Properties

Label 99.2.f.a.91.1
Level $99$
Weight $2$
Character 99.91
Analytic conductor $0.791$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 99.91
Dual form 99.2.f.a.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.224514i) q^{2} +(-0.572949 + 1.76336i) q^{4} +(1.30902 + 0.951057i) q^{5} +(-0.309017 + 0.951057i) q^{7} +(-0.454915 - 1.40008i) q^{8} -0.618034 q^{10} +(2.19098 + 2.48990i) q^{11} +(3.42705 - 2.48990i) q^{13} +(-0.118034 - 0.363271i) q^{14} +(-2.54508 - 1.84911i) q^{16} +(-6.35410 - 4.61653i) q^{17} +(-0.263932 - 0.812299i) q^{19} +(-2.42705 + 1.76336i) q^{20} +(-1.23607 - 0.277515i) q^{22} +4.23607 q^{23} +(-0.736068 - 2.26538i) q^{25} +(-0.500000 + 1.53884i) q^{26} +(-1.50000 - 1.08981i) q^{28} +(1.85410 - 5.70634i) q^{29} +(-4.11803 + 2.99193i) q^{31} +4.14590 q^{32} +3.00000 q^{34} +(-1.30902 + 0.951057i) q^{35} +(-0.545085 + 1.67760i) q^{37} +(0.263932 + 0.191758i) q^{38} +(0.736068 - 2.26538i) q^{40} +(1.30902 + 4.02874i) q^{41} +6.70820 q^{43} +(-5.64590 + 2.43690i) q^{44} +(-1.30902 + 0.951057i) q^{46} +(-0.336881 - 1.03681i) q^{47} +(4.85410 + 3.52671i) q^{49} +(0.736068 + 0.534785i) q^{50} +(2.42705 + 7.46969i) q^{52} +(-2.11803 + 1.53884i) q^{53} +(0.500000 + 5.34307i) q^{55} +1.47214 q^{56} +(0.708204 + 2.17963i) q^{58} +(-2.97214 + 9.14729i) q^{59} +(-6.92705 - 5.03280i) q^{61} +(0.600813 - 1.84911i) q^{62} +(3.80902 - 2.76741i) q^{64} +6.85410 q^{65} -4.85410 q^{67} +(11.7812 - 8.55951i) q^{68} +(0.190983 - 0.587785i) q^{70} +(-4.30902 - 3.13068i) q^{71} +(2.38197 - 7.33094i) q^{73} +(-0.208204 - 0.640786i) q^{74} +1.58359 q^{76} +(-3.04508 + 1.31433i) q^{77} +(-8.89919 + 6.46564i) q^{79} +(-1.57295 - 4.84104i) q^{80} +(-1.30902 - 0.951057i) q^{82} +(-6.04508 - 4.39201i) q^{83} +(-3.92705 - 12.0862i) q^{85} +(-2.07295 + 1.50609i) q^{86} +(2.48936 - 4.20025i) q^{88} +3.76393 q^{89} +(1.30902 + 4.02874i) q^{91} +(-2.42705 + 7.46969i) q^{92} +(0.336881 + 0.244758i) q^{94} +(0.427051 - 1.31433i) q^{95} +(-0.927051 + 0.673542i) q^{97} -2.29180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 9 q^{4} + 3 q^{5} + q^{7} - 13 q^{8} + 2 q^{10} + 11 q^{11} + 7 q^{13} + 4 q^{14} + q^{16} - 12 q^{17} - 10 q^{19} - 3 q^{20} + 4 q^{22} + 8 q^{23} + 6 q^{25} - 2 q^{26} - 6 q^{28} - 6 q^{29}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.224514i −0.218508 + 0.158755i −0.691655 0.722228i \(-0.743118\pi\)
0.473147 + 0.880984i \(0.343118\pi\)
\(3\) 0 0
\(4\) −0.572949 + 1.76336i −0.286475 + 0.881678i
\(5\) 1.30902 + 0.951057i 0.585410 + 0.425325i 0.840670 0.541547i \(-0.182161\pi\)
−0.255260 + 0.966872i \(0.582161\pi\)
\(6\) 0 0
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i −0.992318 0.123716i \(-0.960519\pi\)
0.875520 + 0.483181i \(0.160519\pi\)
\(8\) −0.454915 1.40008i −0.160837 0.495005i
\(9\) 0 0
\(10\) −0.618034 −0.195440
\(11\) 2.19098 + 2.48990i 0.660606 + 0.750733i
\(12\) 0 0
\(13\) 3.42705 2.48990i 0.950493 0.690574i −0.000430477 1.00000i \(-0.500137\pi\)
0.950923 + 0.309426i \(0.100137\pi\)
\(14\) −0.118034 0.363271i −0.0315459 0.0970883i
\(15\) 0 0
\(16\) −2.54508 1.84911i −0.636271 0.462278i
\(17\) −6.35410 4.61653i −1.54110 1.11967i −0.949644 0.313332i \(-0.898555\pi\)
−0.591452 0.806340i \(-0.701445\pi\)
\(18\) 0 0
\(19\) −0.263932 0.812299i −0.0605502 0.186354i 0.916206 0.400707i \(-0.131236\pi\)
−0.976756 + 0.214353i \(0.931236\pi\)
\(20\) −2.42705 + 1.76336i −0.542705 + 0.394298i
\(21\) 0 0
\(22\) −1.23607 0.277515i −0.263531 0.0591663i
\(23\) 4.23607 0.883281 0.441641 0.897192i \(-0.354397\pi\)
0.441641 + 0.897192i \(0.354397\pi\)
\(24\) 0 0
\(25\) −0.736068 2.26538i −0.147214 0.453077i
\(26\) −0.500000 + 1.53884i −0.0980581 + 0.301792i
\(27\) 0 0
\(28\) −1.50000 1.08981i −0.283473 0.205955i
\(29\) 1.85410 5.70634i 0.344298 1.05964i −0.617660 0.786445i \(-0.711919\pi\)
0.961958 0.273196i \(-0.0880806\pi\)
\(30\) 0 0
\(31\) −4.11803 + 2.99193i −0.739621 + 0.537366i −0.892592 0.450865i \(-0.851116\pi\)
0.152972 + 0.988231i \(0.451116\pi\)
\(32\) 4.14590 0.732898
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −1.30902 + 0.951057i −0.221264 + 0.160758i
\(36\) 0 0
\(37\) −0.545085 + 1.67760i −0.0896114 + 0.275796i −0.985812 0.167854i \(-0.946316\pi\)
0.896201 + 0.443649i \(0.146316\pi\)
\(38\) 0.263932 + 0.191758i 0.0428154 + 0.0311072i
\(39\) 0 0
\(40\) 0.736068 2.26538i 0.116383 0.358189i
\(41\) 1.30902 + 4.02874i 0.204434 + 0.629183i 0.999736 + 0.0229701i \(0.00731226\pi\)
−0.795302 + 0.606213i \(0.792688\pi\)
\(42\) 0 0
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) −5.64590 + 2.43690i −0.851151 + 0.367376i
\(45\) 0 0
\(46\) −1.30902 + 0.951057i −0.193004 + 0.140226i
\(47\) −0.336881 1.03681i −0.0491391 0.151235i 0.923476 0.383656i \(-0.125335\pi\)
−0.972615 + 0.232421i \(0.925335\pi\)
\(48\) 0 0
\(49\) 4.85410 + 3.52671i 0.693443 + 0.503816i
\(50\) 0.736068 + 0.534785i 0.104096 + 0.0756300i
\(51\) 0 0
\(52\) 2.42705 + 7.46969i 0.336571 + 1.03586i
\(53\) −2.11803 + 1.53884i −0.290934 + 0.211376i −0.723673 0.690143i \(-0.757547\pi\)
0.432738 + 0.901520i \(0.357547\pi\)
\(54\) 0 0
\(55\) 0.500000 + 5.34307i 0.0674200 + 0.720459i
\(56\) 1.47214 0.196722
\(57\) 0 0
\(58\) 0.708204 + 2.17963i 0.0929917 + 0.286199i
\(59\) −2.97214 + 9.14729i −0.386939 + 1.19088i 0.548125 + 0.836397i \(0.315342\pi\)
−0.935064 + 0.354480i \(0.884658\pi\)
\(60\) 0 0
\(61\) −6.92705 5.03280i −0.886918 0.644384i 0.0481546 0.998840i \(-0.484666\pi\)
−0.935073 + 0.354456i \(0.884666\pi\)
\(62\) 0.600813 1.84911i 0.0763033 0.234838i
\(63\) 0 0
\(64\) 3.80902 2.76741i 0.476127 0.345927i
\(65\) 6.85410 0.850147
\(66\) 0 0
\(67\) −4.85410 −0.593023 −0.296511 0.955029i \(-0.595823\pi\)
−0.296511 + 0.955029i \(0.595823\pi\)
\(68\) 11.7812 8.55951i 1.42867 1.03799i
\(69\) 0 0
\(70\) 0.190983 0.587785i 0.0228268 0.0702538i
\(71\) −4.30902 3.13068i −0.511386 0.371544i 0.301963 0.953320i \(-0.402358\pi\)
−0.813349 + 0.581776i \(0.802358\pi\)
\(72\) 0 0
\(73\) 2.38197 7.33094i 0.278788 0.858021i −0.709404 0.704802i \(-0.751036\pi\)
0.988192 0.153219i \(-0.0489641\pi\)
\(74\) −0.208204 0.640786i −0.0242032 0.0744898i
\(75\) 0 0
\(76\) 1.58359 0.181650
\(77\) −3.04508 + 1.31433i −0.347020 + 0.149782i
\(78\) 0 0
\(79\) −8.89919 + 6.46564i −1.00124 + 0.727441i −0.962353 0.271803i \(-0.912380\pi\)
−0.0388837 + 0.999244i \(0.512380\pi\)
\(80\) −1.57295 4.84104i −0.175861 0.541245i
\(81\) 0 0
\(82\) −1.30902 0.951057i −0.144557 0.105027i
\(83\) −6.04508 4.39201i −0.663534 0.482086i 0.204320 0.978904i \(-0.434502\pi\)
−0.867855 + 0.496818i \(0.834502\pi\)
\(84\) 0 0
\(85\) −3.92705 12.0862i −0.425948 1.31093i
\(86\) −2.07295 + 1.50609i −0.223532 + 0.162405i
\(87\) 0 0
\(88\) 2.48936 4.20025i 0.265366 0.447749i
\(89\) 3.76393 0.398976 0.199488 0.979900i \(-0.436072\pi\)
0.199488 + 0.979900i \(0.436072\pi\)
\(90\) 0 0
\(91\) 1.30902 + 4.02874i 0.137222 + 0.422327i
\(92\) −2.42705 + 7.46969i −0.253038 + 0.778770i
\(93\) 0 0
\(94\) 0.336881 + 0.244758i 0.0347466 + 0.0252449i
\(95\) 0.427051 1.31433i 0.0438145 0.134847i
\(96\) 0 0
\(97\) −0.927051 + 0.673542i −0.0941278 + 0.0683878i −0.633854 0.773453i \(-0.718528\pi\)
0.539726 + 0.841841i \(0.318528\pi\)
\(98\) −2.29180 −0.231506
\(99\) 0 0
\(100\) 4.41641 0.441641
\(101\) −4.66312 + 3.38795i −0.463998 + 0.337114i −0.795097 0.606482i \(-0.792580\pi\)
0.331100 + 0.943596i \(0.392580\pi\)
\(102\) 0 0
\(103\) 2.14590 6.60440i 0.211442 0.650750i −0.787946 0.615745i \(-0.788855\pi\)
0.999387 0.0350054i \(-0.0111448\pi\)
\(104\) −5.04508 3.66547i −0.494711 0.359429i
\(105\) 0 0
\(106\) 0.309017 0.951057i 0.0300144 0.0923748i
\(107\) 0.781153 + 2.40414i 0.0755169 + 0.232417i 0.981689 0.190493i \(-0.0610086\pi\)
−0.906172 + 0.422910i \(0.861009\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) −1.35410 1.53884i −0.129109 0.146723i
\(111\) 0 0
\(112\) 2.54508 1.84911i 0.240488 0.174725i
\(113\) −1.39919 4.30625i −0.131624 0.405098i 0.863425 0.504477i \(-0.168315\pi\)
−0.995050 + 0.0993784i \(0.968315\pi\)
\(114\) 0 0
\(115\) 5.54508 + 4.02874i 0.517082 + 0.375682i
\(116\) 9.00000 + 6.53888i 0.835629 + 0.607120i
\(117\) 0 0
\(118\) −1.13525 3.49396i −0.104509 0.321645i
\(119\) 6.35410 4.61653i 0.582480 0.423196i
\(120\) 0 0
\(121\) −1.39919 + 10.9106i −0.127199 + 0.991877i
\(122\) 3.27051 0.296098
\(123\) 0 0
\(124\) −2.91641 8.97578i −0.261901 0.806049i
\(125\) 3.69098 11.3597i 0.330132 1.01604i
\(126\) 0 0
\(127\) 4.61803 + 3.35520i 0.409784 + 0.297726i 0.773514 0.633779i \(-0.218497\pi\)
−0.363730 + 0.931504i \(0.618497\pi\)
\(128\) −3.11803 + 9.59632i −0.275598 + 0.848203i
\(129\) 0 0
\(130\) −2.11803 + 1.53884i −0.185764 + 0.134965i
\(131\) −12.7984 −1.11820 −0.559100 0.829101i \(-0.688853\pi\)
−0.559100 + 0.829101i \(0.688853\pi\)
\(132\) 0 0
\(133\) 0.854102 0.0740600
\(134\) 1.50000 1.08981i 0.129580 0.0941456i
\(135\) 0 0
\(136\) −3.57295 + 10.9964i −0.306378 + 0.942934i
\(137\) 11.5172 + 8.36775i 0.983983 + 0.714905i 0.958595 0.284772i \(-0.0919181\pi\)
0.0253875 + 0.999678i \(0.491918\pi\)
\(138\) 0 0
\(139\) −1.71885 + 5.29007i −0.145791 + 0.448698i −0.997112 0.0759473i \(-0.975802\pi\)
0.851321 + 0.524645i \(0.175802\pi\)
\(140\) −0.927051 2.85317i −0.0783501 0.241137i
\(141\) 0 0
\(142\) 2.03444 0.170727
\(143\) 13.7082 + 3.07768i 1.14634 + 0.257369i
\(144\) 0 0
\(145\) 7.85410 5.70634i 0.652248 0.473886i
\(146\) 0.909830 + 2.80017i 0.0752981 + 0.231744i
\(147\) 0 0
\(148\) −2.64590 1.92236i −0.217491 0.158017i
\(149\) 0.190983 + 0.138757i 0.0156459 + 0.0113674i 0.595581 0.803295i \(-0.296922\pi\)
−0.579935 + 0.814663i \(0.696922\pi\)
\(150\) 0 0
\(151\) 5.85410 + 18.0171i 0.476400 + 1.46621i 0.844060 + 0.536248i \(0.180159\pi\)
−0.367660 + 0.929960i \(0.619841\pi\)
\(152\) −1.01722 + 0.739054i −0.0825075 + 0.0599452i
\(153\) 0 0
\(154\) 0.645898 1.08981i 0.0520479 0.0878197i
\(155\) −8.23607 −0.661537
\(156\) 0 0
\(157\) 0.708204 + 2.17963i 0.0565208 + 0.173953i 0.975331 0.220745i \(-0.0708490\pi\)
−0.918811 + 0.394699i \(0.870849\pi\)
\(158\) 1.29837 3.99598i 0.103293 0.317903i
\(159\) 0 0
\(160\) 5.42705 + 3.94298i 0.429046 + 0.311720i
\(161\) −1.30902 + 4.02874i −0.103165 + 0.317509i
\(162\) 0 0
\(163\) 9.59017 6.96767i 0.751160 0.545750i −0.145026 0.989428i \(-0.546327\pi\)
0.896186 + 0.443678i \(0.146327\pi\)
\(164\) −7.85410 −0.613302
\(165\) 0 0
\(166\) 2.85410 0.221521
\(167\) −13.7812 + 10.0126i −1.06642 + 0.774798i −0.975265 0.221039i \(-0.929055\pi\)
−0.0911527 + 0.995837i \(0.529055\pi\)
\(168\) 0 0
\(169\) 1.52786 4.70228i 0.117528 0.361714i
\(170\) 3.92705 + 2.85317i 0.301191 + 0.218828i
\(171\) 0 0
\(172\) −3.84346 + 11.8290i −0.293061 + 0.901949i
\(173\) −3.40983 10.4944i −0.259245 0.797873i −0.992964 0.118420i \(-0.962217\pi\)
0.733719 0.679453i \(-0.237783\pi\)
\(174\) 0 0
\(175\) 2.38197 0.180060
\(176\) −0.972136 10.3884i −0.0732775 0.783053i
\(177\) 0 0
\(178\) −1.16312 + 0.845055i −0.0871795 + 0.0633396i
\(179\) 5.39919 + 16.6170i 0.403554 + 1.24201i 0.922096 + 0.386960i \(0.126475\pi\)
−0.518542 + 0.855052i \(0.673525\pi\)
\(180\) 0 0
\(181\) −9.28115 6.74315i −0.689863 0.501215i 0.186752 0.982407i \(-0.440204\pi\)
−0.876615 + 0.481192i \(0.840204\pi\)
\(182\) −1.30902 0.951057i −0.0970308 0.0704970i
\(183\) 0 0
\(184\) −1.92705 5.93085i −0.142064 0.437228i
\(185\) −2.30902 + 1.67760i −0.169762 + 0.123340i
\(186\) 0 0
\(187\) −2.42705 25.9358i −0.177484 1.89661i
\(188\) 2.02129 0.147417
\(189\) 0 0
\(190\) 0.163119 + 0.502029i 0.0118339 + 0.0364210i
\(191\) 7.16312 22.0458i 0.518305 1.59518i −0.258882 0.965909i \(-0.583354\pi\)
0.777187 0.629270i \(-0.216646\pi\)
\(192\) 0 0
\(193\) 7.97214 + 5.79210i 0.573847 + 0.416924i 0.836501 0.547966i \(-0.184598\pi\)
−0.262654 + 0.964890i \(0.584598\pi\)
\(194\) 0.135255 0.416272i 0.00971074 0.0298866i
\(195\) 0 0
\(196\) −9.00000 + 6.53888i −0.642857 + 0.467063i
\(197\) 16.0344 1.14241 0.571203 0.820809i \(-0.306477\pi\)
0.571203 + 0.820809i \(0.306477\pi\)
\(198\) 0 0
\(199\) −6.70820 −0.475532 −0.237766 0.971322i \(-0.576415\pi\)
−0.237766 + 0.971322i \(0.576415\pi\)
\(200\) −2.83688 + 2.06111i −0.200598 + 0.145743i
\(201\) 0 0
\(202\) 0.680340 2.09387i 0.0478685 0.147324i
\(203\) 4.85410 + 3.52671i 0.340691 + 0.247527i
\(204\) 0 0
\(205\) −2.11803 + 6.51864i −0.147930 + 0.455281i
\(206\) 0.819660 + 2.52265i 0.0571084 + 0.175762i
\(207\) 0 0
\(208\) −13.3262 −0.924008
\(209\) 1.44427 2.43690i 0.0999024 0.168564i
\(210\) 0 0
\(211\) −1.11803 + 0.812299i −0.0769686 + 0.0559210i −0.625604 0.780141i \(-0.715147\pi\)
0.548636 + 0.836062i \(0.315147\pi\)
\(212\) −1.50000 4.61653i −0.103020 0.317064i
\(213\) 0 0
\(214\) −0.781153 0.567541i −0.0533985 0.0387963i
\(215\) 8.78115 + 6.37988i 0.598870 + 0.435104i
\(216\) 0 0
\(217\) −1.57295 4.84104i −0.106779 0.328631i
\(218\) 3.70820 2.69417i 0.251151 0.182472i
\(219\) 0 0
\(220\) −9.70820 2.17963i −0.654527 0.146950i
\(221\) −33.2705 −2.23802
\(222\) 0 0
\(223\) −4.69098 14.4374i −0.314131 0.966797i −0.976110 0.217275i \(-0.930283\pi\)
0.661979 0.749522i \(-0.269717\pi\)
\(224\) −1.28115 + 3.94298i −0.0856006 + 0.263452i
\(225\) 0 0
\(226\) 1.39919 + 1.01657i 0.0930725 + 0.0676212i
\(227\) 2.83688 8.73102i 0.188290 0.579498i −0.811699 0.584076i \(-0.801457\pi\)
0.999990 + 0.00457752i \(0.00145707\pi\)
\(228\) 0 0
\(229\) 6.85410 4.97980i 0.452932 0.329074i −0.337820 0.941211i \(-0.609690\pi\)
0.790752 + 0.612136i \(0.209690\pi\)
\(230\) −2.61803 −0.172628
\(231\) 0 0
\(232\) −8.83282 −0.579903
\(233\) −8.78115 + 6.37988i −0.575272 + 0.417960i −0.837017 0.547177i \(-0.815702\pi\)
0.261744 + 0.965137i \(0.415702\pi\)
\(234\) 0 0
\(235\) 0.545085 1.67760i 0.0355574 0.109434i
\(236\) −14.4271 10.4819i −0.939121 0.682311i
\(237\) 0 0
\(238\) −0.927051 + 2.85317i −0.0600918 + 0.184944i
\(239\) −0.809017 2.48990i −0.0523310 0.161058i 0.921476 0.388436i \(-0.126985\pi\)
−0.973807 + 0.227378i \(0.926985\pi\)
\(240\) 0 0
\(241\) 21.7082 1.39835 0.699174 0.714951i \(-0.253551\pi\)
0.699174 + 0.714951i \(0.253551\pi\)
\(242\) −2.01722 3.68571i −0.129672 0.236927i
\(243\) 0 0
\(244\) 12.8435 9.33132i 0.822218 0.597376i
\(245\) 3.00000 + 9.23305i 0.191663 + 0.589878i
\(246\) 0 0
\(247\) −2.92705 2.12663i −0.186244 0.135314i
\(248\) 6.06231 + 4.40452i 0.384957 + 0.279687i
\(249\) 0 0
\(250\) 1.40983 + 4.33901i 0.0891655 + 0.274423i
\(251\) 20.2082 14.6821i 1.27553 0.926727i 0.276122 0.961123i \(-0.410951\pi\)
0.999408 + 0.0343954i \(0.0109505\pi\)
\(252\) 0 0
\(253\) 9.28115 + 10.5474i 0.583501 + 0.663108i
\(254\) −2.18034 −0.136807
\(255\) 0 0
\(256\) 1.71885 + 5.29007i 0.107428 + 0.330629i
\(257\) 3.93769 12.1190i 0.245627 0.755961i −0.749906 0.661544i \(-0.769901\pi\)
0.995533 0.0944167i \(-0.0300986\pi\)
\(258\) 0 0
\(259\) −1.42705 1.03681i −0.0886726 0.0644244i
\(260\) −3.92705 + 12.0862i −0.243545 + 0.749556i
\(261\) 0 0
\(262\) 3.95492 2.87341i 0.244335 0.177520i
\(263\) −18.2705 −1.12661 −0.563304 0.826250i \(-0.690470\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(264\) 0 0
\(265\) −4.23607 −0.260220
\(266\) −0.263932 + 0.191758i −0.0161827 + 0.0117574i
\(267\) 0 0
\(268\) 2.78115 8.55951i 0.169886 0.522855i
\(269\) 1.14590 + 0.832544i 0.0698666 + 0.0507611i 0.622170 0.782882i \(-0.286251\pi\)
−0.552304 + 0.833643i \(0.686251\pi\)
\(270\) 0 0
\(271\) 5.06231 15.5802i 0.307513 0.946428i −0.671214 0.741263i \(-0.734227\pi\)
0.978727 0.205165i \(-0.0657731\pi\)
\(272\) 7.63525 + 23.4989i 0.462955 + 1.42483i
\(273\) 0 0
\(274\) −5.43769 −0.328503
\(275\) 4.02786 6.79615i 0.242889 0.409823i
\(276\) 0 0
\(277\) −17.9721 + 13.0575i −1.07984 + 0.784550i −0.977655 0.210215i \(-0.932584\pi\)
−0.102186 + 0.994765i \(0.532584\pi\)
\(278\) −0.656541 2.02063i −0.0393767 0.121189i
\(279\) 0 0
\(280\) 1.92705 + 1.40008i 0.115163 + 0.0836711i
\(281\) 23.6525 + 17.1845i 1.41099 + 1.02514i 0.993178 + 0.116609i \(0.0372024\pi\)
0.417811 + 0.908534i \(0.362798\pi\)
\(282\) 0 0
\(283\) 2.38197 + 7.33094i 0.141593 + 0.435779i 0.996557 0.0829083i \(-0.0264209\pi\)
−0.854964 + 0.518687i \(0.826421\pi\)
\(284\) 7.98936 5.80461i 0.474081 0.344440i
\(285\) 0 0
\(286\) −4.92705 + 2.12663i −0.291343 + 0.125750i
\(287\) −4.23607 −0.250047
\(288\) 0 0
\(289\) 13.8090 + 42.4998i 0.812295 + 2.49999i
\(290\) −1.14590 + 3.52671i −0.0672894 + 0.207096i
\(291\) 0 0
\(292\) 11.5623 + 8.40051i 0.676633 + 0.491602i
\(293\) −2.98278 + 9.18005i −0.174256 + 0.536304i −0.999599 0.0283276i \(-0.990982\pi\)
0.825343 + 0.564632i \(0.190982\pi\)
\(294\) 0 0
\(295\) −12.5902 + 9.14729i −0.733028 + 0.532576i
\(296\) 2.59675 0.150933
\(297\) 0 0
\(298\) −0.0901699 −0.00522340
\(299\) 14.5172 10.5474i 0.839553 0.609971i
\(300\) 0 0
\(301\) −2.07295 + 6.37988i −0.119483 + 0.367730i
\(302\) −5.85410 4.25325i −0.336866 0.244747i
\(303\) 0 0
\(304\) −0.830303 + 2.55541i −0.0476212 + 0.146563i
\(305\) −4.28115 13.1760i −0.245138 0.754458i
\(306\) 0 0
\(307\) −18.9787 −1.08317 −0.541586 0.840645i \(-0.682176\pi\)
−0.541586 + 0.840645i \(0.682176\pi\)
\(308\) −0.572949 6.12261i −0.0326468 0.348868i
\(309\) 0 0
\(310\) 2.54508 1.84911i 0.144551 0.105023i
\(311\) 6.07295 + 18.6906i 0.344365 + 1.05985i 0.961923 + 0.273322i \(0.0881223\pi\)
−0.617557 + 0.786526i \(0.711878\pi\)
\(312\) 0 0
\(313\) 9.28115 + 6.74315i 0.524602 + 0.381146i 0.818335 0.574742i \(-0.194898\pi\)
−0.293733 + 0.955888i \(0.594898\pi\)
\(314\) −0.708204 0.514540i −0.0399663 0.0290372i
\(315\) 0 0
\(316\) −6.30244 19.3969i −0.354540 1.09116i
\(317\) −23.6074 + 17.1518i −1.32592 + 0.963340i −0.326085 + 0.945340i \(0.605730\pi\)
−0.999838 + 0.0179992i \(0.994270\pi\)
\(318\) 0 0
\(319\) 18.2705 7.88597i 1.02295 0.441529i
\(320\) 7.61803 0.425861
\(321\) 0 0
\(322\) −0.500000 1.53884i −0.0278639 0.0857563i
\(323\) −2.07295 + 6.37988i −0.115342 + 0.354986i
\(324\) 0 0
\(325\) −8.16312 5.93085i −0.452808 0.328985i
\(326\) −1.39919 + 4.30625i −0.0774938 + 0.238501i
\(327\) 0 0
\(328\) 5.04508 3.66547i 0.278568 0.202392i
\(329\) 1.09017 0.0601030
\(330\) 0 0
\(331\) 3.29180 0.180933 0.0904667 0.995899i \(-0.471164\pi\)
0.0904667 + 0.995899i \(0.471164\pi\)
\(332\) 11.2082 8.14324i 0.615130 0.446918i
\(333\) 0 0
\(334\) 2.01064 6.18812i 0.110017 0.338599i
\(335\) −6.35410 4.61653i −0.347162 0.252228i
\(336\) 0 0
\(337\) 1.29180 3.97574i 0.0703686 0.216572i −0.909687 0.415294i \(-0.863679\pi\)
0.980056 + 0.198721i \(0.0636788\pi\)
\(338\) 0.583592 + 1.79611i 0.0317432 + 0.0976956i
\(339\) 0 0
\(340\) 23.5623 1.27785
\(341\) −16.4721 3.69822i −0.892016 0.200270i
\(342\) 0 0
\(343\) −10.5172 + 7.64121i −0.567877 + 0.412586i
\(344\) −3.05166 9.39205i −0.164535 0.506386i
\(345\) 0 0
\(346\) 3.40983 + 2.47739i 0.183314 + 0.133185i
\(347\) −8.47214 6.15537i −0.454808 0.330437i 0.336683 0.941618i \(-0.390695\pi\)
−0.791491 + 0.611181i \(0.790695\pi\)
\(348\) 0 0
\(349\) −0.218847 0.673542i −0.0117146 0.0360539i 0.945028 0.326988i \(-0.106034\pi\)
−0.956743 + 0.290935i \(0.906034\pi\)
\(350\) −0.736068 + 0.534785i −0.0393445 + 0.0285854i
\(351\) 0 0
\(352\) 9.08359 + 10.3229i 0.484157 + 0.550211i
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) −2.66312 8.19624i −0.141344 0.435011i
\(356\) −2.15654 + 6.63715i −0.114296 + 0.351768i
\(357\) 0 0
\(358\) −5.39919 3.92274i −0.285356 0.207323i
\(359\) −1.14590 + 3.52671i −0.0604782 + 0.186133i −0.976731 0.214468i \(-0.931198\pi\)
0.916253 + 0.400600i \(0.131198\pi\)
\(360\) 0 0
\(361\) 14.7812 10.7391i 0.777955 0.565218i
\(362\) 4.38197 0.230311
\(363\) 0 0
\(364\) −7.85410 −0.411667
\(365\) 10.0902 7.33094i 0.528144 0.383719i
\(366\) 0 0
\(367\) 8.91641 27.4419i 0.465433 1.43245i −0.393005 0.919536i \(-0.628564\pi\)
0.858438 0.512918i \(-0.171436\pi\)
\(368\) −10.7812 7.83297i −0.562006 0.408322i
\(369\) 0 0
\(370\) 0.336881 1.03681i 0.0175136 0.0539014i
\(371\) −0.809017 2.48990i −0.0420021 0.129269i
\(372\) 0 0
\(373\) −34.8885 −1.80646 −0.903230 0.429156i \(-0.858811\pi\)
−0.903230 + 0.429156i \(0.858811\pi\)
\(374\) 6.57295 + 7.46969i 0.339879 + 0.386249i
\(375\) 0 0
\(376\) −1.29837 + 0.943324i −0.0669585 + 0.0486482i
\(377\) −7.85410 24.1724i −0.404507 1.24494i
\(378\) 0 0
\(379\) −8.80902 6.40013i −0.452489 0.328752i 0.338089 0.941114i \(-0.390220\pi\)
−0.790578 + 0.612362i \(0.790220\pi\)
\(380\) 2.07295 + 1.50609i 0.106340 + 0.0772606i
\(381\) 0 0
\(382\) 2.73607 + 8.42075i 0.139989 + 0.430843i
\(383\) 0.572949 0.416272i 0.0292763 0.0212705i −0.573051 0.819520i \(-0.694240\pi\)
0.602327 + 0.798249i \(0.294240\pi\)
\(384\) 0 0
\(385\) −5.23607 1.17557i −0.266855 0.0599126i
\(386\) −3.76393 −0.191579
\(387\) 0 0
\(388\) −0.656541 2.02063i −0.0333308 0.102582i
\(389\) −1.77458 + 5.46158i −0.0899745 + 0.276913i −0.985911 0.167268i \(-0.946505\pi\)
0.895937 + 0.444181i \(0.146505\pi\)
\(390\) 0 0
\(391\) −26.9164 19.5559i −1.36122 0.988985i
\(392\) 2.72949 8.40051i 0.137860 0.424290i
\(393\) 0 0
\(394\) −4.95492 + 3.59996i −0.249625 + 0.181363i
\(395\) −17.7984 −0.895533
\(396\) 0 0
\(397\) −5.29180 −0.265588 −0.132794 0.991144i \(-0.542395\pi\)
−0.132794 + 0.991144i \(0.542395\pi\)
\(398\) 2.07295 1.50609i 0.103908 0.0754933i
\(399\) 0 0
\(400\) −2.31559 + 7.12667i −0.115780 + 0.356333i
\(401\) 23.2082 + 16.8617i 1.15896 + 0.842035i 0.989646 0.143526i \(-0.0458442\pi\)
0.169316 + 0.985562i \(0.445844\pi\)
\(402\) 0 0
\(403\) −6.66312 + 20.5070i −0.331914 + 1.02153i
\(404\) −3.30244 10.1639i −0.164302 0.505671i
\(405\) 0 0
\(406\) −2.29180 −0.113740
\(407\) −5.37132 + 2.31838i −0.266247 + 0.114918i
\(408\) 0 0
\(409\) −2.00000 + 1.45309i −0.0988936 + 0.0718504i −0.636133 0.771579i \(-0.719467\pi\)
0.537240 + 0.843430i \(0.319467\pi\)
\(410\) −0.809017 2.48990i −0.0399545 0.122967i
\(411\) 0 0
\(412\) 10.4164 + 7.56796i 0.513180 + 0.372847i
\(413\) −7.78115 5.65334i −0.382886 0.278183i
\(414\) 0 0
\(415\) −3.73607 11.4984i −0.183396 0.564436i
\(416\) 14.2082 10.3229i 0.696615 0.506120i
\(417\) 0 0
\(418\) 0.100813 + 1.07730i 0.00493093 + 0.0526926i
\(419\) 24.4508 1.19450 0.597251 0.802054i \(-0.296260\pi\)
0.597251 + 0.802054i \(0.296260\pi\)
\(420\) 0 0
\(421\) −8.50000 26.1603i −0.414265 1.27498i −0.912907 0.408168i \(-0.866168\pi\)
0.498642 0.866808i \(-0.333832\pi\)
\(422\) 0.163119 0.502029i 0.00794051 0.0244384i
\(423\) 0 0
\(424\) 3.11803 + 2.26538i 0.151425 + 0.110017i
\(425\) −5.78115 + 17.7926i −0.280427 + 0.863066i
\(426\) 0 0
\(427\) 6.92705 5.03280i 0.335223 0.243554i
\(428\) −4.68692 −0.226551
\(429\) 0 0
\(430\) −4.14590 −0.199933
\(431\) −13.8262 + 10.0453i −0.665986 + 0.483867i −0.868679 0.495375i \(-0.835031\pi\)
0.202693 + 0.979242i \(0.435031\pi\)
\(432\) 0 0
\(433\) −8.43769 + 25.9686i −0.405490 + 1.24797i 0.514996 + 0.857193i \(0.327793\pi\)
−0.920486 + 0.390776i \(0.872207\pi\)
\(434\) 1.57295 + 1.14281i 0.0755040 + 0.0548568i
\(435\) 0 0
\(436\) 6.87539 21.1603i 0.329271 1.01339i
\(437\) −1.11803 3.44095i −0.0534828 0.164603i
\(438\) 0 0
\(439\) 36.7082 1.75199 0.875993 0.482323i \(-0.160207\pi\)
0.875993 + 0.482323i \(0.160207\pi\)
\(440\) 7.25329 3.13068i 0.345787 0.149250i
\(441\) 0 0
\(442\) 10.2812 7.46969i 0.489025 0.355297i
\(443\) −5.43769 16.7355i −0.258353 0.795128i −0.993151 0.116842i \(-0.962723\pi\)
0.734798 0.678286i \(-0.237277\pi\)
\(444\) 0 0
\(445\) 4.92705 + 3.57971i 0.233565 + 0.169695i
\(446\) 4.69098 + 3.40820i 0.222124 + 0.161383i
\(447\) 0 0
\(448\) 1.45492 + 4.47777i 0.0687383 + 0.211555i
\(449\) −21.7984 + 15.8374i −1.02873 + 0.747415i −0.968054 0.250742i \(-0.919325\pi\)
−0.0606750 + 0.998158i \(0.519325\pi\)
\(450\) 0 0
\(451\) −7.16312 + 12.0862i −0.337298 + 0.569118i
\(452\) 8.39512 0.394873
\(453\) 0 0
\(454\) 1.08359 + 3.33495i 0.0508555 + 0.156517i
\(455\) −2.11803 + 6.51864i −0.0992950 + 0.305598i
\(456\) 0 0
\(457\) 18.5902 + 13.5065i 0.869611 + 0.631810i 0.930483 0.366336i \(-0.119388\pi\)
−0.0608712 + 0.998146i \(0.519388\pi\)
\(458\) −1.00000 + 3.07768i −0.0467269 + 0.143811i
\(459\) 0 0
\(460\) −10.2812 + 7.46969i −0.479361 + 0.348276i
\(461\) 24.2705 1.13039 0.565195 0.824957i \(-0.308801\pi\)
0.565195 + 0.824957i \(0.308801\pi\)
\(462\) 0 0
\(463\) 35.2705 1.63916 0.819580 0.572965i \(-0.194207\pi\)
0.819580 + 0.572965i \(0.194207\pi\)
\(464\) −15.2705 + 11.0947i −0.708916 + 0.515057i
\(465\) 0 0
\(466\) 1.28115 3.94298i 0.0593483 0.182655i
\(467\) −12.0451 8.75127i −0.557380 0.404960i 0.273119 0.961980i \(-0.411945\pi\)
−0.830499 + 0.557020i \(0.811945\pi\)
\(468\) 0 0
\(469\) 1.50000 4.61653i 0.0692636 0.213171i
\(470\) 0.208204 + 0.640786i 0.00960373 + 0.0295572i
\(471\) 0 0
\(472\) 14.1591 0.651723
\(473\) 14.6976 + 16.7027i 0.675795 + 0.767993i
\(474\) 0 0
\(475\) −1.64590 + 1.19581i −0.0755190 + 0.0548678i
\(476\) 4.50000 + 13.8496i 0.206257 + 0.634794i
\(477\) 0 0
\(478\) 0.809017 + 0.587785i 0.0370036 + 0.0268847i
\(479\) −24.7705 17.9968i −1.13179 0.822296i −0.145839 0.989308i \(-0.546588\pi\)
−0.985955 + 0.167012i \(0.946588\pi\)
\(480\) 0 0
\(481\) 2.30902 + 7.10642i 0.105282 + 0.324025i
\(482\) −6.70820 + 4.87380i −0.305550 + 0.221995i
\(483\) 0 0
\(484\) −18.4377 8.71851i −0.838077 0.396296i
\(485\) −1.85410 −0.0841904
\(486\) 0 0
\(487\) 0.218847 + 0.673542i 0.00991691 + 0.0305211i 0.955893 0.293717i \(-0.0948922\pi\)
−0.945976 + 0.324238i \(0.894892\pi\)
\(488\) −3.89512 + 11.9880i −0.176324 + 0.542669i
\(489\) 0 0
\(490\) −3.00000 2.17963i −0.135526 0.0984655i
\(491\) 8.98936 27.6664i 0.405684 1.24857i −0.514639 0.857407i \(-0.672074\pi\)
0.920323 0.391160i \(-0.127926\pi\)
\(492\) 0 0
\(493\) −38.1246 + 27.6992i −1.71705 + 1.24751i
\(494\) 1.38197 0.0621776
\(495\) 0 0
\(496\) 16.0132 0.719012
\(497\) 4.30902 3.13068i 0.193286 0.140430i
\(498\) 0 0
\(499\) −7.68034 + 23.6377i −0.343819 + 1.05817i 0.618394 + 0.785868i \(0.287784\pi\)
−0.962213 + 0.272298i \(0.912216\pi\)
\(500\) 17.9164 + 13.0170i 0.801246 + 0.582139i
\(501\) 0 0
\(502\) −2.94834 + 9.07405i −0.131591 + 0.404995i
\(503\) 7.00000 + 21.5438i 0.312115 + 0.960590i 0.976926 + 0.213579i \(0.0685119\pi\)
−0.664811 + 0.747011i \(0.731488\pi\)
\(504\) 0 0
\(505\) −9.32624 −0.415012
\(506\) −5.23607 1.17557i −0.232772 0.0522605i
\(507\) 0 0
\(508\) −8.56231 + 6.22088i −0.379891 + 0.276007i
\(509\) 1.15654 + 3.55947i 0.0512628 + 0.157771i 0.973411 0.229067i \(-0.0735674\pi\)
−0.922148 + 0.386837i \(0.873567\pi\)
\(510\) 0 0
\(511\) 6.23607 + 4.53077i 0.275867 + 0.200429i
\(512\) −18.0451 13.1105i −0.797488 0.579409i
\(513\) 0 0
\(514\) 1.50407 + 4.62904i 0.0663415 + 0.204178i
\(515\) 9.09017 6.60440i 0.400561 0.291024i
\(516\) 0 0
\(517\) 1.84346 3.11044i 0.0810752 0.136797i
\(518\) 0.673762 0.0296034
\(519\) 0 0
\(520\) −3.11803 9.59632i −0.136735 0.420827i
\(521\) 2.76393 8.50651i 0.121090 0.372677i −0.872078 0.489366i \(-0.837228\pi\)
0.993168 + 0.116689i \(0.0372282\pi\)
\(522\) 0 0
\(523\) 12.3541 + 8.97578i 0.540207 + 0.392483i 0.824162 0.566354i \(-0.191647\pi\)
−0.283955 + 0.958838i \(0.591647\pi\)
\(524\) 7.33282 22.5681i 0.320336 0.985891i
\(525\) 0 0
\(526\) 5.64590 4.10199i 0.246173 0.178855i
\(527\) 39.9787 1.74150
\(528\) 0 0
\(529\) −5.05573 −0.219814
\(530\) 1.30902 0.951057i 0.0568601 0.0413113i
\(531\) 0 0
\(532\) −0.489357 + 1.50609i −0.0212163 + 0.0652971i
\(533\) 14.5172 + 10.5474i 0.628811 + 0.456858i
\(534\) 0 0
\(535\) −1.26393 + 3.88998i −0.0546445 + 0.168179i
\(536\) 2.20820 + 6.79615i 0.0953799 + 0.293549i
\(537\) 0 0
\(538\) −0.541020 −0.0233250
\(539\) 1.85410 + 19.8132i 0.0798618 + 0.853414i
\(540\) 0 0
\(541\) 36.8156 26.7481i 1.58283 1.14999i 0.669462 0.742846i \(-0.266525\pi\)
0.913364 0.407144i \(-0.133475\pi\)
\(542\) 1.93363 + 5.95110i 0.0830565 + 0.255622i
\(543\) 0 0
\(544\) −26.3435 19.1396i −1.12947 0.820605i
\(545\) −15.7082 11.4127i −0.672866 0.488865i
\(546\) 0 0
\(547\) 3.62868 + 11.1679i 0.155151 + 0.477506i 0.998176 0.0603684i \(-0.0192275\pi\)
−0.843025 + 0.537874i \(0.819228\pi\)
\(548\) −21.3541 + 15.5147i −0.912202 + 0.662754i
\(549\) 0 0
\(550\) 0.281153 + 3.00444i 0.0119884 + 0.128110i
\(551\) −5.12461 −0.218316
\(552\) 0 0
\(553\) −3.39919 10.4616i −0.144548 0.444873i
\(554\) 2.62210 8.06999i 0.111402 0.342861i
\(555\) 0 0
\(556\) −8.34346 6.06188i −0.353841 0.257081i
\(557\) 12.5557 38.6426i 0.532003 1.63734i −0.218033 0.975941i \(-0.569964\pi\)
0.750037 0.661396i \(-0.230036\pi\)
\(558\) 0 0
\(559\) 22.9894 16.7027i 0.972346 0.706451i
\(560\) 5.09017 0.215099
\(561\) 0 0
\(562\) −11.1672 −0.471059
\(563\) −6.95492 + 5.05304i −0.293115 + 0.212960i −0.724617 0.689151i \(-0.757984\pi\)
0.431503 + 0.902112i \(0.357984\pi\)
\(564\) 0 0
\(565\) 2.26393 6.96767i 0.0952443 0.293132i
\(566\) −2.38197 1.73060i −0.100121 0.0727425i
\(567\) 0 0
\(568\) −2.42299 + 7.45718i −0.101666 + 0.312896i
\(569\) −3.65248 11.2412i −0.153120 0.471254i 0.844846 0.535010i \(-0.179692\pi\)
−0.997966 + 0.0637558i \(0.979692\pi\)
\(570\) 0 0
\(571\) 2.09017 0.0874709 0.0437354 0.999043i \(-0.486074\pi\)
0.0437354 + 0.999043i \(0.486074\pi\)
\(572\) −13.2812 + 22.4091i −0.555313 + 0.936971i
\(573\) 0 0
\(574\) 1.30902 0.951057i 0.0546373 0.0396963i
\(575\) −3.11803 9.59632i −0.130031 0.400194i
\(576\) 0 0
\(577\) −14.7984 10.7516i −0.616064 0.447597i 0.235480 0.971879i \(-0.424334\pi\)
−0.851545 + 0.524282i \(0.824334\pi\)
\(578\) −13.8090 10.0328i −0.574379 0.417311i
\(579\) 0 0
\(580\) 5.56231 + 17.1190i 0.230962 + 0.710829i
\(581\) 6.04508 4.39201i 0.250792 0.182211i
\(582\) 0 0
\(583\) −8.47214 1.90211i −0.350880 0.0787775i
\(584\) −11.3475 −0.469564
\(585\) 0 0
\(586\) −1.13932 3.50647i −0.0470649 0.144851i
\(587\) −11.7812 + 36.2587i −0.486260 + 1.49656i 0.343887 + 0.939011i \(0.388256\pi\)
−0.830147 + 0.557544i \(0.811744\pi\)
\(588\) 0 0
\(589\) 3.51722 + 2.55541i 0.144925 + 0.105294i
\(590\) 1.83688 5.65334i 0.0756232 0.232744i
\(591\) 0 0
\(592\) 4.48936 3.26171i 0.184511 0.134055i
\(593\) −15.0344 −0.617391 −0.308695 0.951161i \(-0.599892\pi\)
−0.308695 + 0.951161i \(0.599892\pi\)
\(594\) 0 0
\(595\) 12.7082 0.520986
\(596\) −0.354102 + 0.257270i −0.0145046 + 0.0105382i
\(597\) 0 0
\(598\) −2.11803 + 6.51864i −0.0866129 + 0.266567i
\(599\) −15.0902 10.9637i −0.616568 0.447963i 0.235153 0.971958i \(-0.424441\pi\)
−0.851721 + 0.523996i \(0.824441\pi\)
\(600\) 0 0
\(601\) 8.92705 27.4746i 0.364142 1.12071i −0.586375 0.810040i \(-0.699445\pi\)
0.950517 0.310674i \(-0.100555\pi\)
\(602\) −0.791796 2.43690i −0.0322712 0.0993205i
\(603\) 0 0
\(604\) −35.1246 −1.42920
\(605\) −12.2082 + 12.9515i −0.496334 + 0.526554i
\(606\) 0 0
\(607\) −2.88197 + 2.09387i −0.116975 + 0.0849876i −0.644735 0.764406i \(-0.723032\pi\)
0.527760 + 0.849394i \(0.323032\pi\)
\(608\) −1.09424 3.36771i −0.0443771 0.136579i
\(609\) 0 0
\(610\) 4.28115 + 3.11044i 0.173339 + 0.125938i
\(611\) −3.73607 2.71441i −0.151145 0.109813i
\(612\) 0 0
\(613\) −8.56231 26.3521i −0.345828 1.06435i −0.961139 0.276065i \(-0.910969\pi\)
0.615311 0.788285i \(-0.289031\pi\)
\(614\) 5.86475 4.26099i 0.236682 0.171959i
\(615\) 0 0
\(616\) 3.22542 + 3.66547i 0.129956 + 0.147686i
\(617\) 11.1803 0.450104 0.225052 0.974347i \(-0.427745\pi\)
0.225052 + 0.974347i \(0.427745\pi\)
\(618\) 0 0
\(619\) −4.98278 15.3354i −0.200275 0.616382i −0.999874 0.0158490i \(-0.994955\pi\)
0.799600 0.600533i \(-0.205045\pi\)
\(620\) 4.71885 14.5231i 0.189513 0.583262i
\(621\) 0 0
\(622\) −6.07295 4.41226i −0.243503 0.176915i
\(623\) −1.16312 + 3.57971i −0.0465994 + 0.143418i
\(624\) 0 0
\(625\) 6.00000 4.35926i 0.240000 0.174370i
\(626\) −4.38197 −0.175139
\(627\) 0 0
\(628\) −4.24922 −0.169562
\(629\) 11.2082 8.14324i 0.446900 0.324692i
\(630\) 0 0
\(631\) −9.95492 + 30.6381i −0.396299 + 1.21968i 0.531646 + 0.846966i \(0.321574\pi\)
−0.927945 + 0.372716i \(0.878426\pi\)
\(632\) 13.1008 + 9.51830i 0.521122 + 0.378618i
\(633\) 0 0
\(634\) 3.44427 10.6004i 0.136790 0.420995i
\(635\) 2.85410 + 8.78402i 0.113262 + 0.348583i
\(636\) 0 0
\(637\) 25.4164 1.00703
\(638\) −3.87539 + 6.53888i −0.153428 + 0.258877i
\(639\) 0 0
\(640\) −13.2082 + 9.59632i −0.522100 + 0.379328i
\(641\) 4.29837 + 13.2290i 0.169776 + 0.522515i 0.999356 0.0358711i \(-0.0114206\pi\)
−0.829581 + 0.558387i \(0.811421\pi\)
\(642\) 0 0
\(643\) −11.4443 8.31475i −0.451318 0.327902i 0.338798 0.940859i \(-0.389980\pi\)
−0.790116 + 0.612957i \(0.789980\pi\)
\(644\) −6.35410 4.61653i −0.250387 0.181917i
\(645\) 0 0
\(646\) −0.791796 2.43690i −0.0311528 0.0958785i
\(647\) 12.9164 9.38432i 0.507796 0.368936i −0.304191 0.952611i \(-0.598386\pi\)
0.811987 + 0.583676i \(0.198386\pi\)
\(648\) 0 0
\(649\) −29.2877 + 12.6412i −1.14964 + 0.496212i
\(650\) 3.85410 0.151170
\(651\) 0 0
\(652\) 6.79180 + 20.9030i 0.265987 + 0.818625i
\(653\) 1.04508 3.21644i 0.0408973 0.125869i −0.928523 0.371274i \(-0.878921\pi\)
0.969421 + 0.245405i \(0.0789210\pi\)
\(654\) 0 0
\(655\) −16.7533 12.1720i −0.654605 0.475598i
\(656\) 4.11803 12.6740i 0.160782 0.494837i
\(657\) 0 0
\(658\) −0.336881 + 0.244758i −0.0131330 + 0.00954168i
\(659\) 0.875388 0.0341003 0.0170501 0.999855i \(-0.494573\pi\)
0.0170501 + 0.999855i \(0.494573\pi\)
\(660\) 0 0
\(661\) 16.4377 0.639352 0.319676 0.947527i \(-0.396426\pi\)
0.319676 + 0.947527i \(0.396426\pi\)
\(662\) −1.01722 + 0.739054i −0.0395354 + 0.0287242i
\(663\) 0 0
\(664\) −3.39919 + 10.4616i −0.131914 + 0.405990i
\(665\) 1.11803 + 0.812299i 0.0433555 + 0.0314996i
\(666\) 0 0
\(667\) 7.85410 24.1724i 0.304112 0.935961i
\(668\) −9.75987 30.0378i −0.377621 1.16220i
\(669\) 0 0
\(670\) 3.00000 0.115900
\(671\) −2.64590 28.2744i −0.102144 1.09152i
\(672\) 0 0
\(673\) 14.4271 10.4819i 0.556122 0.404046i −0.273916 0.961754i \(-0.588319\pi\)
0.830038 + 0.557707i \(0.188319\pi\)
\(674\) 0.493422 + 1.51860i 0.0190059 + 0.0584942i
\(675\) 0 0
\(676\) 7.41641 + 5.38834i 0.285246 + 0.207244i
\(677\) 18.1803 + 13.2088i 0.698727 + 0.507655i 0.879517 0.475867i \(-0.157866\pi\)
−0.180790 + 0.983522i \(0.557866\pi\)
\(678\) 0 0
\(679\) −0.354102 1.08981i −0.0135892 0.0418232i
\(680\) −15.1353 + 10.9964i −0.580411 + 0.421693i
\(681\) 0 0
\(682\) 5.92047 2.55541i 0.226707 0.0978517i
\(683\) 49.0689 1.87757 0.938784 0.344505i \(-0.111953\pi\)
0.938784 + 0.344505i \(0.111953\pi\)
\(684\) 0 0
\(685\) 7.11803 + 21.9071i 0.271966 + 0.837026i
\(686\) 1.53444 4.72253i 0.0585853 0.180307i
\(687\) 0 0
\(688\) −17.0729 12.4042i −0.650900 0.472907i
\(689\) −3.42705 + 10.5474i −0.130560 + 0.401823i
\(690\) 0 0
\(691\) −26.4164 + 19.1926i −1.00493 + 0.730123i −0.963139 0.269004i \(-0.913306\pi\)
−0.0417884 + 0.999126i \(0.513306\pi\)
\(692\) 20.4590 0.777734
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −7.28115 + 5.29007i −0.276190 + 0.200664i
\(696\) 0 0
\(697\) 10.2812 31.6421i 0.389426 1.19853i
\(698\) 0.218847 + 0.159002i 0.00828348 + 0.00601830i
\(699\) 0 0
\(700\) −1.36475 + 4.20025i −0.0515825 + 0.158755i
\(701\) 3.15248 + 9.70232i 0.119067 + 0.366452i 0.992774 0.120002i \(-0.0382902\pi\)
−0.873706 + 0.486454i \(0.838290\pi\)
\(702\) 0 0
\(703\) 1.50658 0.0568217
\(704\) 15.2361 + 3.42071i 0.574231 + 0.128923i
\(705\) 0 0
\(706\) −3.70820 + 2.69417i −0.139560 + 0.101396i
\(707\) −1.78115 5.48183i −0.0669872 0.206165i
\(708\) 0 0
\(709\) 32.5344 + 23.6377i 1.22186 + 0.887731i 0.996253 0.0864884i \(-0.0275645\pi\)
0.225604 + 0.974219i \(0.427565\pi\)
\(710\) 2.66312 + 1.93487i 0.0999451 + 0.0726143i
\(711\) 0 0
\(712\) −1.71227 5.26982i −0.0641700 0.197495i
\(713\) −17.4443 + 12.6740i −0.653293 + 0.474645i
\(714\) 0 0
\(715\) 15.0172 + 17.0660i 0.561612 + 0.638233i
\(716\) −32.3951 −1.21066
\(717\) 0 0
\(718\) −0.437694 1.34708i −0.0163346 0.0502727i
\(719\) −14.3647 + 44.2101i −0.535715 + 1.64876i 0.206385 + 0.978471i \(0.433830\pi\)
−0.742100 + 0.670289i \(0.766170\pi\)
\(720\) 0 0
\(721\) 5.61803 + 4.08174i 0.209227 + 0.152012i
\(722\) −2.15654 + 6.63715i −0.0802582 + 0.247009i
\(723\) 0 0
\(724\) 17.2082 12.5025i 0.639538 0.464651i
\(725\) −14.2918 −0.530784
\(726\) 0 0
\(727\) −15.8541 −0.587996 −0.293998 0.955806i \(-0.594986\pi\)
−0.293998 + 0.955806i \(0.594986\pi\)
\(728\) 5.04508 3.66547i 0.186983 0.135851i
\(729\) 0 0
\(730\) −1.47214 + 4.53077i −0.0544862 + 0.167691i
\(731\) −42.6246 30.9686i −1.57653 1.14541i
\(732\) 0 0
\(733\) −15.3262 + 47.1693i −0.566088 + 1.74224i 0.0986105 + 0.995126i \(0.468560\pi\)
−0.664698 + 0.747112i \(0.731440\pi\)
\(734\) 3.40576 + 10.4819i 0.125709 + 0.386893i
\(735\) 0 0
\(736\) 17.5623 0.647355
\(737\) −10.6353 12.0862i −0.391755 0.445202i
\(738\) 0 0
\(739\) −2.42705 + 1.76336i −0.0892805 + 0.0648661i −0.631530 0.775351i \(-0.717573\pi\)
0.542250 + 0.840218i \(0.317573\pi\)
\(740\) −1.63525 5.03280i −0.0601132 0.185009i
\(741\) 0 0
\(742\) 0.809017 + 0.587785i 0.0296999 + 0.0215783i
\(743\) −5.75329 4.18001i −0.211068 0.153350i 0.477229 0.878779i \(-0.341641\pi\)
−0.688297 + 0.725429i \(0.741641\pi\)
\(744\) 0 0
\(745\) 0.118034 + 0.363271i 0.00432443 + 0.0133092i
\(746\) 10.7812 7.83297i 0.394726 0.286785i
\(747\) 0 0
\(748\) 47.1246 + 10.5801i 1.72305 + 0.386848i
\(749\) −2.52786 −0.0923661
\(750\) 0 0
\(751\) 7.06231 + 21.7355i 0.257707 + 0.793141i 0.993284 + 0.115700i \(0.0369111\pi\)
−0.735577 + 0.677441i \(0.763089\pi\)
\(752\) −1.05979 + 3.26171i −0.0386467 + 0.118942i
\(753\) 0 0
\(754\) 7.85410 + 5.70634i 0.286030 + 0.207813i
\(755\) −9.47214 + 29.1522i −0.344726 + 1.06096i
\(756\) 0 0
\(757\) −4.04508 + 2.93893i −0.147021 + 0.106817i −0.658864 0.752262i \(-0.728963\pi\)
0.511843 + 0.859079i \(0.328963\pi\)
\(758\) 4.15905 0.151064
\(759\) 0 0
\(760\) −2.03444 −0.0737970
\(761\) 34.5517 25.1033i 1.25250 0.909992i 0.254133 0.967169i \(-0.418210\pi\)
0.998364 + 0.0571772i \(0.0182100\pi\)
\(762\) 0 0
\(763\) 3.70820 11.4127i 0.134246 0.413167i
\(764\) 34.7705 + 25.2623i 1.25795 + 0.913956i
\(765\) 0 0
\(766\) −0.0835921 + 0.257270i −0.00302031 + 0.00929555i
\(767\) 12.5902 + 38.7486i 0.454605 + 1.39913i
\(768\) 0 0
\(769\) 3.50658 0.126450 0.0632252 0.997999i \(-0.479861\pi\)
0.0632252 + 0.997999i \(0.479861\pi\)
\(770\) 1.88197 0.812299i 0.0678213 0.0292732i
\(771\) 0 0
\(772\) −14.7812 + 10.7391i −0.531985 + 0.386510i
\(773\) −1.48936 4.58377i −0.0535684 0.164867i 0.920693 0.390287i \(-0.127624\pi\)
−0.974262 + 0.225421i \(0.927624\pi\)
\(774\) 0 0
\(775\) 9.80902 + 7.12667i 0.352350 + 0.255997i
\(776\) 1.36475 + 0.991545i 0.0489915 + 0.0355944i
\(777\) 0 0
\(778\) −0.677827 2.08614i −0.0243013 0.0747917i
\(779\) 2.92705 2.12663i 0.104872 0.0761943i
\(780\) 0 0
\(781\) −1.64590 17.5883i −0.0588949 0.629358i
\(782\) 12.7082 0.454444
\(783\) 0 0
\(784\) −5.83282 17.9516i −0.208315 0.641127i
\(785\) −1.14590 + 3.52671i −0.0408989 + 0.125874i
\(786\) 0 0
\(787\) −3.00000 2.17963i −0.106938 0.0776953i 0.533031 0.846096i \(-0.321053\pi\)
−0.639969 + 0.768400i \(0.721053\pi\)
\(788\) −9.18692 + 28.2744i −0.327270 + 1.00723i
\(789\) 0 0
\(790\) 5.50000 3.99598i 0.195681 0.142171i
\(791\) 4.52786 0.160992
\(792\) 0 0
\(793\) −36.2705 −1.28800
\(794\) 1.63525 1.18808i 0.0580330 0.0421635i
\(795\) 0 0
\(796\) 3.84346 11.8290i 0.136228 0.419266i
\(797\) −39.2705 28.5317i −1.39103 1.01064i −0.995751 0.0920845i \(-0.970647\pi\)
−0.395282 0.918560i \(-0.629353\pi\)
\(798\) 0 0
\(799\) −2.64590 + 8.14324i −0.0936051 + 0.288087i
\(800\) −3.05166 9.39205i −0.107893 0.332059i
\(801\) 0 0
\(802\) −10.9574 −0.386920
\(803\) 23.4721 10.1311i 0.828314 0.357519i
\(804\) 0 0
\(805\) −5.54508 + 4.02874i −0.195439 + 0.141994i
\(806\) −2.54508 7.83297i −0.0896468 0.275904i
\(807\) 0 0
\(808\) 6.86475 + 4.98753i 0.241501 + 0.175461i
\(809\) 12.8713 + 9.35156i 0.452532 + 0.328783i 0.790594 0.612340i \(-0.209772\pi\)
−0.338063 + 0.941124i \(0.609772\pi\)
\(810\) 0 0
\(811\) 5.07953 + 15.6332i 0.178366 + 0.548955i 0.999771 0.0213905i \(-0.00680931\pi\)
−0.821405 + 0.570346i \(0.806809\pi\)
\(812\) −9.00000 + 6.53888i −0.315838 + 0.229470i
\(813\) 0 0
\(814\) 1.13932 1.92236i 0.0399332 0.0673786i
\(815\) 19.1803 0.671858
\(816\) 0 0
\(817\) −1.77051 5.44907i −0.0619423 0.190639i
\(818\) 0.291796 0.898056i 0.0102024 0.0313998i
\(819\) 0 0
\(820\) −10.2812 7.46969i −0.359033 0.260853i
\(821\) 2.65654 8.17599i 0.0927139 0.285344i −0.893937 0.448192i \(-0.852068\pi\)
0.986651 + 0.162848i \(0.0520680\pi\)
\(822\) 0 0
\(823\) −20.8992 + 15.1841i −0.728500 + 0.529286i −0.889089 0.457735i \(-0.848661\pi\)
0.160589 + 0.987021i \(0.448661\pi\)
\(824\) −10.2229 −0.356132
\(825\) 0 0
\(826\) 3.67376 0.127827
\(827\) 16.7082 12.1392i 0.581001 0.422122i −0.258084 0.966123i \(-0.583091\pi\)
0.839085 + 0.544000i \(0.183091\pi\)
\(828\) 0 0
\(829\) 13.1008 40.3202i 0.455010 1.40038i −0.416113 0.909313i \(-0.636608\pi\)
0.871123 0.491064i \(-0.163392\pi\)
\(830\) 3.73607 + 2.71441i 0.129681 + 0.0942186i
\(831\) 0 0
\(832\) 6.16312 18.9681i 0.213668 0.657602i
\(833\) −14.5623 44.8182i −0.504554 1.55286i
\(834\) 0 0
\(835\) −27.5623 −0.953833
\(836\) 3.46962 + 3.94298i 0.119999 + 0.136371i
\(837\) 0 0
\(838\) −7.55573 + 5.48956i −0.261008 + 0.189634i
\(839\) −11.0729 34.0790i −0.382281 1.17654i −0.938434 0.345459i \(-0.887723\pi\)
0.556153 0.831080i \(-0.312277\pi\)
\(840\) 0 0
\(841\) −5.66312 4.11450i −0.195280 0.141879i
\(842\) 8.50000 + 6.17561i 0.292929 + 0.212826i
\(843\) 0 0
\(844\) −0.791796 2.43690i −0.0272547 0.0838815i
\(845\) 6.47214 4.70228i 0.222648 0.161763i
\(846\) 0 0
\(847\) −9.94427 4.70228i −0.341689 0.161572i
\(848\) 8.23607 0.282828
\(849\) 0 0
\(850\) −2.20820 6.79615i −0.0757408 0.233106i
\(851\) −2.30902 + 7.10642i −0.0791521 + 0.243605i
\(852\) 0 0
\(853\) 1.75329 + 1.27384i 0.0600315 + 0.0436154i 0.617396 0.786652i \(-0.288188\pi\)
−0.557365 + 0.830268i \(0.688188\pi\)
\(854\) −1.01064 + 3.11044i −0.0345835 + 0.106437i
\(855\) 0 0
\(856\) 3.01064 2.18736i 0.102902 0.0747624i
\(857\) −32.2361 −1.10116 −0.550582 0.834781i \(-0.685594\pi\)
−0.550582 + 0.834781i \(0.685594\pi\)
\(858\) 0 0
\(859\) −7.58359 −0.258749 −0.129374 0.991596i \(-0.541297\pi\)
−0.129374 + 0.991596i \(0.541297\pi\)
\(860\) −16.2812 + 11.8290i −0.555183 + 0.403364i
\(861\) 0 0
\(862\) 2.01722 6.20837i 0.0687068 0.211458i
\(863\) 29.0344 + 21.0948i 0.988344 + 0.718074i 0.959558 0.281512i \(-0.0908358\pi\)
0.0287861 + 0.999586i \(0.490836\pi\)
\(864\) 0 0
\(865\) 5.51722 16.9803i 0.187591 0.577346i
\(866\) −3.22291 9.91910i −0.109519 0.337065i
\(867\) 0 0
\(868\) 9.43769 0.320336
\(869\) −35.5967 7.99197i −1.20754 0.271109i
\(870\) 0 0
\(871\) −16.6353 + 12.0862i −0.563664 + 0.409526i
\(872\) 5.45898 + 16.8010i 0.184864 + 0.568954i
\(873\) 0 0
\(874\) 1.11803 + 0.812299i 0.0378181 + 0.0274764i
\(875\) 9.66312 + 7.02067i 0.326673 + 0.237342i
\(876\) 0 0
\(877\) −12.3779 38.0953i −0.417972 1.28639i −0.909565 0.415561i \(-0.863585\pi\)
0.491593 0.870825i \(-0.336415\pi\)
\(878\) −11.3435 + 8.24151i −0.382823 + 0.278137i
\(879\) 0 0
\(880\) 8.60739 14.5231i 0.290155 0.489574i
\(881\) −30.7984 −1.03762 −0.518812 0.854888i \(-0.673625\pi\)
−0.518812 + 0.854888i \(0.673625\pi\)
\(882\) 0 0
\(883\) 5.85410 + 18.0171i 0.197006 + 0.606323i 0.999947 + 0.0102644i \(0.00326732\pi\)
−0.802941 + 0.596058i \(0.796733\pi\)
\(884\) 19.0623 58.6677i 0.641135 1.97321i
\(885\) 0 0
\(886\) 5.43769 + 3.95072i 0.182683 + 0.132727i
\(887\) −9.42047 + 28.9932i −0.316309 + 0.973498i 0.658904 + 0.752227i \(0.271020\pi\)
−0.975212 + 0.221270i \(0.928980\pi\)
\(888\) 0 0
\(889\) −4.61803 + 3.35520i −0.154884 + 0.112530i
\(890\) −2.32624 −0.0779757
\(891\) 0 0
\(892\) 28.1459 0.942394
\(893\) −0.753289 + 0.547296i −0.0252079 + 0.0183146i
\(894\) 0 0
\(895\) −8.73607 + 26.8869i −0.292015 + 0.898728i
\(896\) −8.16312 5.93085i −0.272711 0.198136i
\(897\) 0 0
\(898\) 3.18034 9.78808i 0.106129 0.326632i
\(899\) 9.43769 + 29.0462i 0.314765 + 0.968746i
\(900\) 0 0
\(901\) 20.5623 0.685030
\(902\) −0.500000 5.34307i −0.0166482 0.177905i
\(903\) 0 0
\(904\) −5.39261 + 3.91796i −0.179356 + 0.130309i
\(905\) −5.73607 17.6538i −0.190673 0.586832i
\(906\) 0 0
\(907\) −25.3992 18.4536i −0.843366 0.612741i 0.0799428 0.996799i \(-0.474526\pi\)
−0.923309 + 0.384058i \(0.874526\pi\)
\(908\) 13.7705 + 10.0049i 0.456990 + 0.332023i
\(909\) 0 0
\(910\) −0.809017 2.48990i −0.0268187 0.0825393i
\(911\) −8.57295 + 6.22861i −0.284034 + 0.206363i −0.720675 0.693273i \(-0.756168\pi\)
0.436641 + 0.899636i \(0.356168\pi\)
\(912\) 0 0
\(913\) −2.30902 24.6745i −0.0764173 0.816606i
\(914\) −8.77709 −0.290320
\(915\) 0 0
\(916\) 4.85410 + 14.9394i 0.160384 + 0.493611i
\(917\) 3.95492 12.1720i 0.130603 0.401954i
\(918\) 0 0
\(919\) 4.57295 + 3.32244i 0.150848 + 0.109597i 0.660649 0.750695i \(-0.270281\pi\)
−0.509801 + 0.860292i \(0.670281\pi\)
\(920\) 3.11803 9.59632i 0.102799 0.316381i
\(921\) 0 0
\(922\) −7.50000 + 5.44907i −0.246999 + 0.179456i
\(923\) −22.5623 −0.742647
\(924\) 0 0
\(925\) 4.20163 0.138149
\(926\) −10.8992 + 7.91872i −0.358170 + 0.260225i
\(927\) 0 0
\(928\) 7.68692 23.6579i 0.252335 0.776609i
\(929\) 0.572949 + 0.416272i 0.0187978 + 0.0136574i 0.597145 0.802134i \(-0.296302\pi\)
−0.578347 + 0.815791i \(0.696302\pi\)
\(930\) 0 0
\(931\) 1.58359 4.87380i 0.0519001 0.159732i
\(932\) −6.21885 19.1396i −0.203705 0.626940i
\(933\) 0 0
\(934\) 5.68692 0.186082
\(935\) 21.4894 36.2587i 0.702777 1.18578i
\(936\) 0 0
\(937\) −8.37132 + 6.08212i −0.273479 + 0.198694i −0.716068 0.698030i \(-0.754060\pi\)
0.442589 + 0.896725i \(0.354060\pi\)
\(938\) 0.572949 + 1.76336i 0.0187074 + 0.0575756i
\(939\) 0 0
\(940\) 2.64590 + 1.92236i 0.0862997 + 0.0627004i
\(941\) 33.5344 + 24.3642i 1.09319 + 0.794250i 0.979935 0.199316i \(-0.0638719\pi\)
0.113256 + 0.993566i \(0.463872\pi\)
\(942\) 0 0
\(943\) 5.54508 + 17.0660i 0.180573 + 0.555746i
\(944\) 24.4787 17.7848i 0.796714 0.578847i
\(945\) 0 0
\(946\) −8.29180 1.86162i −0.269590 0.0605266i
\(947\) −41.3951 −1.34516 −0.672580 0.740024i \(-0.734814\pi\)
−0.672580 + 0.740024i \(0.734814\pi\)
\(948\) 0 0
\(949\) −10.0902 31.0543i −0.327541 1.00807i
\(950\) 0.240133 0.739054i 0.00779095 0.0239781i
\(951\) 0 0
\(952\) −9.35410 6.79615i −0.303168 0.220265i
\(953\) −13.1803 + 40.5649i −0.426953 + 1.31403i 0.474159 + 0.880439i \(0.342752\pi\)
−0.901112 + 0.433587i \(0.857248\pi\)
\(954\) 0 0
\(955\) 30.3435 22.0458i 0.981891 0.713386i
\(956\) 4.85410 0.156993
\(957\) 0 0
\(958\) 11.6950 0.377850
\(959\) −11.5172 + 8.36775i −0.371910 + 0.270209i
\(960\) 0 0
\(961\) −1.57295 + 4.84104i −0.0507403 + 0.156163i
\(962\) −2.30902 1.67760i −0.0744457 0.0540880i
\(963\) 0 0
\(964\) −12.4377 + 38.2793i −0.400591 + 1.23289i
\(965\) 4.92705 + 15.1639i 0.158607 + 0.488143i
\(966\) 0 0
\(967\) −20.9230 −0.672838 −0.336419 0.941712i \(-0.609216\pi\)
−0.336419 + 0.941712i \(0.609216\pi\)
\(968\) 15.9123 3.00444i 0.511442 0.0965663i
\(969\) 0 0
\(970\) 0.572949 0.416272i 0.0183963 0.0133657i
\(971\) 12.9787 + 39.9444i 0.416507 + 1.28188i 0.910896 + 0.412635i \(0.135392\pi\)
−0.494389 + 0.869240i \(0.664608\pi\)
\(972\) 0 0
\(973\) −4.50000 3.26944i −0.144263 0.104813i
\(974\) −0.218847 0.159002i −0.00701231 0.00509474i
\(975\) 0 0
\(976\) 8.32373 + 25.6178i 0.266436 + 0.820006i
\(977\) 39.3156 28.5645i 1.25782 0.913858i 0.259169 0.965832i \(-0.416551\pi\)
0.998648 + 0.0519742i \(0.0165514\pi\)
\(978\) 0 0
\(979\) 8.24671 + 9.37181i 0.263566 + 0.299524i
\(980\) −18.0000 −0.574989
\(981\) 0 0
\(982\) 3.43363 + 10.5676i 0.109571 + 0.337226i
\(983\) 13.5623 41.7405i 0.432570 1.33131i −0.462986 0.886366i \(-0.653222\pi\)
0.895556 0.444949i \(-0.146778\pi\)
\(984\) 0 0
\(985\) 20.9894 + 15.2497i 0.668777 + 0.485895i
\(986\) 5.56231 17.1190i 0.177140 0.545181i
\(987\) 0 0
\(988\) 5.42705 3.94298i 0.172657 0.125443i
\(989\) 28.4164 0.903589
\(990\) 0 0
\(991\) −38.7426 −1.23070 −0.615350 0.788254i \(-0.710985\pi\)
−0.615350 + 0.788254i \(0.710985\pi\)
\(992\) −17.0729 + 12.4042i −0.542067 + 0.393834i
\(993\) 0 0
\(994\) −0.628677 + 1.93487i −0.0199404 + 0.0613703i
\(995\) −8.78115 6.37988i −0.278381 0.202256i
\(996\) 0 0
\(997\) −14.1525 + 43.5568i −0.448213 + 1.37946i 0.430708 + 0.902492i \(0.358264\pi\)
−0.878921 + 0.476967i \(0.841736\pi\)
\(998\) −2.93363 9.02878i −0.0928624 0.285801i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.2.f.a.91.1 4
3.2 odd 2 33.2.e.b.25.1 yes 4
9.2 odd 6 891.2.n.c.190.1 8
9.4 even 3 891.2.n.b.784.1 8
9.5 odd 6 891.2.n.c.784.1 8
9.7 even 3 891.2.n.b.190.1 8
11.2 odd 10 1089.2.a.l.1.2 2
11.4 even 5 inner 99.2.f.a.37.1 4
11.9 even 5 1089.2.a.t.1.1 2
12.11 even 2 528.2.y.b.289.1 4
15.2 even 4 825.2.bx.d.124.2 8
15.8 even 4 825.2.bx.d.124.1 8
15.14 odd 2 825.2.n.c.751.1 4
33.2 even 10 363.2.a.i.1.1 2
33.5 odd 10 363.2.e.k.130.1 4
33.8 even 10 363.2.e.b.148.1 4
33.14 odd 10 363.2.e.k.148.1 4
33.17 even 10 363.2.e.b.130.1 4
33.20 odd 10 363.2.a.d.1.2 2
33.26 odd 10 33.2.e.b.4.1 4
33.29 even 10 363.2.e.f.202.1 4
33.32 even 2 363.2.e.f.124.1 4
99.4 even 15 891.2.n.b.136.1 8
99.59 odd 30 891.2.n.c.136.1 8
99.70 even 15 891.2.n.b.433.1 8
99.92 odd 30 891.2.n.c.433.1 8
132.35 odd 10 5808.2.a.ci.1.2 2
132.59 even 10 528.2.y.b.433.1 4
132.119 even 10 5808.2.a.cj.1.2 2
165.59 odd 10 825.2.n.c.301.1 4
165.92 even 20 825.2.bx.d.499.1 8
165.119 odd 10 9075.2.a.cb.1.1 2
165.134 even 10 9075.2.a.u.1.2 2
165.158 even 20 825.2.bx.d.499.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.4.1 4 33.26 odd 10
33.2.e.b.25.1 yes 4 3.2 odd 2
99.2.f.a.37.1 4 11.4 even 5 inner
99.2.f.a.91.1 4 1.1 even 1 trivial
363.2.a.d.1.2 2 33.20 odd 10
363.2.a.i.1.1 2 33.2 even 10
363.2.e.b.130.1 4 33.17 even 10
363.2.e.b.148.1 4 33.8 even 10
363.2.e.f.124.1 4 33.32 even 2
363.2.e.f.202.1 4 33.29 even 10
363.2.e.k.130.1 4 33.5 odd 10
363.2.e.k.148.1 4 33.14 odd 10
528.2.y.b.289.1 4 12.11 even 2
528.2.y.b.433.1 4 132.59 even 10
825.2.n.c.301.1 4 165.59 odd 10
825.2.n.c.751.1 4 15.14 odd 2
825.2.bx.d.124.1 8 15.8 even 4
825.2.bx.d.124.2 8 15.2 even 4
825.2.bx.d.499.1 8 165.92 even 20
825.2.bx.d.499.2 8 165.158 even 20
891.2.n.b.136.1 8 99.4 even 15
891.2.n.b.190.1 8 9.7 even 3
891.2.n.b.433.1 8 99.70 even 15
891.2.n.b.784.1 8 9.4 even 3
891.2.n.c.136.1 8 99.59 odd 30
891.2.n.c.190.1 8 9.2 odd 6
891.2.n.c.433.1 8 99.92 odd 30
891.2.n.c.784.1 8 9.5 odd 6
1089.2.a.l.1.2 2 11.2 odd 10
1089.2.a.t.1.1 2 11.9 even 5
5808.2.a.ci.1.2 2 132.35 odd 10
5808.2.a.cj.1.2 2 132.119 even 10
9075.2.a.u.1.2 2 165.134 even 10
9075.2.a.cb.1.1 2 165.119 odd 10