i \(0.0780197\pi\)
\(224\) −0.407343 0.295952i −0.0272167 0.0197741i
\(225\) 0 0
\(226\) −5.39261 16.5967i −0.358711 1.10400i
\(227\) −7.60422 5.52479i −0.504710 0.366693i 0.306103 0.951998i \(-0.400975\pi\)
−0.810813 + 0.585305i \(0.800975\pi\)
\(228\) 0 0
\(229\) −2.94427 + 9.06154i −0.194563 + 0.598803i 0.805418 + 0.592707i \(0.201941\pi\)
−0.999981 + 0.00609663i \(0.998059\pi\)
\(230\) −17.8448 −1.17665
\(231\) 0 0
\(232\) 4.76393 0.312767
\(233\) 1.29161 3.97517i 0.0846162 0.260422i −0.899793 0.436318i \(-0.856282\pi\)
0.984409 + 0.175896i \(0.0562823\pi\)
\(234\) 0 0
\(235\) −1.19098 0.865300i −0.0776912 0.0564459i
\(236\) −0.996854 3.06800i −0.0648897 0.199710i
\(237\) 0 0
\(238\) −1.75329 1.27384i −0.113649 0.0825707i
\(239\) −12.8934 + 9.36761i −0.834005 + 0.605940i −0.920690 0.390296i \(-0.872373\pi\)
0.0866846 + 0.996236i \(0.472373\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 16.2749 + 4.83178i 1.04619 + 0.310598i
\(243\) 0 0
\(244\) 0.510643 1.57160i 0.0326906 0.100611i
\(245\) 8.67066 6.29960i 0.553948 0.402467i
\(246\) 0 0
\(247\) 6.04508 + 18.6049i 0.384640 + 1.18380i
\(248\) −1.83812 5.65714i −0.116721 0.359229i
\(249\) 0 0
\(250\) −14.6803 + 10.6659i −0.928466 + 0.674570i
\(251\) −4.56050 + 14.0358i −0.287856 + 0.885931i 0.697672 + 0.716418i \(0.254220\pi\)
−0.985528 + 0.169513i \(0.945780\pi\)
\(252\) 0 0
\(253\) 17.3435 17.7926i 1.09037 1.11861i
\(254\) 11.1679 0.700735
\(255\) 0 0
\(256\) −7.16312 + 5.20431i −0.447695 + 0.325269i
\(257\) −12.7808 9.28581i −0.797245 0.579233i 0.112859 0.993611i \(-0.463999\pi\)
−0.910105 + 0.414378i \(0.863999\pi\)
\(258\) 0 0
\(259\) 0.454915 + 1.40008i 0.0282670 + 0.0869970i
\(260\) 2.02029 + 1.46782i 0.125293 + 0.0910306i
\(261\) 0 0
\(262\) 5.78115 17.7926i 0.357161 1.09923i
\(263\) 4.63009 0.285503 0.142752 0.989759i \(-0.454405\pi\)
0.142752 + 0.989759i \(0.454405\pi\)
\(264\) 0 0
\(265\) −13.9443 −0.856590
\(266\) 0.519929 1.60018i 0.0318789 0.0981132i
\(267\) 0 0
\(268\) −1.19098 0.865300i −0.0727509 0.0528566i
\(269\) 8.30632 + 25.5642i 0.506445 + 1.55868i 0.798327 + 0.602224i \(0.205719\pi\)
−0.291882 + 0.956454i \(0.594281\pi\)
\(270\) 0 0
\(271\) 24.2984 + 17.6538i 1.47602 + 1.07239i 0.978812 + 0.204761i \(0.0656418\pi\)
0.497209 + 0.867631i \(0.334358\pi\)
\(272\) −22.2232 + 16.1461i −1.34748 + 0.978999i
\(273\) 0 0
\(274\) 16.3262 0.986304
\(275\) 1.24861 8.59279i 0.0752938 0.518165i
\(276\) 0 0
\(277\) 6.68034 20.5600i 0.401383 1.23533i −0.522495 0.852642i \(-0.674999\pi\)
0.923878 0.382687i \(-0.125001\pi\)
\(278\) −17.0036 + 12.3538i −1.01981 + 0.740932i
\(279\) 0 0
\(280\) 0.281153 + 0.865300i 0.0168021 + 0.0517116i
\(281\) −2.72239 8.37864i −0.162404 0.499828i 0.836432 0.548071i \(-0.184638\pi\)
−0.998836 + 0.0482433i \(0.984638\pi\)
\(282\) 0 0
\(283\) −5.61803 + 4.08174i −0.333957 + 0.242634i −0.742108 0.670280i \(-0.766174\pi\)
0.408151 + 0.912915i \(0.366174\pi\)
\(284\) −0.910846 + 2.80330i −0.0540488 + 0.166345i
\(285\) 0 0
\(286\) −21.3713 + 3.66547i −1.26371 + 0.216744i
\(287\) 1.31819 0.0778102
\(288\) 0 0
\(289\) −14.8713 + 10.8046i −0.874784 + 0.635568i
\(290\) 3.67624 + 2.67094i 0.215876 + 0.156843i
\(291\) 0 0
\(292\) −0.763932 2.35114i −0.0447057 0.137590i
\(293\) 16.6392 + 12.0891i 0.972074 + 0.706253i 0.955923 0.293617i \(-0.0948589\pi\)
0.0161504 + 0.999870i \(0.494859\pi\)
\(294\) 0 0
\(295\) −4.02786 + 12.3965i −0.234511 + 0.721752i
\(296\) 15.5728 0.905150
\(297\) 0 0
\(298\) −21.0902 −1.22172
\(299\) −9.80668 + 30.1819i −0.567135 + 1.74546i
\(300\) 0 0
\(301\) 2.04508 + 1.48584i 0.117877 + 0.0856425i
\(302\) 4.17974 + 12.8639i 0.240517 + 0.740235i
\(303\) 0 0
\(304\) −17.2533 12.5352i −0.989544 0.718946i
\(305\) −5.40177 + 3.92461i −0.309304 + 0.224723i
\(306\) 0 0
\(307\) −16.2705 −0.928607 −0.464304 0.885676i \(-0.653695\pi\)
−0.464304 + 0.885676i \(0.653695\pi\)
\(308\) 0.268178 + 0.132354i 0.0152808 + 0.00754155i
\(309\) 0 0
\(310\) 1.75329 5.39607i 0.0995801 0.306476i
\(311\) −19.5008 + 14.1681i −1.10579 + 0.803401i −0.981995 0.188907i \(-0.939506\pi\)
−0.123792 + 0.992308i \(0.539506\pi\)
\(312\) 0 0
\(313\) 0.107391 + 0.330515i 0.00607009 + 0.0186818i 0.954046 0.299661i \(-0.0968736\pi\)
−0.947976 + 0.318343i \(0.896874\pi\)
\(314\) −5.08043 15.6360i −0.286705 0.882389i
\(315\) 0 0
\(316\) 0.163119 0.118513i 0.00917616 0.00666687i
\(317\) 3.26889 10.0606i 0.183599 0.565061i −0.816322 0.577597i \(-0.803991\pi\)
0.999921 + 0.0125363i \(0.00399055\pi\)
\(318\) 0 0
\(319\) −6.23607 + 1.06957i −0.349153 + 0.0598844i
\(320\) 9.17416 0.512851
\(321\) 0 0
\(322\) 2.20820 1.60435i 0.123058 0.0894072i
\(323\) −22.2232 16.1461i −1.23653 0.898391i
\(324\) 0 0
\(325\) 3.42705 + 10.5474i 0.190099 + 0.585063i
\(326\) 4.51750 + 3.28216i 0.250201 + 0.181782i
\(327\) 0 0
\(328\) 4.30902 13.2618i 0.237926 0.732260i
\(329\) 0.225173 0.0124142
\(330\) 0 0
\(331\) 20.7082 1.13823 0.569113 0.822259i \(-0.307287\pi\)
0.569113 + 0.822259i \(0.307287\pi\)
\(332\) 0.519929 1.60018i 0.0285348 0.0878212i
\(333\) 0 0
\(334\) 9.63525 + 7.00042i 0.527218 + 0.383046i
\(335\) 1.83812 + 5.65714i 0.100427 + 0.309083i
\(336\) 0 0
\(337\) −3.76393 2.73466i −0.205034 0.148966i 0.480530 0.876978i \(-0.340444\pi\)
−0.685564 + 0.728012i \(0.740444\pi\)
\(338\) 6.17345 4.48527i 0.335791 0.243967i
\(339\) 0 0
\(340\) −3.50658 −0.190171
\(341\) 3.67624 + 6.99262i 0.199079 + 0.378671i
\(342\) 0 0
\(343\) −1.01722 + 3.13068i −0.0549248 + 0.169041i
\(344\) 21.6336 15.7178i 1.16641 0.847445i
\(345\) 0 0
\(346\) −1.29837 3.99598i −0.0698010 0.214825i
\(347\) 0.814685 + 2.50734i 0.0437346 + 0.134601i 0.970540 0.240942i \(-0.0774563\pi\)
−0.926805 + 0.375543i \(0.877456\pi\)
\(348\) 0 0
\(349\) 10.6631 7.74721i 0.570784 0.414699i −0.264606 0.964357i \(-0.585242\pi\)
0.835390 + 0.549658i \(0.185242\pi\)
\(350\) 0.294756 0.907165i 0.0157554 0.0484900i
\(351\) 0 0
\(352\) 4.93769 5.06555i 0.263180 0.269995i
\(353\) 3.53707 0.188259 0.0941296 0.995560i \(-0.469993\pi\)
0.0941296 + 0.995560i \(0.469993\pi\)
\(354\) 0 0
\(355\) 9.63525 7.00042i 0.511386 0.371544i
\(356\) 5.17659 + 3.76102i 0.274359 + 0.199333i
\(357\) 0 0
\(358\) 8.89919 + 27.3889i 0.470337 + 1.44755i
\(359\) −21.1567 15.3713i −1.11661 0.811264i −0.132917 0.991127i \(-0.542434\pi\)
−0.983692 + 0.179863i \(0.942434\pi\)
\(360\) 0 0
\(361\) 0.718847 2.21238i 0.0378341 0.116441i
\(362\) −11.9826 −0.629789
\(363\) 0 0
\(364\) −0.381966 −0.0200205
\(365\) −3.08672 + 9.49996i −0.161567 + 0.497251i
\(366\) 0 0
\(367\) 4.88197 + 3.54696i 0.254837 + 0.185150i 0.707868 0.706345i \(-0.249657\pi\)
−0.453031 + 0.891495i \(0.649657\pi\)
\(368\) −10.6909 32.9034i −0.557304 1.71521i
\(369\) 0 0
\(370\) 12.0172 + 8.73102i 0.624746 + 0.453904i
\(371\) 1.72553 1.25367i 0.0895851 0.0650874i
\(372\) 0 0
\(373\) 12.4164 0.642897 0.321449 0.946927i \(-0.395830\pi\)
0.321449 + 0.946927i \(0.395830\pi\)
\(374\) 21.2529 21.8032i 1.09896 1.12742i
\(375\) 0 0
\(376\) 0.736068 2.26538i 0.0379598 0.116828i
\(377\) 6.53779 4.74998i 0.336713 0.244636i
\(378\) 0 0
\(379\) 0.545085 + 1.67760i 0.0279991 + 0.0861725i 0.964080 0.265613i \(-0.0855745\pi\)
−0.936080 + 0.351786i \(0.885574\pi\)
\(380\) −0.841263 2.58914i −0.0431559 0.132820i
\(381\) 0 0
\(382\) 4.59017 3.33495i 0.234854 0.170631i
\(383\) 4.36191 13.4246i 0.222883 0.685964i −0.775617 0.631204i \(-0.782561\pi\)
0.998500 0.0547592i \(-0.0174391\pi\)
\(384\) 0 0
\(385\) −0.562306 1.06957i −0.0286578 0.0545103i
\(386\) −14.8441 −0.755545
\(387\) 0 0
\(388\) 3.95492 2.87341i 0.200780 0.145875i
\(389\) 15.7550 + 11.4466i 0.798808 + 0.580368i 0.910564 0.413368i \(-0.135648\pi\)
−0.111756 + 0.993736i \(0.535648\pi\)
\(390\) 0 0
\(391\) −13.7705 42.3813i −0.696405 2.14331i
\(392\) 14.0294 + 10.1930i 0.708593 + 0.514823i
\(393\) 0 0
\(394\) −5.78115 + 17.7926i −0.291250 + 0.896376i
\(395\) −0.814685 −0.0409913
\(396\) 0 0
\(397\) −2.41641 −0.121276 −0.0606380 0.998160i \(-0.519314\pi\)
−0.0606380 + 0.998160i \(0.519314\pi\)
\(398\) 12.5986 38.7746i 0.631513 1.94360i
\(399\) 0 0
\(400\) −9.78115 7.10642i −0.489058 0.355321i
\(401\) 1.02343 + 3.14980i 0.0511078 + 0.157294i 0.973353 0.229312i \(-0.0736475\pi\)
−0.922245 + 0.386605i \(0.873648\pi\)
\(402\) 0 0
\(403\) −8.16312 5.93085i −0.406634 0.295437i
\(404\) −3.26889 + 2.37499i −0.162634 + 0.118160i
\(405\) 0 0
\(406\) −0.695048 −0.0344947
\(407\) −20.3850 + 3.49631i −1.01045 + 0.173306i
\(408\) 0 0
\(409\) −7.09017 + 21.8213i −0.350586 + 1.07899i 0.607938 + 0.793984i \(0.291997\pi\)
−0.958525 + 0.285010i \(0.908003\pi\)
\(410\) 10.7605 7.81798i 0.531425 0.386103i
\(411\) 0 0
\(412\) 0.819660 + 2.52265i 0.0403818 + 0.124282i
\(413\) −0.616090 1.89613i −0.0303158 0.0933024i
\(414\) 0 0
\(415\) −5.50000 + 3.99598i −0.269984 + 0.196155i
\(416\) −2.79197 + 8.59279i −0.136887 + 0.421296i
\(417\) 0 0
\(418\) 21.1976 + 10.4616i 1.03681 + 0.511695i
\(419\) −16.0763 −0.785378 −0.392689 0.919671i \(-0.628455\pi\)
−0.392689 + 0.919671i \(0.628455\pi\)
\(420\) 0 0
\(421\) −17.9721 + 13.0575i −0.875908 + 0.636385i −0.932166 0.362032i \(-0.882083\pi\)
0.0562575 + 0.998416i \(0.482083\pi\)
\(422\) 13.7777 + 10.0101i 0.670687 + 0.487282i
\(423\) 0 0
\(424\) −6.97214 21.4580i −0.338597 1.04209i
\(425\) −12.5986 9.15345i −0.611124 0.444008i
\(426\) 0 0
\(427\) 0.315595 0.971301i 0.0152727 0.0470045i
\(428\) −3.59023 −0.173540
\(429\) 0 0
\(430\) 25.5066 1.23004
\(431\) −1.69895 + 5.22884i −0.0818357 + 0.251864i −0.983600 0.180364i \(-0.942272\pi\)
0.901764 + 0.432228i \(0.142272\pi\)
\(432\) 0 0
\(433\) −23.1803 16.8415i −1.11398 0.809351i −0.130691 0.991423i \(-0.541720\pi\)
−0.983285 + 0.182072i \(0.941720\pi\)
\(434\) 0.268178 + 0.825366i 0.0128729 + 0.0396189i
\(435\) 0 0
\(436\) 0.0901699 + 0.0655123i 0.00431836 + 0.00313747i
\(437\) 27.9893 20.3354i 1.33891 0.972774i
\(438\) 0 0
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) −12.5986 + 2.16084i −0.600617 + 0.103014i
\(441\) 0 0
\(442\) −12.0172 + 36.9852i −0.571601 + 1.75921i
\(443\) −15.2084 + 11.0496i −0.722575 + 0.524982i −0.887206 0.461374i \(-0.847357\pi\)
0.164631 + 0.986355i \(0.447357\pi\)
\(444\) 0 0
\(445\) −7.98936 24.5887i −0.378732 1.16562i
\(446\) 9.14758 + 28.1534i 0.433151 + 1.33310i
\(447\) 0 0
\(448\) −1.13525 + 0.824811i −0.0536358 + 0.0389687i
\(449\) −0.139165 + 0.428305i −0.00656760 + 0.0202130i −0.954287 0.298893i \(-0.903383\pi\)
0.947719 + 0.319106i \(0.103383\pi\)
\(450\) 0 0
\(451\) −2.66312 + 18.3273i −0.125401 + 0.863001i
\(452\) 4.31890 0.203144
\(453\) 0 0
\(454\) 11.7361 8.52675i 0.550801 0.400180i
\(455\) 1.24861 + 0.907165i 0.0585356 + 0.0425286i
\(456\) 0 0
\(457\) 7.38854 + 22.7396i 0.345622 + 1.06371i 0.961250 + 0.275677i \(0.0889021\pi\)
−0.615629 + 0.788036i \(0.711098\pi\)
\(458\) −11.8965 8.64335i −0.555889 0.403877i
\(459\) 0 0
\(460\) 1.36475 4.20025i 0.0636316 0.195838i
\(461\) 19.6134 0.913485 0.456743 0.889599i \(-0.349016\pi\)
0.456743 + 0.889599i \(0.349016\pi\)
\(462\) 0 0
\(463\) −1.43769 −0.0668153 −0.0334077 0.999442i \(-0.510636\pi\)
−0.0334077 + 0.999442i \(0.510636\pi\)
\(464\) −2.72239 + 8.37864i −0.126384 + 0.388969i
\(465\) 0 0
\(466\) 5.21885 + 3.79171i 0.241758 + 0.175648i
\(467\) −1.50036 4.61763i −0.0694283 0.213678i 0.910322 0.413900i \(-0.135834\pi\)
−0.979751 + 0.200222i \(0.935834\pi\)
\(468\) 0 0
\(469\) −0.736068 0.534785i −0.0339885 0.0246941i
\(470\) 1.83812 1.33547i 0.0847861 0.0616007i
\(471\) 0 0
\(472\) −21.0902 −0.970754
\(473\) −24.7900 + 25.4319i −1.13984 + 1.16936i
\(474\) 0 0
\(475\) 3.73607 11.4984i 0.171423 0.527584i
\(476\) 0.433921 0.315262i 0.0198887 0.0144500i
\(477\) 0 0
\(478\) −7.60081 23.3929i −0.347653 1.06997i
\(479\) 11.3766 + 35.0136i 0.519811 + 1.59981i 0.774354 + 0.632752i \(0.218075\pi\)
−0.254543 + 0.967061i \(0.581925\pi\)
\(480\) 0 0
\(481\) 21.3713 15.5272i 0.974448 0.707978i
\(482\) −6.67695 + 20.5495i −0.304127 + 0.936006i
\(483\) 0 0
\(484\) −2.38197 + 3.46120i −0.108271 + 0.157327i
\(485\) −19.7525 −0.896916
\(486\) 0 0
\(487\) 13.6631 9.92684i 0.619135 0.449828i −0.233484 0.972361i \(-0.575013\pi\)
0.852619 + 0.522533i \(0.175013\pi\)
\(488\) −8.74024 6.35016i −0.395652 0.287458i
\(489\) 0 0
\(490\) 5.11146 + 15.7314i 0.230912 + 0.710674i
\(491\) 25.0151 + 18.1746i 1.12892 + 0.820206i 0.985537 0.169462i \(-0.0542029\pi\)
0.143380 + 0.989668i \(0.454203\pi\)
\(492\) 0 0
\(493\) −3.50658 + 10.7921i −0.157928 + 0.486053i
\(494\) −30.1917 −1.35839
\(495\) 0 0
\(496\) 11.0000 0.493915
\(497\) −0.562934 + 1.73253i −0.0252510 + 0.0777147i
\(498\) 0 0
\(499\) 7.88197 + 5.72658i 0.352845 + 0.256357i 0.750062 0.661368i \(-0.230024\pi\)
−0.397216 + 0.917725i \(0.630024\pi\)
\(500\) −1.38777 4.27112i −0.0620630 0.191010i
\(501\) 0 0
\(502\) −18.4271 13.3880i −0.822440 0.597537i
\(503\) 9.03500 6.56431i 0.402851 0.292688i −0.367850 0.929885i \(-0.619906\pi\)
0.770701 + 0.637197i \(0.219906\pi\)
\(504\) 0 0
\(505\) 16.3262 0.726508
\(506\) 17.8448 + 33.9429i 0.793299 + 1.50894i
\(507\) 0 0
\(508\) −0.854102 + 2.62866i −0.0378946 + 0.116628i
\(509\) 6.71996 4.88233i 0.297857 0.216406i −0.428812 0.903394i \(-0.641068\pi\)
0.726669 + 0.686988i \(0.241068\pi\)
\(510\) 0 0
\(511\) −0.472136 1.45309i −0.0208861 0.0642807i
\(512\) 4.08358 + 12.5680i 0.180470 + 0.555431i
\(513\) 0 0
\(514\) 19.7254 14.3314i 0.870051 0.632129i
\(515\) 3.31190 10.1930i 0.145940 0.449156i
\(516\) 0 0
\(517\) −0.454915 + 3.13068i −0.0200071 + 0.137687i
\(518\) −2.27204 −0.0998276
\(519\) 0 0
\(520\) 13.2082 9.59632i 0.579218 0.420827i
\(521\) −4.40491 3.20036i −0.192983 0.140210i 0.487098 0.873347i \(-0.338055\pi\)
−0.680081 + 0.733137i \(0.738055\pi\)
\(522\) 0 0
\(523\) 5.70163 + 17.5478i 0.249315 + 0.767312i 0.994897 + 0.100898i \(0.0321716\pi\)
−0.745582 + 0.666414i \(0.767828\pi\)
\(524\) 3.74582 + 2.72150i 0.163637 + 0.118889i
\(525\) 0 0
\(526\) −2.20820 + 6.79615i −0.0962823 + 0.296326i
\(527\) 14.1686 0.617193
\(528\) 0 0
\(529\) 33.1246 1.44020
\(530\) 6.65037 20.4677i 0.288874 0.889062i
\(531\) 0 0
\(532\) 0.336881 + 0.244758i 0.0146056 + 0.0106116i
\(533\) −7.30947 22.4962i −0.316608 0.974420i
\(534\) 0 0
\(535\) 11.7361 + 8.52675i 0.507394 + 0.368644i
\(536\) −7.78639 + 5.65714i −0.336321 + 0.244351i
\(537\) 0 0
\(538\) −41.4853 −1.78856
\(539\) −20.6532 10.1930i −0.889597 0.439042i
\(540\) 0 0
\(541\) −12.2467 + 37.6915i −0.526527 + 1.62048i 0.234749 + 0.972056i \(0.424573\pi\)
−0.761276 + 0.648428i \(0.775427\pi\)
\(542\) −37.5012 + 27.2462i −1.61081 + 1.17032i
\(543\) 0 0
\(544\) −3.92047 12.0660i −0.168089 0.517324i
\(545\) −0.139165 0.428305i −0.00596117 0.0183466i
\(546\) 0 0
\(547\) 7.30902 5.31031i 0.312511 0.227053i −0.420462 0.907310i \(-0.638132\pi\)
0.732973 + 0.680258i \(0.238132\pi\)
\(548\) −1.24861 + 3.84281i −0.0533378 + 0.164157i
\(549\) 0 0
\(550\) 12.0172 + 5.93085i 0.512416 + 0.252892i
\(551\) −8.80982 −0.375311
\(552\) 0 0
\(553\) 0.100813 0.0732450i 0.00428701 0.00311469i
\(554\) 26.9924 + 19.6111i 1.14680 + 0.833197i
\(555\) 0 0
\(556\) −1.60739 4.94704i −0.0681686 0.209801i
\(557\) 14.3242 + 10.4071i 0.606935 + 0.440964i 0.848334 0.529462i \(-0.177606\pi\)
−0.241399 + 0.970426i \(0.577606\pi\)
\(558\) 0 0
\(559\) 14.0172 43.1406i 0.592865 1.82465i
\(560\) −1.68253 −0.0710997
\(561\) 0 0
\(562\) 13.5967 0.573544
\(563\) 12.5291 38.5605i 0.528037 1.62513i −0.230194 0.973145i \(-0.573936\pi\)
0.758231 0.651986i \(-0.226064\pi\)
\(564\) 0 0
\(565\) −14.1180 10.2574i −0.593950 0.431530i
\(566\) −3.31190 10.1930i −0.139209 0.428443i
\(567\) 0 0
\(568\) 15.5902 + 11.3269i 0.654149 + 0.475267i
\(569\) 24.0183 17.4503i 1.00690 0.731554i 0.0433420 0.999060i \(-0.486199\pi\)
0.963556 + 0.267506i \(0.0861995\pi\)
\(570\) 0 0
\(571\) −34.9787 −1.46381 −0.731907 0.681405i \(-0.761369\pi\)
−0.731907 + 0.681405i \(0.761369\pi\)
\(572\) 0.771681 5.31064i 0.0322656 0.222049i
\(573\) 0 0
\(574\) −0.628677 + 1.93487i −0.0262405 + 0.0807599i
\(575\) 15.8675 11.5284i 0.661722 0.480769i
\(576\) 0 0
\(577\) −10.0902 31.0543i −0.420059 1.29281i −0.907647 0.419735i \(-0.862123\pi\)
0.487587 0.873074i \(-0.337877\pi\)
\(578\) −8.76682 26.9815i −0.364652 1.12228i
\(579\) 0 0
\(580\) −0.909830 + 0.661030i −0.0377786 + 0.0274478i
\(581\) 0.321334 0.988964i 0.0133312 0.0410292i
\(582\) 0 0
\(583\) 13.9443 + 26.5236i 0.577513 + 1.09849i
\(584\) −16.1623 −0.668801
\(585\) 0 0
\(586\) −25.6803 + 18.6579i −1.06085 + 0.770749i
\(587\) 7.37905 + 5.36119i 0.304566 + 0.221280i 0.729561 0.683915i \(-0.239724\pi\)
−0.424995 + 0.905196i \(0.639724\pi\)
\(588\) 0 0
\(589\) 3.39919 + 10.4616i 0.140061 + 0.431064i
\(590\) −16.2749 11.8244i −0.670026 0.486803i
\(591\) 0 0
\(592\) −8.89919 + 27.3889i −0.365754 + 1.12568i
\(593\) 1.09301 0.0448847 0.0224424 0.999748i \(-0.492856\pi\)
0.0224424 + 0.999748i \(0.492856\pi\)
\(594\) 0 0
\(595\) −2.16718 −0.0888459
\(596\) 1.61294 4.96413i 0.0660688 0.203339i
\(597\) 0 0
\(598\) −39.6246 28.7890i −1.62037 1.17727i
\(599\) −3.81540 11.7426i −0.155893 0.479789i 0.842357 0.538920i \(-0.181167\pi\)
−0.998250 + 0.0591301i \(0.981167\pi\)
\(600\) 0 0
\(601\) −28.6074 20.7845i −1.16692 0.847817i −0.176283 0.984340i \(-0.556407\pi\)
−0.990637 + 0.136523i \(0.956407\pi\)
\(602\) −3.15631 + 2.29319i −0.128641 + 0.0934635i
\(603\) 0 0
\(604\) −3.34752 −0.136209
\(605\) 16.0067 5.65714i 0.650765 0.229996i
\(606\) 0 0
\(607\) −8.15248 + 25.0907i −0.330899 + 1.01840i 0.637808 + 0.770195i \(0.279841\pi\)
−0.968707 + 0.248207i \(0.920159\pi\)
\(608\) 7.96856 5.78950i 0.323168 0.234795i
\(609\) 0 0
\(610\) −3.18441 9.80059i −0.128933 0.396814i
\(611\) −1.24861 3.84281i −0.0505132 0.155464i
\(612\) 0 0
\(613\) −34.7426 + 25.2420i −1.40324 + 1.01952i −0.408980 + 0.912543i \(0.634115\pi\)
−0.994262 + 0.106972i \(0.965885\pi\)
\(614\) 7.75981 23.8823i 0.313161 0.963809i
\(615\) 0 0
\(616\) 1.36475 1.40008i 0.0549871 0.0564110i
\(617\) −1.76854 −0.0711986 −0.0355993 0.999366i \(-0.511334\pi\)
−0.0355993 + 0.999366i \(0.511334\pi\)
\(618\) 0 0
\(619\) 23.3713 16.9803i 0.939373 0.682494i −0.00889683 0.999960i \(-0.502832\pi\)
0.948270 + 0.317466i \(0.102832\pi\)
\(620\) 1.13602 + 0.825366i 0.0456236 + 0.0331475i
\(621\) 0 0
\(622\) −11.4959 35.3808i −0.460945 1.41864i
\(623\) 3.19931 + 2.32444i 0.128178 + 0.0931265i
\(624\) 0 0
\(625\) −1.56231 + 4.80828i −0.0624922 + 0.192331i
\(626\) −0.536356 −0.0214371
\(627\) 0 0
\(628\) 4.06888 0.162366
\(629\) −11.4626 + 35.2783i −0.457045 + 1.40664i
\(630\) 0 0
\(631\) 15.8713 + 11.5312i 0.631827 + 0.459049i 0.857033 0.515262i \(-0.172305\pi\)
−0.225205 + 0.974311i \(0.572305\pi\)
\(632\) −0.407343 1.25367i −0.0162032 0.0498684i
\(633\) 0 0
\(634\) 13.2082 + 9.59632i 0.524565 + 0.381119i
\(635\) 9.03500 6.56431i 0.358543 0.260497i
\(636\) 0 0
\(637\) 29.4164 1.16552
\(638\) 1.40420 9.66356i 0.0555927 0.382584i
\(639\) 0 0
\(640\) −6.40983 + 19.7274i −0.253371 + 0.779795i
\(641\) 9.91927 7.20677i 0.391787 0.284650i −0.374400 0.927267i \(-0.622151\pi\)
0.766188 + 0.642617i \(0.222151\pi\)
\(642\) 0 0
\(643\) 8.70163 + 26.7809i 0.343159 + 1.05613i 0.962562 + 0.271061i \(0.0873745\pi\)
−0.619404 + 0.785073i \(0.712626\pi\)
\(644\) 0.208747 + 0.642458i 0.00822580 + 0.0253164i
\(645\) 0 0
\(646\) 34.2984 24.9192i 1.34945 0.980434i
\(647\) 12.1913 37.5210i 0.479290 1.47510i −0.360794 0.932645i \(-0.617494\pi\)
0.840084 0.542456i \(-0.182506\pi\)
\(648\) 0 0
\(649\) 27.6074 4.73504i 1.08368 0.185867i
\(650\) −17.1161 −0.671350
\(651\) 0 0
\(652\) −1.11803 + 0.812299i −0.0437856 + 0.0318121i
\(653\) −33.8249 24.5753i −1.32367 0.961704i −0.999879 0.0155768i \(-0.995042\pi\)
−0.323794 0.946128i \(-0.604958\pi\)
\(654\) 0 0
\(655\) −5.78115 17.7926i −0.225888 0.695213i
\(656\) 20.8620 + 15.1571i 0.814523 + 0.591785i
\(657\) 0 0
\(658\) −0.107391 + 0.330515i −0.00418653 + 0.0128848i
\(659\) 3.53707 0.137785 0.0688924 0.997624i \(-0.478053\pi\)
0.0688924 + 0.997624i \(0.478053\pi\)
\(660\) 0 0
\(661\) 22.5623 0.877572 0.438786 0.898592i \(-0.355409\pi\)
0.438786 + 0.898592i \(0.355409\pi\)
\(662\) −9.87626 + 30.3960i −0.383852 + 1.18137i
\(663\) 0 0
\(664\) −8.89919 6.46564i −0.345355 0.250915i
\(665\) −0.519929 1.60018i −0.0201620 0.0620522i
\(666\) 0 0
\(667\) −11.5623 8.40051i −0.447694 0.325269i
\(668\) −2.38463 + 1.73253i −0.0922639 + 0.0670337i
\(669\) 0 0
\(670\) −9.18034 −0.354667
\(671\) 12.8668 + 6.35016i 0.496718 + 0.245145i
\(672\) 0 0
\(673\) 4.25329 13.0903i 0.163952 0.504593i −0.835005 0.550242i \(-0.814536\pi\)
0.998958 + 0.0456488i \(0.0145355\pi\)
\(674\) 5.80911 4.22056i 0.223759 0.162570i
\(675\) 0 0
\(676\) 0.583592 + 1.79611i 0.0224459 + 0.0690812i
\(677\) 1.90770 + 5.87130i 0.0733189 + 0.225652i 0.981000 0.194009i \(-0.0621490\pi\)
−0.907681 + 0.419661i \(0.862149\pi\)
\(678\) 0 0
\(679\) 2.44427 1.77587i 0.0938025 0.0681515i
\(680\) −7.08429 + 21.8032i −0.271670 + 0.836115i
\(681\) 0 0
\(682\) −12.0172 + 2.06111i −0.460163 + 0.0789242i
\(683\) 31.7351 1.21431 0.607155 0.794584i \(-0.292311\pi\)
0.607155 + 0.794584i \(0.292311\pi\)
\(684\) 0 0
\(685\) 13.2082 9.59632i 0.504660 0.366657i
\(686\) −4.11016 2.98620i −0.156927 0.114014i
\(687\) 0 0
\(688\) 15.2812 + 47.0306i 0.582588 + 1.79302i
\(689\) −30.9634 22.4962i −1.17961 0.857038i
\(690\) 0 0
\(691\) −3.81966 + 11.7557i −0.145307 + 0.447208i −0.997050 0.0767507i \(-0.975545\pi\)
0.851744 + 0.523959i \(0.175545\pi\)
\(692\) 1.03986 0.0395295
\(693\) 0 0
\(694\) −4.06888 −0.154453
\(695\) −6.49478 + 19.9889i −0.246361 + 0.758222i
\(696\) 0 0
\(697\) 26.8713 + 19.5232i 1.01782 + 0.739492i
\(698\) 6.28603 + 19.3464i 0.237930 + 0.732273i
\(699\) 0 0
\(700\) 0.190983 + 0.138757i 0.00721848 + 0.00524453i
\(701\) −31.0760 + 22.5780i −1.17372 + 0.852760i −0.991450 0.130488i \(-0.958346\pi\)
−0.182274 + 0.983248i \(0.558346\pi\)
\(702\) 0 0
\(703\) −28.7984 −1.08615
\(704\) −9.17416 17.4503i −0.345764 0.657683i
\(705\) 0 0
\(706\) −1.68692 + 5.19180i −0.0634880 + 0.195396i
\(707\) −2.02029 + 1.46782i −0.0759807 + 0.0552032i
\(708\) 0 0
\(709\) −12.2984 37.8505i −0.461875 1.42151i −0.862870 0.505425i \(-0.831336\pi\)
0.400995 0.916080i \(-0.368664\pi\)
\(710\) 5.68010 + 17.4815i 0.213170 + 0.656070i
\(711\) 0 0
\(712\) 33.8435 24.5887i 1.26834 0.921501i
\(713\) −5.51435 + 16.9714i −0.206514 + 0.635585i
\(714\) 0 0
\(715\) −15.1353 + 15.5272i −0.566026 + 0.580683i
\(716\) −7.12730 −0.266360
\(717\) 0 0
\(718\) 32.6525 23.7234i 1.21858 0.885350i
\(719\) 28.7609 + 20.8960i 1.07260 + 0.779291i 0.976378 0.216069i \(-0.0693235\pi\)
0.0962240 + 0.995360i \(0.469323\pi\)
\(720\) 0 0
\(721\) 0.506578 + 1.55909i 0.0188659 + 0.0580634i
\(722\) 2.90455 + 2.11028i 0.108096 + 0.0785366i
\(723\) 0 0
\(724\) 0.916408 2.82041i 0.0340580 0.104820i
\(725\) −4.99442 −0.185488
\(726\) 0 0
\(727\) −0.562306 −0.0208548 −0.0104274 0.999946i \(-0.503319\pi\)
−0.0104274 + 0.999946i \(0.503319\pi\)
\(728\) −0.771681 + 2.37499i −0.0286004 + 0.0880230i
\(729\) 0 0
\(730\) −12.4721 9.06154i −0.461614 0.335383i
\(731\) 19.6829 + 60.5779i 0.728000 + 2.24055i
\(732\) 0 0
\(733\) −13.4721 9.78808i −0.497605 0.361531i 0.310497 0.950574i \(-0.399505\pi\)
−0.808101 + 0.589044i \(0.799505\pi\)
\(734\) −7.53464 + 5.47424i −0.278109 + 0.202058i
\(735\) 0 0
\(736\) 15.9787 0.588983
\(737\) 8.92241 9.15345i 0.328661 0.337172i
\(738\) 0 0
\(739\) 4.25329 13.0903i 0.156460 0.481534i −0.841846 0.539718i \(-0.818531\pi\)
0.998306 + 0.0581840i \(0.0185310\pi\)
\(740\) −2.97414 + 2.16084i −0.109331 + 0.0794340i
\(741\) 0 0
\(742\) 1.01722 + 3.13068i 0.0373434 + 0.114931i
\(743\) −13.6221 41.9244i −0.499746 1.53806i −0.809428 0.587219i \(-0.800223\pi\)
0.309683 0.950840i \(-0.399777\pi\)
\(744\) 0 0
\(745\) −17.0623 + 12.3965i −0.625115 + 0.454172i
\(746\) −5.92170 + 18.2251i −0.216809 + 0.667269i
\(747\) 0 0
\(748\) 3.50658 + 6.66991i 0.128213 + 0.243876i
\(749\) −2.21888 −0.0810762
\(750\) 0 0
\(751\) −29.5344 + 21.4580i −1.07773 + 0.783015i −0.977285 0.211928i \(-0.932026\pi\)
−0.100442 + 0.994943i \(0.532026\pi\)
\(752\) 3.56365 + 2.58914i 0.129953 + 0.0944163i
\(753\) 0 0
\(754\) 3.85410 + 11.8617i 0.140358 + 0.431978i
\(755\) 10.9427 + 7.95034i 0.398246 + 0.289342i
\(756\) 0 0
\(757\) −1.57953 + 4.86128i −0.0574089 + 0.176686i −0.975649 0.219338i \(-0.929610\pi\)
0.918240 + 0.396024i \(0.129610\pi\)
\(758\) −2.72239 −0.0988815
\(759\) 0 0
\(760\) −17.7984 −0.645615
\(761\) 2.17588 6.69666i 0.0788755 0.242754i −0.903842 0.427867i \(-0.859265\pi\)
0.982717 + 0.185113i \(0.0592652\pi\)
\(762\) 0 0
\(763\) 0.0557281 + 0.0404888i 0.00201749 + 0.00146579i
\(764\) 0.433921 + 1.33547i 0.0156987 + 0.0483156i
\(765\) 0 0
\(766\) 17.6246 + 12.8050i 0.636803 + 0.462665i
\(767\) −28.9431 + 21.0284i −1.04508 + 0.759292i
\(768\) 0 0
\(769\) 11.2705 0.406425 0.203212 0.979135i \(-0.434862\pi\)
0.203212 + 0.979135i \(0.434862\pi\)
\(770\) 1.83812 0.315262i 0.0662412 0.0113612i
\(771\) 0 0
\(772\) 1.13525 3.49396i 0.0408587 0.125750i
\(773\) −39.1141 + 28.4181i −1.40684 + 1.02213i −0.413065 + 0.910702i \(0.635542\pi\)
−0.993773 + 0.111426i \(0.964458\pi\)
\(774\) 0 0
\(775\) 1.92705 + 5.93085i 0.0692217 + 0.213043i
\(776\) −9.87626 30.3960i −0.354537 1.09115i
\(777\) 0 0
\(778\) −24.3156 + 17.6663i −0.871756 + 0.633368i
\(779\) −7.96856 + 24.5247i −0.285503 + 0.878689i
\(780\) 0 0
\(781\) −22.9508 11.3269i −0.821246 0.405309i
\(782\) 68.7758 2.45942
\(783\) 0 0
\(784\) −25.9443 + 18.8496i −0.926581 + 0.673201i
\(785\) −13.3007 9.66356i −0.474724 0.344907i
\(786\) 0 0
\(787\) −13.5279 41.6345i −0.482216 1.48411i −0.835972 0.548771i \(-0.815096\pi\)
0.353756 0.935338i \(-0.384904\pi\)
\(788\) −3.74582 2.72150i −0.133439 0.0969493i
\(789\) 0 0
\(790\) 0.388544 1.19581i 0.0138238 0.0425452i
\(791\) 2.66923 0.0949069
\(792\) 0 0
\(793\) −18.3262 −0.650784
\(794\) 1.15245 3.54686i 0.0408988 0.125873i
\(795\) 0 0
\(796\) 8.16312 + 5.93085i 0.289334 + 0.210214i
\(797\) −0.953850 2.93565i −0.0337871 0.103986i 0.932741 0.360548i \(-0.117410\pi\)
−0.966528 + 0.256562i \(0.917410\pi\)
\(798\) 0 0
\(799\) 4.59017 + 3.33495i 0.162389 + 0.117982i
\(800\) 4.51750 3.28216i 0.159718 0.116042i
\(801\) 0 0
\(802\) −5.11146 −0.180492
\(803\) 21.1567 3.62866i 0.746604 0.128053i
\(804\) 0 0
\(805\) 0.843459 2.59590i 0.0297280 0.0914934i
\(806\) 12.5986 9.15345i 0.443768 0.322417i
\(807\) 0 0
\(808\) 8.16312 + 25.1235i 0.287178 + 0.883842i
\(809\) 7.96856 + 24.5247i 0.280160 + 0.862243i 0.987808 + 0.155678i \(0.0497562\pi\)
−0.707648 + 0.706565i \(0.750244\pi\)
\(810\) 0 0
\(811\) −5.83688 + 4.24074i −0.204961 + 0.148913i −0.685531 0.728044i \(-0.740430\pi\)
0.480570 + 0.876956i \(0.340430\pi\)
\(812\) 0.0531562 0.163598i 0.00186542 0.00574117i
\(813\) 0 0
\(814\) 4.59017 31.5891i 0.160885 1.10720i
\(815\) 5.58394 0.195597
\(816\) 0 0
\(817\) −40.0066 + 29.0665i −1.39965 + 1.01691i
\(818\) −28.6484 20.8142i −1.00167 0.727753i
\(819\) 0 0
\(820\) 1.01722 + 3.13068i 0.0355229 + 0.109328i
\(821\) −24.3560 17.6957i −0.850031 0.617584i 0.0751234 0.997174i \(-0.476065\pi\)
−0.925155 + 0.379590i \(0.876065\pi\)
\(822\) 0 0
\(823\) 16.9615 52.2021i 0.591240 1.81965i 0.0186257 0.999827i \(-0.494071\pi\)
0.572615 0.819825i \(-0.305929\pi\)
\(824\) 17.3413 0.604113
\(825\) 0 0
\(826\) 3.07701 0.107063
\(827\) 10.2140 31.4355i 0.355176 1.09312i −0.600731 0.799451i \(-0.705124\pi\)
0.955907 0.293669i \(-0.0948763\pi\)
\(828\) 0 0
\(829\) 7.30902 + 5.31031i 0.253853 + 0.184435i 0.707433 0.706781i \(-0.249853\pi\)
−0.453580 + 0.891216i \(0.649853\pi\)
\(830\) −3.24231 9.97882i −0.112542 0.346370i
\(831\) 0 0
\(832\) 20.3713 + 14.8006i 0.706249 + 0.513120i
\(833\) −33.4176 + 24.2793i −1.15785 + 0.841228i
\(834\) 0 0
\(835\) 11.9098 0.412157
\(836\) −4.08358 + 4.18932i −0.141234 + 0.144891i
\(837\) 0 0
\(838\) 7.66718 23.5972i 0.264858 0.815151i
\(839\) 39.3393 28.5817i 1.35814 0.986749i 0.359583 0.933113i \(-0.382919\pi\)
0.998561 0.0536359i \(-0.0170810\pi\)
\(840\) 0 0
\(841\) −7.83688 24.1194i −0.270237 0.831705i
\(842\) −10.5948 32.6074i −0.365120 1.12373i
\(843\) 0 0
\(844\) −3.40983 + 2.47739i −0.117371 + 0.0852752i
\(845\) 2.35805 7.25732i 0.0811193 0.249660i
\(846\) 0 0
\(847\) −1.47214 + 2.13914i −0.0505832 + 0.0735017i
\(848\) 41.7239 1.43281
\(849\) 0 0
\(850\) 19.4443 14.1271i 0.666933 0.484555i
\(851\) −37.7959 27.4604i −1.29563 0.941329i
\(852\) 0 0
\(853\) 6.54508 + 20.1437i 0.224099 + 0.689707i 0.998382 + 0.0568668i \(0.0181110\pi\)
−0.774282 + 0.632840i \(0.781889\pi\)
\(854\) 1.27518 + 0.926476i 0.0436359 + 0.0317033i
\(855\) 0 0
\(856\) −7.25329 + 22.3233i −0.247912 + 0.762996i
\(857\) −40.9953 −1.40037 −0.700186 0.713961i \(-0.746899\pi\)
−0.700186 + 0.713961i \(0.746899\pi\)
\(858\) 0 0
\(859\) 15.5836 0.531705 0.265853 0.964014i \(-0.414347\pi\)
0.265853 + 0.964014i \(0.414347\pi\)
\(860\) −1.95070 + 6.00365i −0.0665185 + 0.204723i
\(861\) 0 0
\(862\) −6.86475 4.98753i −0.233814 0.169876i
\(863\) 7.63080 + 23.4852i 0.259755 + 0.799445i 0.992855 + 0.119324i \(0.0380728\pi\)
−0.733100 + 0.680121i \(0.761927\pi\)
\(864\) 0 0
\(865\) −3.39919 2.46965i −0.115576 0.0839708i
\(866\) 35.7757 25.9925i 1.21571 0.883262i
\(867\) 0 0
\(868\) −0.214782 −0.00729017
\(869\) 0.814685 + 1.54962i 0.0276363 + 0.0525674i
\(870\) 0 0
\(871\) −5.04508 + 15.5272i −0.170946 + 0.526118i
\(872\) 0.589512 0.428305i 0.0199634 0.0145043i
\(873\) 0 0
\(874\) 16.5000 + 50.7818i 0.558121 + 1.71772i
\(875\) −0.857690 2.63970i −0.0289952 0.0892380i
\(876\) 0 0
\(877\) −2.04508 + 1.48584i −0.0690576 + 0.0501733i −0.621778 0.783193i \(-0.713590\pi\)
0.552721 + 0.833366i \(0.313590\pi\)
\(878\) 11.9231 36.6956i 0.402386 1.23842i
\(879\) 0 0
\(880\) 3.39919 23.3929i 0.114587 0.788574i
\(881\) 47.8114 1.61081 0.805403 0.592728i \(-0.201949\pi\)
0.805403 + 0.592728i \(0.201949\pi\)
\(882\) 0 0
\(883\) 40.3607 29.3238i 1.35825 0.986823i 0.359691 0.933072i \(-0.382882\pi\)
0.998554 0.0537512i \(-0.0171178\pi\)
\(884\) −7.78639 5.65714i −0.261885 0.190270i
\(885\) 0 0
\(886\) −8.96556 27.5932i −0.301204 0.927010i
\(887\) −13.3273 9.68287i −0.447488 0.325119i 0.341115 0.940021i \(-0.389195\pi\)
−0.788603 + 0.614903i \(0.789195\pi\)
\(888\) 0 0
\(889\) −0.527864 + 1.62460i −0.0177040 + 0.0544873i
\(890\) 39.9022 1.33753
\(891\) 0 0
\(892\) −7.32624 −0.245301
\(893\) −1.36119 + 4.18932i −0.0455506 + 0.140190i
\(894\) 0 0
\(895\) 23.2984 + 16.9273i 0.778779 + 0.565816i
\(896\) −0.980428 3.01745i −0.0327538 0.100806i
\(897\) 0 0
\(898\) −0.562306 0.408539i −0.0187644 0.0136331i
\(899\) 3.67624 2.67094i 0.122609 0.0890809i
\(900\) 0 0
\(901\) 53.7426 1.79043
\(902\) −25.6312 12.6498i −0.853426 0.421191i
\(903\) 0 0
\(904\) 8.72542 26.8541i 0.290203 0.893154i
\(905\) −9.69409 + 7.04317i −0.322243 + 0.234123i
\(906\) 0 0
\(907\) 14.4828 + 44.5734i 0.480893 + 1.48004i 0.837842 + 0.545912i \(0.183817\pi\)
−0.356950 + 0.934124i \(0.616183\pi\)
\(908\) 1.10944 + 3.41451i 0.0368181 + 0.113314i
\(909\) 0 0
\(910\) −1.92705 + 1.40008i −0.0638811 + 0.0464123i
\(911\) −11.7144 + 36.0532i −0.388115 + 1.19449i 0.546081 + 0.837733i \(0.316119\pi\)
−0.934195 + 0.356762i \(0.883881\pi\)
\(912\) 0 0
\(913\) 13.1008 + 6.46564i 0.433574 + 0.213981i
\(914\) −36.9015 −1.22059
\(915\) 0 0
\(916\) 2.94427 2.13914i 0.0972815 0.0706791i
\(917\) 2.31504 + 1.68198i 0.0764495 + 0.0555438i
\(918\) 0 0
\(919\) −0.871323 2.68166i −0.0287423 0.0884597i 0.935656 0.352912i \(-0.114809\pi\)
−0.964399 + 0.264453i \(0.914809\pi\)
\(920\) −23.3592 16.9714i −0.770129 0.559532i
\(921\) 0 0
\(922\) −9.35410 + 28.7890i −0.308061 + 0.948114i
\(923\) 32.6889 1.07597
\(924\) 0 0
\(925\) −16.3262 −0.536803
\(926\) 0.685672 2.11028i 0.0225326 0.0693482i
\(927\) 0 0
\(928\) −3.29180 2.39163i −0.108058 0.0785091i
\(929\) 0.268178 + 0.825366i 0.00879863 + 0.0270794i 0.955359 0.295446i \(-0.0954682\pi\)
−0.946561 + 0.322525i \(0.895468\pi\)
\(930\) 0 0
\(931\) −25.9443 18.8496i −0.850289 0.617771i
\(932\) −1.29161 + 0.938410i −0.0423081 + 0.0307386i
\(933\) 0 0
\(934\) 7.49342 0.245192
\(935\) 4.37833 30.1313i 0.143187 0.985399i
\(936\) 0 0
\(937\) 10.2533 31.5564i 0.334960 1.03090i −0.631781 0.775147i \(-0.717676\pi\)
0.966742 0.255755i \(-0.0823241\pi\)
\(938\) 1.13602 0.825366i 0.0370923 0.0269492i
\(939\) 0 0
\(940\) 0.173762 + 0.534785i 0.00566749 + 0.0174428i
\(941\) −13.9598 42.9640i −0.455078 1.40059i −0.871044 0.491205i \(-0.836557\pi\)
0.415966 0.909380i \(-0.363443\pi\)
\(942\) 0 0
\(943\) −33.8435 + 24.5887i −1.10209 + 0.800719i
\(944\) 12.0521 37.0927i 0.392264 1.20726i
\(945\) 0 0
\(946\) −25.5066 48.5164i −0.829290 1.57740i
\(947\) −25.3365 −0.823324 −0.411662 0.911337i \(-0.635052\pi\)
−0.411662 + 0.911337i \(0.635052\pi\)
\(948\) 0 0
\(949\) −22.1803 + 16.1150i −0.720004 + 0.523114i
\(950\) 15.0959 + 10.9678i 0.489774 + 0.355842i
\(951\) 0 0
\(952\) −1.08359 3.33495i −0.0351194 0.108086i
\(953\) 37.6834 + 27.3786i 1.22068 + 0.886879i 0.996157 0.0875894i \(-0.0279163\pi\)
0.224527 + 0.974468i \(0.427916\pi\)
\(954\) 0 0
\(955\) 1.75329 5.39607i 0.0567351 0.174613i
\(956\) 6.08744 0.196882
\(957\) 0 0
\(958\) −56.8197 −1.83576
\(959\) −0.771681 + 2.37499i −0.0249189 + 0.0766924i
\(960\) 0 0
\(961\) 20.4894 + 14.8864i 0.660947 + 0.480206i
\(962\) 12.5986 + 38.7746i 0.406197 + 1.25014i
\(963\) 0 0
\(964\) −4.32624 3.14320i −0.139339 0.101236i
\(965\) −12.0091 + 8.72515i −0.386588 + 0.280872i
\(966\) 0 0
\(967\) 42.6869 1.37272 0.686359 0.727263i \(-0.259208\pi\)
0.686359 + 0.727263i \(0.259208\pi\)
\(968\) 16.7088 + 21.8032i 0.537041 + 0.700782i
\(969\) 0 0
\(970\) 9.42047 28.9932i 0.302473 0.930917i
\(971\) −10.5784 + 7.68563i −0.339476 + 0.246644i −0.744441 0.667689i \(-0.767284\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(972\) 0 0
\(973\) −0.993422 3.05744i −0.0318477 0.0980170i
\(974\) 8.05457 + 24.7894i 0.258085 + 0.794304i
\(975\) 0 0
\(976\) 16.1631 11.7432i 0.517369 0.375890i
\(977\) −8.85283 + 27.2462i −0.283227 + 0.871683i 0.703697 + 0.710500i \(0.251531\pi\)
−0.986924 + 0.161184i \(0.948469\pi\)
\(978\) 0 0
\(979\) −38.7812 + 39.7854i −1.23945 + 1.27155i
\(980\) −4.09373 −0.130769
\(981\) 0 0
\(982\) −38.6074 + 28.0499i −1.23201 + 0.895109i
\(983\) 31.9603 + 23.2205i 1.01937 + 0.740618i 0.966154 0.257964i \(-0.0830517\pi\)
0.0532194 + 0.998583i \(0.483052\pi\)
\(984\) 0 0
\(985\) 5.78115 + 17.7926i 0.184203 + 0.566918i
\(986\) −14.1686 10.2941i −0.451220 0.327830i
\(987\) 0 0
\(988\) 2.30902 7.10642i 0.0734596 0.226085i
\(989\) −80.2220 −2.55091
\(990\) 0 0
\(991\) −24.7295 −0.785558 −0.392779 0.919633i \(-0.628486\pi\)
−0.392779 + 0.919633i \(0.628486\pi\)
\(992\) −1.56994 + 4.83178i −0.0498456 + 0.153409i
\(993\) 0 0
\(994\) −2.27458 1.65258i −0.0721451 0.0524165i
\(995\) −12.5986 38.7746i −0.399404 1.22924i
\(996\) 0 0
\(997\) 3.02786 + 2.19987i 0.0958934 + 0.0696706i 0.634699 0.772760i \(-0.281124\pi\)
−0.538805 + 0.842430i \(0.681124\pi\)
\(998\) −12.1647 + 8.83819i −0.385068 + 0.279768i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.2.f.c.64.1 8
3.2 odd 2 inner 99.2.f.c.64.2 yes 8
9.2 odd 6 891.2.n.e.757.1 16
9.4 even 3 891.2.n.e.460.1 16
9.5 odd 6 891.2.n.e.460.2 16
9.7 even 3 891.2.n.e.757.2 16
11.4 even 5 1089.2.a.v.1.2 4
11.5 even 5 inner 99.2.f.c.82.1 yes 8
11.7 odd 10 1089.2.a.w.1.3 4
33.5 odd 10 inner 99.2.f.c.82.2 yes 8
33.26 odd 10 1089.2.a.v.1.3 4
33.29 even 10 1089.2.a.w.1.2 4
99.5 odd 30 891.2.n.e.379.1 16
99.16 even 15 891.2.n.e.676.1 16
99.38 odd 30 891.2.n.e.676.2 16
99.49 even 15 891.2.n.e.379.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.f.c.64.1 8 1.1 even 1 trivial
99.2.f.c.64.2 yes 8 3.2 odd 2 inner
99.2.f.c.82.1 yes 8 11.5 even 5 inner
99.2.f.c.82.2 yes 8 33.5 odd 10 inner
891.2.n.e.379.1 16 99.5 odd 30
891.2.n.e.379.2 16 99.49 even 15
891.2.n.e.460.1 16 9.4 even 3
891.2.n.e.460.2 16 9.5 odd 6
891.2.n.e.676.1 16 99.16 even 15
891.2.n.e.676.2 16 99.38 odd 30
891.2.n.e.757.1 16 9.2 odd 6
891.2.n.e.757.2 16 9.7 even 3
1089.2.a.v.1.2 4 11.4 even 5
1089.2.a.v.1.3 4 33.26 odd 10
1089.2.a.w.1.2 4 33.29 even 10
1089.2.a.w.1.3 4 11.7 odd 10