Properties

Label 99.2.e.c.67.1
Level $99$
Weight $2$
Character 99.67
Analytic conductor $0.791$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(34,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.34");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 99.67
Dual form 99.2.e.c.34.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +1.73205i q^{3} +(-1.00000 + 1.73205i) q^{4} +(1.00000 - 1.73205i) q^{5} +(-3.00000 + 1.73205i) q^{6} +(-2.00000 - 3.46410i) q^{7} -3.00000 q^{9} +4.00000 q^{10} +(-0.500000 - 0.866025i) q^{11} +(-3.00000 - 1.73205i) q^{12} +(-2.00000 + 3.46410i) q^{13} +(4.00000 - 6.92820i) q^{14} +(3.00000 + 1.73205i) q^{15} +(2.00000 + 3.46410i) q^{16} +4.00000 q^{17} +(-3.00000 - 5.19615i) q^{18} -6.00000 q^{19} +(2.00000 + 3.46410i) q^{20} +(6.00000 - 3.46410i) q^{21} +(1.00000 - 1.73205i) q^{22} +(0.500000 - 0.866025i) q^{23} +(0.500000 + 0.866025i) q^{25} -8.00000 q^{26} -5.19615i q^{27} +8.00000 q^{28} +6.92820i q^{30} +(-0.500000 + 0.866025i) q^{31} +(-4.00000 + 6.92820i) q^{32} +(1.50000 - 0.866025i) q^{33} +(4.00000 + 6.92820i) q^{34} -8.00000 q^{35} +(3.00000 - 5.19615i) q^{36} +3.00000 q^{37} +(-6.00000 - 10.3923i) q^{38} +(-6.00000 - 3.46410i) q^{39} +(1.00000 - 1.73205i) q^{41} +(12.0000 + 6.92820i) q^{42} +(-6.00000 - 10.3923i) q^{43} +2.00000 q^{44} +(-3.00000 + 5.19615i) q^{45} +2.00000 q^{46} +(3.50000 + 6.06218i) q^{47} +(-6.00000 + 3.46410i) q^{48} +(-4.50000 + 7.79423i) q^{49} +(-1.00000 + 1.73205i) q^{50} +6.92820i q^{51} +(-4.00000 - 6.92820i) q^{52} +3.00000 q^{53} +(9.00000 - 5.19615i) q^{54} -2.00000 q^{55} -10.3923i q^{57} +(-5.50000 + 9.52628i) q^{59} +(-6.00000 + 3.46410i) q^{60} -2.00000 q^{62} +(6.00000 + 10.3923i) q^{63} -8.00000 q^{64} +(4.00000 + 6.92820i) q^{65} +(3.00000 + 1.73205i) q^{66} +(2.00000 - 3.46410i) q^{67} +(-4.00000 + 6.92820i) q^{68} +(1.50000 + 0.866025i) q^{69} +(-8.00000 - 13.8564i) q^{70} +15.0000 q^{71} -8.00000 q^{73} +(3.00000 + 5.19615i) q^{74} +(-1.50000 + 0.866025i) q^{75} +(6.00000 - 10.3923i) q^{76} +(-2.00000 + 3.46410i) q^{77} -13.8564i q^{78} +(5.00000 + 8.66025i) q^{79} +8.00000 q^{80} +9.00000 q^{81} +4.00000 q^{82} +(-6.00000 - 10.3923i) q^{83} +13.8564i q^{84} +(4.00000 - 6.92820i) q^{85} +(12.0000 - 20.7846i) q^{86} +3.00000 q^{89} -12.0000 q^{90} +16.0000 q^{91} +(1.00000 + 1.73205i) q^{92} +(-1.50000 - 0.866025i) q^{93} +(-7.00000 + 12.1244i) q^{94} +(-6.00000 + 10.3923i) q^{95} +(-12.0000 - 6.92820i) q^{96} +(-8.50000 - 14.7224i) q^{97} -18.0000 q^{98} +(1.50000 + 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + 2 q^{5} - 6 q^{6} - 4 q^{7} - 6 q^{9} + 8 q^{10} - q^{11} - 6 q^{12} - 4 q^{13} + 8 q^{14} + 6 q^{15} + 4 q^{16} + 8 q^{17} - 6 q^{18} - 12 q^{19} + 4 q^{20} + 12 q^{21} + 2 q^{22}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(3\) 1.73205i 1.00000i
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 1.00000 1.73205i 0.447214 0.774597i −0.550990 0.834512i \(-0.685750\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) −3.00000 + 1.73205i −1.22474 + 0.707107i
\(7\) −2.00000 3.46410i −0.755929 1.30931i −0.944911 0.327327i \(-0.893852\pi\)
0.188982 0.981981i \(-0.439481\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 4.00000 1.26491
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) −3.00000 1.73205i −0.866025 0.500000i
\(13\) −2.00000 + 3.46410i −0.554700 + 0.960769i 0.443227 + 0.896410i \(0.353834\pi\)
−0.997927 + 0.0643593i \(0.979500\pi\)
\(14\) 4.00000 6.92820i 1.06904 1.85164i
\(15\) 3.00000 + 1.73205i 0.774597 + 0.447214i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) −3.00000 5.19615i −0.707107 1.22474i
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 2.00000 + 3.46410i 0.447214 + 0.774597i
\(21\) 6.00000 3.46410i 1.30931 0.755929i
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) 0.500000 0.866025i 0.104257 0.180579i −0.809177 0.587565i \(-0.800087\pi\)
0.913434 + 0.406986i \(0.133420\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) −8.00000 −1.56893
\(27\) 5.19615i 1.00000i
\(28\) 8.00000 1.51186
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 6.92820i 1.26491i
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) −4.00000 + 6.92820i −0.707107 + 1.22474i
\(33\) 1.50000 0.866025i 0.261116 0.150756i
\(34\) 4.00000 + 6.92820i 0.685994 + 1.18818i
\(35\) −8.00000 −1.35225
\(36\) 3.00000 5.19615i 0.500000 0.866025i
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −6.00000 10.3923i −0.973329 1.68585i
\(39\) −6.00000 3.46410i −0.960769 0.554700i
\(40\) 0 0
\(41\) 1.00000 1.73205i 0.156174 0.270501i −0.777312 0.629115i \(-0.783417\pi\)
0.933486 + 0.358614i \(0.116751\pi\)
\(42\) 12.0000 + 6.92820i 1.85164 + 1.06904i
\(43\) −6.00000 10.3923i −0.914991 1.58481i −0.806914 0.590669i \(-0.798864\pi\)
−0.108078 0.994142i \(-0.534469\pi\)
\(44\) 2.00000 0.301511
\(45\) −3.00000 + 5.19615i −0.447214 + 0.774597i
\(46\) 2.00000 0.294884
\(47\) 3.50000 + 6.06218i 0.510527 + 0.884260i 0.999926 + 0.0121990i \(0.00388317\pi\)
−0.489398 + 0.872060i \(0.662783\pi\)
\(48\) −6.00000 + 3.46410i −0.866025 + 0.500000i
\(49\) −4.50000 + 7.79423i −0.642857 + 1.11346i
\(50\) −1.00000 + 1.73205i −0.141421 + 0.244949i
\(51\) 6.92820i 0.970143i
\(52\) −4.00000 6.92820i −0.554700 0.960769i
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 9.00000 5.19615i 1.22474 0.707107i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 10.3923i 1.37649i
\(58\) 0 0
\(59\) −5.50000 + 9.52628i −0.716039 + 1.24022i 0.246518 + 0.969138i \(0.420713\pi\)
−0.962557 + 0.271078i \(0.912620\pi\)
\(60\) −6.00000 + 3.46410i −0.774597 + 0.447214i
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) −2.00000 −0.254000
\(63\) 6.00000 + 10.3923i 0.755929 + 1.30931i
\(64\) −8.00000 −1.00000
\(65\) 4.00000 + 6.92820i 0.496139 + 0.859338i
\(66\) 3.00000 + 1.73205i 0.369274 + 0.213201i
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) −4.00000 + 6.92820i −0.485071 + 0.840168i
\(69\) 1.50000 + 0.866025i 0.180579 + 0.104257i
\(70\) −8.00000 13.8564i −0.956183 1.65616i
\(71\) 15.0000 1.78017 0.890086 0.455792i \(-0.150644\pi\)
0.890086 + 0.455792i \(0.150644\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) −1.50000 + 0.866025i −0.173205 + 0.100000i
\(76\) 6.00000 10.3923i 0.688247 1.19208i
\(77\) −2.00000 + 3.46410i −0.227921 + 0.394771i
\(78\) 13.8564i 1.56893i
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) 8.00000 0.894427
\(81\) 9.00000 1.00000
\(82\) 4.00000 0.441726
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 13.8564i 1.51186i
\(85\) 4.00000 6.92820i 0.433861 0.751469i
\(86\) 12.0000 20.7846i 1.29399 2.24126i
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) −12.0000 −1.26491
\(91\) 16.0000 1.67726
\(92\) 1.00000 + 1.73205i 0.104257 + 0.180579i
\(93\) −1.50000 0.866025i −0.155543 0.0898027i
\(94\) −7.00000 + 12.1244i −0.721995 + 1.25053i
\(95\) −6.00000 + 10.3923i −0.615587 + 1.06623i
\(96\) −12.0000 6.92820i −1.22474 0.707107i
\(97\) −8.50000 14.7224i −0.863044 1.49484i −0.868976 0.494854i \(-0.835222\pi\)
0.00593185 0.999982i \(-0.498112\pi\)
\(98\) −18.0000 −1.81827
\(99\) 1.50000 + 2.59808i 0.150756 + 0.261116i
\(100\) −2.00000 −0.200000
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) −12.0000 + 6.92820i −1.18818 + 0.685994i
\(103\) 0.500000 0.866025i 0.0492665 0.0853320i −0.840341 0.542059i \(-0.817645\pi\)
0.889607 + 0.456727i \(0.150978\pi\)
\(104\) 0 0
\(105\) 13.8564i 1.35225i
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 9.00000 + 5.19615i 0.866025 + 0.500000i
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) −2.00000 3.46410i −0.190693 0.330289i
\(111\) 5.19615i 0.493197i
\(112\) 8.00000 13.8564i 0.755929 1.30931i
\(113\) 1.50000 2.59808i 0.141108 0.244406i −0.786806 0.617200i \(-0.788267\pi\)
0.927914 + 0.372794i \(0.121600\pi\)
\(114\) 18.0000 10.3923i 1.68585 0.973329i
\(115\) −1.00000 1.73205i −0.0932505 0.161515i
\(116\) 0 0
\(117\) 6.00000 10.3923i 0.554700 0.960769i
\(118\) −22.0000 −2.02526
\(119\) −8.00000 13.8564i −0.733359 1.27021i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 3.00000 + 1.73205i 0.270501 + 0.156174i
\(124\) −1.00000 1.73205i −0.0898027 0.155543i
\(125\) 12.0000 1.07331
\(126\) −12.0000 + 20.7846i −1.06904 + 1.85164i
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 18.0000 10.3923i 1.58481 0.914991i
\(130\) −8.00000 + 13.8564i −0.701646 + 1.21529i
\(131\) −9.00000 + 15.5885i −0.786334 + 1.36197i 0.141865 + 0.989886i \(0.454690\pi\)
−0.928199 + 0.372084i \(0.878643\pi\)
\(132\) 3.46410i 0.301511i
\(133\) 12.0000 + 20.7846i 1.04053 + 1.80225i
\(134\) 8.00000 0.691095
\(135\) −9.00000 5.19615i −0.774597 0.447214i
\(136\) 0 0
\(137\) 3.50000 + 6.06218i 0.299025 + 0.517927i 0.975913 0.218159i \(-0.0700052\pi\)
−0.676888 + 0.736086i \(0.736672\pi\)
\(138\) 3.46410i 0.294884i
\(139\) −8.00000 + 13.8564i −0.678551 + 1.17529i 0.296866 + 0.954919i \(0.404058\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 8.00000 13.8564i 0.676123 1.17108i
\(141\) −10.5000 + 6.06218i −0.884260 + 0.510527i
\(142\) 15.0000 + 25.9808i 1.25877 + 2.18026i
\(143\) 4.00000 0.334497
\(144\) −6.00000 10.3923i −0.500000 0.866025i
\(145\) 0 0
\(146\) −8.00000 13.8564i −0.662085 1.14676i
\(147\) −13.5000 7.79423i −1.11346 0.642857i
\(148\) −3.00000 + 5.19615i −0.246598 + 0.427121i
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) −3.00000 1.73205i −0.244949 0.141421i
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) −12.0000 −0.970143
\(154\) −8.00000 −0.644658
\(155\) 1.00000 + 1.73205i 0.0803219 + 0.139122i
\(156\) 12.0000 6.92820i 0.960769 0.554700i
\(157\) −7.00000 + 12.1244i −0.558661 + 0.967629i 0.438948 + 0.898513i \(0.355351\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) −10.0000 + 17.3205i −0.795557 + 1.37795i
\(159\) 5.19615i 0.412082i
\(160\) 8.00000 + 13.8564i 0.632456 + 1.09545i
\(161\) −4.00000 −0.315244
\(162\) 9.00000 + 15.5885i 0.707107 + 1.22474i
\(163\) 13.0000 1.01824 0.509119 0.860696i \(-0.329971\pi\)
0.509119 + 0.860696i \(0.329971\pi\)
\(164\) 2.00000 + 3.46410i 0.156174 + 0.270501i
\(165\) 3.46410i 0.269680i
\(166\) 12.0000 20.7846i 0.931381 1.61320i
\(167\) 9.00000 15.5885i 0.696441 1.20627i −0.273252 0.961943i \(-0.588099\pi\)
0.969693 0.244328i \(-0.0785675\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 16.0000 1.22714
\(171\) 18.0000 1.37649
\(172\) 24.0000 1.82998
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) 2.00000 3.46410i 0.151186 0.261861i
\(176\) 2.00000 3.46410i 0.150756 0.261116i
\(177\) −16.5000 9.52628i −1.24022 0.716039i
\(178\) 3.00000 + 5.19615i 0.224860 + 0.389468i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) −6.00000 10.3923i −0.447214 0.774597i
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 16.0000 + 27.7128i 1.18600 + 2.05421i
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 3.46410i 0.254000i
\(187\) −2.00000 3.46410i −0.146254 0.253320i
\(188\) −14.0000 −1.02105
\(189\) −18.0000 + 10.3923i −1.30931 + 0.755929i
\(190\) −24.0000 −1.74114
\(191\) −10.0000 17.3205i −0.723575 1.25327i −0.959558 0.281511i \(-0.909164\pi\)
0.235983 0.971757i \(-0.424169\pi\)
\(192\) 13.8564i 1.00000i
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) 17.0000 29.4449i 1.22053 2.11402i
\(195\) −12.0000 + 6.92820i −0.859338 + 0.496139i
\(196\) −9.00000 15.5885i −0.642857 1.11346i
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) −3.00000 + 5.19615i −0.213201 + 0.369274i
\(199\) −15.0000 −1.06332 −0.531661 0.846957i \(-0.678432\pi\)
−0.531661 + 0.846957i \(0.678432\pi\)
\(200\) 0 0
\(201\) 6.00000 + 3.46410i 0.423207 + 0.244339i
\(202\) 2.00000 3.46410i 0.140720 0.243733i
\(203\) 0 0
\(204\) −12.0000 6.92820i −0.840168 0.485071i
\(205\) −2.00000 3.46410i −0.139686 0.241943i
\(206\) 2.00000 0.139347
\(207\) −1.50000 + 2.59808i −0.104257 + 0.180579i
\(208\) −16.0000 −1.10940
\(209\) 3.00000 + 5.19615i 0.207514 + 0.359425i
\(210\) 24.0000 13.8564i 1.65616 0.956183i
\(211\) 6.00000 10.3923i 0.413057 0.715436i −0.582165 0.813070i \(-0.697794\pi\)
0.995222 + 0.0976347i \(0.0311277\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 25.9808i 1.78017i
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) −24.0000 −1.63679
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 10.0000 + 17.3205i 0.677285 + 1.17309i
\(219\) 13.8564i 0.936329i
\(220\) 2.00000 3.46410i 0.134840 0.233550i
\(221\) −8.00000 + 13.8564i −0.538138 + 0.932083i
\(222\) −9.00000 + 5.19615i −0.604040 + 0.348743i
\(223\) −3.50000 6.06218i −0.234377 0.405953i 0.724714 0.689050i \(-0.241972\pi\)
−0.959092 + 0.283096i \(0.908638\pi\)
\(224\) 32.0000 2.13809
\(225\) −1.50000 2.59808i −0.100000 0.173205i
\(226\) 6.00000 0.399114
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 18.0000 + 10.3923i 1.19208 + 0.688247i
\(229\) −1.50000 + 2.59808i −0.0991228 + 0.171686i −0.911322 0.411695i \(-0.864937\pi\)
0.812199 + 0.583380i \(0.198270\pi\)
\(230\) 2.00000 3.46410i 0.131876 0.228416i
\(231\) −6.00000 3.46410i −0.394771 0.227921i
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 24.0000 1.56893
\(235\) 14.0000 0.913259
\(236\) −11.0000 19.0526i −0.716039 1.24022i
\(237\) −15.0000 + 8.66025i −0.974355 + 0.562544i
\(238\) 16.0000 27.7128i 1.03713 1.79635i
\(239\) 12.0000 20.7846i 0.776215 1.34444i −0.157893 0.987456i \(-0.550470\pi\)
0.934109 0.356988i \(-0.116196\pi\)
\(240\) 13.8564i 0.894427i
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) −2.00000 −0.128565
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) 9.00000 + 15.5885i 0.574989 + 0.995910i
\(246\) 6.92820i 0.441726i
\(247\) 12.0000 20.7846i 0.763542 1.32249i
\(248\) 0 0
\(249\) 18.0000 10.3923i 1.14070 0.658586i
\(250\) 12.0000 + 20.7846i 0.758947 + 1.31453i
\(251\) 13.0000 0.820553 0.410276 0.911961i \(-0.365432\pi\)
0.410276 + 0.911961i \(0.365432\pi\)
\(252\) −24.0000 −1.51186
\(253\) −1.00000 −0.0628695
\(254\) 2.00000 + 3.46410i 0.125491 + 0.217357i
\(255\) 12.0000 + 6.92820i 0.751469 + 0.433861i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 13.0000 22.5167i 0.810918 1.40455i −0.101305 0.994855i \(-0.532302\pi\)
0.912222 0.409695i \(-0.134365\pi\)
\(258\) 36.0000 + 20.7846i 2.24126 + 1.29399i
\(259\) −6.00000 10.3923i −0.372822 0.645746i
\(260\) −16.0000 −0.992278
\(261\) 0 0
\(262\) −36.0000 −2.22409
\(263\) −1.00000 1.73205i −0.0616626 0.106803i 0.833546 0.552450i \(-0.186307\pi\)
−0.895209 + 0.445647i \(0.852974\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) −24.0000 + 41.5692i −1.47153 + 2.54877i
\(267\) 5.19615i 0.317999i
\(268\) 4.00000 + 6.92820i 0.244339 + 0.423207i
\(269\) −5.00000 −0.304855 −0.152428 0.988315i \(-0.548709\pi\)
−0.152428 + 0.988315i \(0.548709\pi\)
\(270\) 20.7846i 1.26491i
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 8.00000 + 13.8564i 0.485071 + 0.840168i
\(273\) 27.7128i 1.67726i
\(274\) −7.00000 + 12.1244i −0.422885 + 0.732459i
\(275\) 0.500000 0.866025i 0.0301511 0.0522233i
\(276\) −3.00000 + 1.73205i −0.180579 + 0.104257i
\(277\) 1.00000 + 1.73205i 0.0600842 + 0.104069i 0.894503 0.447062i \(-0.147530\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(278\) −32.0000 −1.91923
\(279\) 1.50000 2.59808i 0.0898027 0.155543i
\(280\) 0 0
\(281\) 3.00000 + 5.19615i 0.178965 + 0.309976i 0.941526 0.336939i \(-0.109392\pi\)
−0.762561 + 0.646916i \(0.776058\pi\)
\(282\) −21.0000 12.1244i −1.25053 0.721995i
\(283\) 1.00000 1.73205i 0.0594438 0.102960i −0.834772 0.550596i \(-0.814401\pi\)
0.894216 + 0.447636i \(0.147734\pi\)
\(284\) −15.0000 + 25.9808i −0.890086 + 1.54167i
\(285\) −18.0000 10.3923i −1.06623 0.615587i
\(286\) 4.00000 + 6.92820i 0.236525 + 0.409673i
\(287\) −8.00000 −0.472225
\(288\) 12.0000 20.7846i 0.707107 1.22474i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 25.5000 14.7224i 1.49484 0.863044i
\(292\) 8.00000 13.8564i 0.468165 0.810885i
\(293\) 9.00000 15.5885i 0.525786 0.910687i −0.473763 0.880652i \(-0.657105\pi\)
0.999549 0.0300351i \(-0.00956192\pi\)
\(294\) 31.1769i 1.81827i
\(295\) 11.0000 + 19.0526i 0.640445 + 1.10928i
\(296\) 0 0
\(297\) −4.50000 + 2.59808i −0.261116 + 0.150756i
\(298\) −4.00000 −0.231714
\(299\) 2.00000 + 3.46410i 0.115663 + 0.200334i
\(300\) 3.46410i 0.200000i
\(301\) −24.0000 + 41.5692i −1.38334 + 2.39601i
\(302\) −10.0000 + 17.3205i −0.575435 + 0.996683i
\(303\) 3.00000 1.73205i 0.172345 0.0995037i
\(304\) −12.0000 20.7846i −0.688247 1.19208i
\(305\) 0 0
\(306\) −12.0000 20.7846i −0.685994 1.18818i
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) −4.00000 6.92820i −0.227921 0.394771i
\(309\) 1.50000 + 0.866025i 0.0853320 + 0.0492665i
\(310\) −2.00000 + 3.46410i −0.113592 + 0.196748i
\(311\) −1.50000 + 2.59808i −0.0850572 + 0.147323i −0.905416 0.424526i \(-0.860441\pi\)
0.820358 + 0.571850i \(0.193774\pi\)
\(312\) 0 0
\(313\) −5.50000 9.52628i −0.310878 0.538457i 0.667674 0.744453i \(-0.267290\pi\)
−0.978553 + 0.205996i \(0.933957\pi\)
\(314\) −28.0000 −1.58013
\(315\) 24.0000 1.35225
\(316\) −20.0000 −1.12509
\(317\) −6.50000 11.2583i −0.365076 0.632331i 0.623712 0.781654i \(-0.285624\pi\)
−0.988788 + 0.149323i \(0.952290\pi\)
\(318\) −9.00000 + 5.19615i −0.504695 + 0.291386i
\(319\) 0 0
\(320\) −8.00000 + 13.8564i −0.447214 + 0.774597i
\(321\) 10.3923i 0.580042i
\(322\) −4.00000 6.92820i −0.222911 0.386094i
\(323\) −24.0000 −1.33540
\(324\) −9.00000 + 15.5885i −0.500000 + 0.866025i
\(325\) −4.00000 −0.221880
\(326\) 13.0000 + 22.5167i 0.720003 + 1.24708i
\(327\) 17.3205i 0.957826i
\(328\) 0 0
\(329\) 14.0000 24.2487i 0.771845 1.33687i
\(330\) 6.00000 3.46410i 0.330289 0.190693i
\(331\) −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i \(-0.201729\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(332\) 24.0000 1.31717
\(333\) −9.00000 −0.493197
\(334\) 36.0000 1.96983
\(335\) −4.00000 6.92820i −0.218543 0.378528i
\(336\) 24.0000 + 13.8564i 1.30931 + 0.755929i
\(337\) −16.0000 + 27.7128i −0.871576 + 1.50961i −0.0112091 + 0.999937i \(0.503568\pi\)
−0.860366 + 0.509676i \(0.829765\pi\)
\(338\) 3.00000 5.19615i 0.163178 0.282633i
\(339\) 4.50000 + 2.59808i 0.244406 + 0.141108i
\(340\) 8.00000 + 13.8564i 0.433861 + 0.751469i
\(341\) 1.00000 0.0541530
\(342\) 18.0000 + 31.1769i 0.973329 + 1.68585i
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 3.00000 1.73205i 0.161515 0.0932505i
\(346\) 6.00000 10.3923i 0.322562 0.558694i
\(347\) 1.00000 1.73205i 0.0536828 0.0929814i −0.837935 0.545770i \(-0.816237\pi\)
0.891618 + 0.452788i \(0.149571\pi\)
\(348\) 0 0
\(349\) −3.00000 5.19615i −0.160586 0.278144i 0.774493 0.632583i \(-0.218005\pi\)
−0.935079 + 0.354439i \(0.884672\pi\)
\(350\) 8.00000 0.427618
\(351\) 18.0000 + 10.3923i 0.960769 + 0.554700i
\(352\) 8.00000 0.426401
\(353\) −1.50000 2.59808i −0.0798369 0.138282i 0.823343 0.567545i \(-0.192107\pi\)
−0.903179 + 0.429263i \(0.858773\pi\)
\(354\) 38.1051i 2.02526i
\(355\) 15.0000 25.9808i 0.796117 1.37892i
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 24.0000 13.8564i 1.27021 0.733359i
\(358\) −12.0000 20.7846i −0.634220 1.09850i
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −14.0000 24.2487i −0.735824 1.27448i
\(363\) −1.50000 0.866025i −0.0787296 0.0454545i
\(364\) −16.0000 + 27.7128i −0.838628 + 1.45255i
\(365\) −8.00000 + 13.8564i −0.418739 + 0.725277i
\(366\) 0 0
\(367\) 4.00000 + 6.92820i 0.208798 + 0.361649i 0.951336 0.308155i \(-0.0997115\pi\)
−0.742538 + 0.669804i \(0.766378\pi\)
\(368\) 4.00000 0.208514
\(369\) −3.00000 + 5.19615i −0.156174 + 0.270501i
\(370\) 12.0000 0.623850
\(371\) −6.00000 10.3923i −0.311504 0.539542i
\(372\) 3.00000 1.73205i 0.155543 0.0898027i
\(373\) −11.0000 + 19.0526i −0.569558 + 0.986504i 0.427051 + 0.904227i \(0.359552\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) 4.00000 6.92820i 0.206835 0.358249i
\(375\) 20.7846i 1.07331i
\(376\) 0 0
\(377\) 0 0
\(378\) −36.0000 20.7846i −1.85164 1.06904i
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) −12.0000 20.7846i −0.615587 1.06623i
\(381\) 3.46410i 0.177471i
\(382\) 20.0000 34.6410i 1.02329 1.77239i
\(383\) −4.00000 + 6.92820i −0.204390 + 0.354015i −0.949938 0.312437i \(-0.898855\pi\)
0.745548 + 0.666452i \(0.232188\pi\)
\(384\) 0 0
\(385\) 4.00000 + 6.92820i 0.203859 + 0.353094i
\(386\) 28.0000 1.42516
\(387\) 18.0000 + 31.1769i 0.914991 + 1.58481i
\(388\) 34.0000 1.72609
\(389\) −4.50000 7.79423i −0.228159 0.395183i 0.729103 0.684403i \(-0.239937\pi\)
−0.957263 + 0.289220i \(0.906604\pi\)
\(390\) −24.0000 13.8564i −1.21529 0.701646i
\(391\) 2.00000 3.46410i 0.101144 0.175187i
\(392\) 0 0
\(393\) −27.0000 15.5885i −1.36197 0.786334i
\(394\) −2.00000 3.46410i −0.100759 0.174519i
\(395\) 20.0000 1.00631
\(396\) −6.00000 −0.301511
\(397\) 25.0000 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(398\) −15.0000 25.9808i −0.751882 1.30230i
\(399\) −36.0000 + 20.7846i −1.80225 + 1.04053i
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −14.5000 + 25.1147i −0.724095 + 1.25417i 0.235250 + 0.971935i \(0.424409\pi\)
−0.959345 + 0.282235i \(0.908924\pi\)
\(402\) 13.8564i 0.691095i
\(403\) −2.00000 3.46410i −0.0996271 0.172559i
\(404\) 4.00000 0.199007
\(405\) 9.00000 15.5885i 0.447214 0.774597i
\(406\) 0 0
\(407\) −1.50000 2.59808i −0.0743522 0.128782i
\(408\) 0 0
\(409\) −9.00000 + 15.5885i −0.445021 + 0.770800i −0.998054 0.0623602i \(-0.980137\pi\)
0.553032 + 0.833160i \(0.313471\pi\)
\(410\) 4.00000 6.92820i 0.197546 0.342160i
\(411\) −10.5000 + 6.06218i −0.517927 + 0.299025i
\(412\) 1.00000 + 1.73205i 0.0492665 + 0.0853320i
\(413\) 44.0000 2.16510
\(414\) −6.00000 −0.294884
\(415\) −24.0000 −1.17811
\(416\) −16.0000 27.7128i −0.784465 1.35873i
\(417\) −24.0000 13.8564i −1.17529 0.678551i
\(418\) −6.00000 + 10.3923i −0.293470 + 0.508304i
\(419\) 3.50000 6.06218i 0.170986 0.296157i −0.767779 0.640715i \(-0.778638\pi\)
0.938765 + 0.344558i \(0.111971\pi\)
\(420\) 24.0000 + 13.8564i 1.17108 + 0.676123i
\(421\) −18.5000 32.0429i −0.901635 1.56168i −0.825372 0.564590i \(-0.809034\pi\)
−0.0762630 0.997088i \(-0.524299\pi\)
\(422\) 24.0000 1.16830
\(423\) −10.5000 18.1865i −0.510527 0.884260i
\(424\) 0 0
\(425\) 2.00000 + 3.46410i 0.0970143 + 0.168034i
\(426\) −45.0000 + 25.9808i −2.18026 + 1.25877i
\(427\) 0 0
\(428\) 6.00000 10.3923i 0.290021 0.502331i
\(429\) 6.92820i 0.334497i
\(430\) −24.0000 41.5692i −1.15738 2.00465i
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 18.0000 10.3923i 0.866025 0.500000i
\(433\) 13.0000 0.624740 0.312370 0.949960i \(-0.398877\pi\)
0.312370 + 0.949960i \(0.398877\pi\)
\(434\) 4.00000 + 6.92820i 0.192006 + 0.332564i
\(435\) 0 0
\(436\) −10.0000 + 17.3205i −0.478913 + 0.829502i
\(437\) −3.00000 + 5.19615i −0.143509 + 0.248566i
\(438\) 24.0000 13.8564i 1.14676 0.662085i
\(439\) 10.0000 + 17.3205i 0.477274 + 0.826663i 0.999661 0.0260459i \(-0.00829161\pi\)
−0.522387 + 0.852709i \(0.674958\pi\)
\(440\) 0 0
\(441\) 13.5000 23.3827i 0.642857 1.11346i
\(442\) −32.0000 −1.52208
\(443\) 20.5000 + 35.5070i 0.973984 + 1.68699i 0.683247 + 0.730188i \(0.260567\pi\)
0.290738 + 0.956803i \(0.406099\pi\)
\(444\) −9.00000 5.19615i −0.427121 0.246598i
\(445\) 3.00000 5.19615i 0.142214 0.246321i
\(446\) 7.00000 12.1244i 0.331460 0.574105i
\(447\) −3.00000 1.73205i −0.141895 0.0819232i
\(448\) 16.0000 + 27.7128i 0.755929 + 1.30931i
\(449\) −1.00000 −0.0471929 −0.0235965 0.999722i \(-0.507512\pi\)
−0.0235965 + 0.999722i \(0.507512\pi\)
\(450\) 3.00000 5.19615i 0.141421 0.244949i
\(451\) −2.00000 −0.0941763
\(452\) 3.00000 + 5.19615i 0.141108 + 0.244406i
\(453\) −15.0000 + 8.66025i −0.704761 + 0.406894i
\(454\) −12.0000 + 20.7846i −0.563188 + 0.975470i
\(455\) 16.0000 27.7128i 0.750092 1.29920i
\(456\) 0 0
\(457\) 9.00000 + 15.5885i 0.421002 + 0.729197i 0.996038 0.0889312i \(-0.0283451\pi\)
−0.575036 + 0.818128i \(0.695012\pi\)
\(458\) −6.00000 −0.280362
\(459\) 20.7846i 0.970143i
\(460\) 4.00000 0.186501
\(461\) 15.0000 + 25.9808i 0.698620 + 1.21004i 0.968945 + 0.247276i \(0.0795353\pi\)
−0.270326 + 0.962769i \(0.587131\pi\)
\(462\) 13.8564i 0.644658i
\(463\) 17.5000 30.3109i 0.813294 1.40867i −0.0972525 0.995260i \(-0.531005\pi\)
0.910546 0.413407i \(-0.135661\pi\)
\(464\) 0 0
\(465\) −3.00000 + 1.73205i −0.139122 + 0.0803219i
\(466\) 0 0
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 12.0000 + 20.7846i 0.554700 + 0.960769i
\(469\) −16.0000 −0.738811
\(470\) 14.0000 + 24.2487i 0.645772 + 1.11851i
\(471\) −21.0000 12.1244i −0.967629 0.558661i
\(472\) 0 0
\(473\) −6.00000 + 10.3923i −0.275880 + 0.477839i
\(474\) −30.0000 17.3205i −1.37795 0.795557i
\(475\) −3.00000 5.19615i −0.137649 0.238416i
\(476\) 32.0000 1.46672
\(477\) −9.00000 −0.412082
\(478\) 48.0000 2.19547
\(479\) 17.0000 + 29.4449i 0.776750 + 1.34537i 0.933806 + 0.357780i \(0.116466\pi\)
−0.157056 + 0.987590i \(0.550200\pi\)
\(480\) −24.0000 + 13.8564i −1.09545 + 0.632456i
\(481\) −6.00000 + 10.3923i −0.273576 + 0.473848i
\(482\) 10.0000 17.3205i 0.455488 0.788928i
\(483\) 6.92820i 0.315244i
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) −34.0000 −1.54386
\(486\) −27.0000 + 15.5885i −1.22474 + 0.707107i
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) 22.5167i 1.01824i
\(490\) −18.0000 + 31.1769i −0.813157 + 1.40843i
\(491\) −5.00000 + 8.66025i −0.225647 + 0.390832i −0.956513 0.291689i \(-0.905783\pi\)
0.730866 + 0.682520i \(0.239116\pi\)
\(492\) −6.00000 + 3.46410i −0.270501 + 0.156174i
\(493\) 0 0
\(494\) 48.0000 2.15962
\(495\) 6.00000 0.269680
\(496\) −4.00000 −0.179605
\(497\) −30.0000 51.9615i −1.34568 2.33079i
\(498\) 36.0000 + 20.7846i 1.61320 + 0.931381i
\(499\) 12.5000 21.6506i 0.559577 0.969216i −0.437955 0.898997i \(-0.644297\pi\)
0.997532 0.0702185i \(-0.0223697\pi\)
\(500\) −12.0000 + 20.7846i −0.536656 + 0.929516i
\(501\) 27.0000 + 15.5885i 1.20627 + 0.696441i
\(502\) 13.0000 + 22.5167i 0.580218 + 1.00497i
\(503\) 10.0000 0.445878 0.222939 0.974832i \(-0.428435\pi\)
0.222939 + 0.974832i \(0.428435\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) −1.00000 1.73205i −0.0444554 0.0769991i
\(507\) 4.50000 2.59808i 0.199852 0.115385i
\(508\) −2.00000 + 3.46410i −0.0887357 + 0.153695i
\(509\) −1.50000 + 2.59808i −0.0664863 + 0.115158i −0.897352 0.441315i \(-0.854512\pi\)
0.830866 + 0.556473i \(0.187846\pi\)
\(510\) 27.7128i 1.22714i
\(511\) 16.0000 + 27.7128i 0.707798 + 1.22594i
\(512\) −32.0000 −1.41421
\(513\) 31.1769i 1.37649i
\(514\) 52.0000 2.29362
\(515\) −1.00000 1.73205i −0.0440653 0.0763233i
\(516\) 41.5692i 1.82998i
\(517\) 3.50000 6.06218i 0.153930 0.266614i
\(518\) 12.0000 20.7846i 0.527250 0.913223i
\(519\) 9.00000 5.19615i 0.395056 0.228086i
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) −18.0000 31.1769i −0.786334 1.36197i
\(525\) 6.00000 + 3.46410i 0.261861 + 0.151186i
\(526\) 2.00000 3.46410i 0.0872041 0.151042i
\(527\) −2.00000 + 3.46410i −0.0871214 + 0.150899i
\(528\) 6.00000 + 3.46410i 0.261116 + 0.150756i
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) 12.0000 0.521247
\(531\) 16.5000 28.5788i 0.716039 1.24022i
\(532\) −48.0000 −2.08106
\(533\) 4.00000 + 6.92820i 0.173259 + 0.300094i
\(534\) −9.00000 + 5.19615i −0.389468 + 0.224860i
\(535\) −6.00000 + 10.3923i −0.259403 + 0.449299i
\(536\) 0 0
\(537\) 20.7846i 0.896922i
\(538\) −5.00000 8.66025i −0.215565 0.373370i
\(539\) 9.00000 0.387657
\(540\) 18.0000 10.3923i 0.774597 0.447214i
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) 2.00000 + 3.46410i 0.0859074 + 0.148796i
\(543\) 24.2487i 1.04061i
\(544\) −16.0000 + 27.7128i −0.685994 + 1.18818i
\(545\) 10.0000 17.3205i 0.428353 0.741929i
\(546\) −48.0000 + 27.7128i −2.05421 + 1.18600i
\(547\) −1.00000 1.73205i −0.0427569 0.0740571i 0.843855 0.536571i \(-0.180281\pi\)
−0.886612 + 0.462514i \(0.846947\pi\)
\(548\) −14.0000 −0.598050
\(549\) 0 0
\(550\) 2.00000 0.0852803
\(551\) 0 0
\(552\) 0 0
\(553\) 20.0000 34.6410i 0.850487 1.47309i
\(554\) −2.00000 + 3.46410i −0.0849719 + 0.147176i
\(555\) 9.00000 + 5.19615i 0.382029 + 0.220564i
\(556\) −16.0000 27.7128i −0.678551 1.17529i
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 6.00000 0.254000
\(559\) 48.0000 2.03018
\(560\) −16.0000 27.7128i −0.676123 1.17108i
\(561\) 6.00000 3.46410i 0.253320 0.146254i
\(562\) −6.00000 + 10.3923i −0.253095 + 0.438373i
\(563\) 1.00000 1.73205i 0.0421450 0.0729972i −0.844183 0.536054i \(-0.819914\pi\)
0.886328 + 0.463057i \(0.153248\pi\)
\(564\) 24.2487i 1.02105i
\(565\) −3.00000 5.19615i −0.126211 0.218604i
\(566\) 4.00000 0.168133
\(567\) −18.0000 31.1769i −0.755929 1.30931i
\(568\) 0 0
\(569\) 12.0000 + 20.7846i 0.503066 + 0.871336i 0.999994 + 0.00354413i \(0.00112814\pi\)
−0.496928 + 0.867792i \(0.665539\pi\)
\(570\) 41.5692i 1.74114i
\(571\) 8.00000 13.8564i 0.334790 0.579873i −0.648655 0.761083i \(-0.724668\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) −4.00000 + 6.92820i −0.167248 + 0.289683i
\(573\) 30.0000 17.3205i 1.25327 0.723575i
\(574\) −8.00000 13.8564i −0.333914 0.578355i
\(575\) 1.00000 0.0417029
\(576\) 24.0000 1.00000
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) −1.00000 1.73205i −0.0415945 0.0720438i
\(579\) 21.0000 + 12.1244i 0.872730 + 0.503871i
\(580\) 0 0
\(581\) −24.0000 + 41.5692i −0.995688 + 1.72458i
\(582\) 51.0000 + 29.4449i 2.11402 + 1.22053i
\(583\) −1.50000 2.59808i −0.0621237 0.107601i
\(584\) 0 0
\(585\) −12.0000 20.7846i −0.496139 0.859338i
\(586\) 36.0000 1.48715
\(587\) 8.50000 + 14.7224i 0.350833 + 0.607660i 0.986396 0.164389i \(-0.0525653\pi\)
−0.635563 + 0.772049i \(0.719232\pi\)
\(588\) 27.0000 15.5885i 1.11346 0.642857i
\(589\) 3.00000 5.19615i 0.123613 0.214104i
\(590\) −22.0000 + 38.1051i −0.905726 + 1.56876i
\(591\) 3.46410i 0.142494i
\(592\) 6.00000 + 10.3923i 0.246598 + 0.427121i
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) −9.00000 5.19615i −0.369274 0.213201i
\(595\) −32.0000 −1.31187
\(596\) −2.00000 3.46410i −0.0819232 0.141895i
\(597\) 25.9808i 1.06332i
\(598\) −4.00000 + 6.92820i −0.163572 + 0.283315i
\(599\) −8.00000 + 13.8564i −0.326871 + 0.566157i −0.981889 0.189456i \(-0.939328\pi\)
0.655018 + 0.755613i \(0.272661\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) −96.0000 −3.91267
\(603\) −6.00000 + 10.3923i −0.244339 + 0.423207i
\(604\) −20.0000 −0.813788
\(605\) 1.00000 + 1.73205i 0.0406558 + 0.0704179i
\(606\) 6.00000 + 3.46410i 0.243733 + 0.140720i
\(607\) 2.00000 3.46410i 0.0811775 0.140604i −0.822578 0.568652i \(-0.807465\pi\)
0.903756 + 0.428048i \(0.140799\pi\)
\(608\) 24.0000 41.5692i 0.973329 1.68585i
\(609\) 0 0
\(610\) 0 0
\(611\) −28.0000 −1.13276
\(612\) 12.0000 20.7846i 0.485071 0.840168i
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 20.0000 + 34.6410i 0.807134 + 1.39800i
\(615\) 6.00000 3.46410i 0.241943 0.139686i
\(616\) 0 0
\(617\) 13.5000 23.3827i 0.543490 0.941351i −0.455211 0.890384i \(-0.650436\pi\)
0.998700 0.0509678i \(-0.0162306\pi\)
\(618\) 3.46410i 0.139347i
\(619\) 15.5000 + 26.8468i 0.622998 + 1.07906i 0.988924 + 0.148420i \(0.0474187\pi\)
−0.365927 + 0.930644i \(0.619248\pi\)
\(620\) −4.00000 −0.160644
\(621\) −4.50000 2.59808i −0.180579 0.104257i
\(622\) −6.00000 −0.240578
\(623\) −6.00000 10.3923i −0.240385 0.416359i
\(624\) 27.7128i 1.10940i
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 11.0000 19.0526i 0.439648 0.761493i
\(627\) −9.00000 + 5.19615i −0.359425 + 0.207514i
\(628\) −14.0000 24.2487i −0.558661 0.967629i
\(629\) 12.0000 0.478471
\(630\) 24.0000 + 41.5692i 0.956183 + 1.65616i
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) 18.0000 + 10.3923i 0.715436 + 0.413057i
\(634\) 13.0000 22.5167i 0.516296 0.894251i
\(635\) 2.00000 3.46410i 0.0793676 0.137469i
\(636\) −9.00000 5.19615i −0.356873 0.206041i
\(637\) −18.0000 31.1769i −0.713186 1.23527i
\(638\) 0 0
\(639\) −45.0000 −1.78017
\(640\) 0 0
\(641\) −19.5000 33.7750i −0.770204 1.33403i −0.937451 0.348117i \(-0.886821\pi\)
0.167247 0.985915i \(-0.446512\pi\)
\(642\) 18.0000 10.3923i 0.710403 0.410152i
\(643\) −8.50000 + 14.7224i −0.335207 + 0.580596i −0.983525 0.180774i \(-0.942140\pi\)
0.648317 + 0.761370i \(0.275473\pi\)
\(644\) 4.00000 6.92820i 0.157622 0.273009i
\(645\) 41.5692i 1.63679i
\(646\) −24.0000 41.5692i −0.944267 1.63552i
\(647\) 17.0000 0.668339 0.334169 0.942513i \(-0.391544\pi\)
0.334169 + 0.942513i \(0.391544\pi\)
\(648\) 0 0
\(649\) 11.0000 0.431788
\(650\) −4.00000 6.92820i −0.156893 0.271746i
\(651\) 6.92820i 0.271538i
\(652\) −13.0000 + 22.5167i −0.509119 + 0.881820i
\(653\) −9.50000 + 16.4545i −0.371764 + 0.643914i −0.989837 0.142207i \(-0.954580\pi\)
0.618073 + 0.786121i \(0.287914\pi\)
\(654\) −30.0000 + 17.3205i −1.17309 + 0.677285i
\(655\) 18.0000 + 31.1769i 0.703318 + 1.21818i
\(656\) 8.00000 0.312348
\(657\) 24.0000 0.936329
\(658\) 56.0000 2.18311
\(659\) 10.0000 + 17.3205i 0.389545 + 0.674711i 0.992388 0.123148i \(-0.0392990\pi\)
−0.602844 + 0.797859i \(0.705966\pi\)
\(660\) 6.00000 + 3.46410i 0.233550 + 0.134840i
\(661\) −18.5000 + 32.0429i −0.719567 + 1.24633i 0.241605 + 0.970375i \(0.422326\pi\)
−0.961172 + 0.275951i \(0.911007\pi\)
\(662\) 4.00000 6.92820i 0.155464 0.269272i
\(663\) −24.0000 13.8564i −0.932083 0.538138i
\(664\) 0 0
\(665\) 48.0000 1.86136
\(666\) −9.00000 15.5885i −0.348743 0.604040i
\(667\) 0 0
\(668\) 18.0000 + 31.1769i 0.696441 + 1.20627i
\(669\) 10.5000 6.06218i 0.405953 0.234377i
\(670\) 8.00000 13.8564i 0.309067 0.535320i
\(671\) 0 0
\(672\) 55.4256i 2.13809i
\(673\) −10.0000 17.3205i −0.385472 0.667657i 0.606363 0.795188i \(-0.292628\pi\)
−0.991835 + 0.127532i \(0.959295\pi\)
\(674\) −64.0000 −2.46519
\(675\) 4.50000 2.59808i 0.173205 0.100000i
\(676\) 6.00000 0.230769
\(677\) 15.0000 + 25.9808i 0.576497 + 0.998522i 0.995877 + 0.0907112i \(0.0289140\pi\)
−0.419380 + 0.907811i \(0.637753\pi\)
\(678\) 10.3923i 0.399114i
\(679\) −34.0000 + 58.8897i −1.30480 + 2.25998i
\(680\) 0 0
\(681\) −18.0000 + 10.3923i −0.689761 + 0.398234i
\(682\) 1.00000 + 1.73205i 0.0382920 + 0.0663237i
\(683\) 29.0000 1.10965 0.554827 0.831966i \(-0.312784\pi\)
0.554827 + 0.831966i \(0.312784\pi\)
\(684\) −18.0000 + 31.1769i −0.688247 + 1.19208i
\(685\) 14.0000 0.534913
\(686\) 8.00000 + 13.8564i 0.305441 + 0.529040i
\(687\) −4.50000 2.59808i −0.171686 0.0991228i
\(688\) 24.0000 41.5692i 0.914991 1.58481i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 6.00000 + 3.46410i 0.228416 + 0.131876i
\(691\) 2.00000 + 3.46410i 0.0760836 + 0.131781i 0.901557 0.432660i \(-0.142425\pi\)
−0.825473 + 0.564441i \(0.809092\pi\)
\(692\) 12.0000 0.456172
\(693\) 6.00000 10.3923i 0.227921 0.394771i
\(694\) 4.00000 0.151838
\(695\) 16.0000 + 27.7128i 0.606915 + 1.05121i
\(696\) 0 0
\(697\) 4.00000 6.92820i 0.151511 0.262424i
\(698\) 6.00000 10.3923i 0.227103 0.393355i
\(699\) 0 0
\(700\) 4.00000 + 6.92820i 0.151186 + 0.261861i
\(701\) −28.0000 −1.05755 −0.528773 0.848763i \(-0.677348\pi\)
−0.528773 + 0.848763i \(0.677348\pi\)
\(702\) 41.5692i 1.56893i
\(703\) −18.0000 −0.678883
\(704\) 4.00000 + 6.92820i 0.150756 + 0.261116i
\(705\) 24.2487i 0.913259i
\(706\) 3.00000 5.19615i 0.112906 0.195560i
\(707\) −4.00000 + 6.92820i −0.150435 + 0.260562i
\(708\) 33.0000 19.0526i 1.24022 0.716039i
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) 60.0000 2.25176
\(711\) −15.0000 25.9808i −0.562544 0.974355i
\(712\) 0 0
\(713\) 0.500000 + 0.866025i 0.0187251 + 0.0324329i
\(714\) 48.0000 + 27.7128i 1.79635 + 1.03713i
\(715\) 4.00000 6.92820i 0.149592 0.259100i
\(716\) 12.0000 20.7846i 0.448461 0.776757i
\(717\) 36.0000 + 20.7846i 1.34444 + 0.776215i
\(718\) 10.0000 + 17.3205i 0.373197 + 0.646396i
\(719\) −12.0000 −0.447524 −0.223762 0.974644i \(-0.571834\pi\)
−0.223762 + 0.974644i \(0.571834\pi\)
\(720\) −24.0000 −0.894427
\(721\) −4.00000 −0.148968
\(722\) 17.0000 + 29.4449i 0.632674 + 1.09582i
\(723\) 15.0000 8.66025i 0.557856 0.322078i
\(724\) 14.0000 24.2487i 0.520306 0.901196i
\(725\) 0 0
\(726\) 3.46410i 0.128565i
\(727\) −10.5000 18.1865i −0.389423 0.674501i 0.602949 0.797780i \(-0.293992\pi\)
−0.992372 + 0.123279i \(0.960659\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) −32.0000 −1.18437
\(731\) −24.0000 41.5692i −0.887672 1.53749i
\(732\) 0 0
\(733\) −3.00000 + 5.19615i −0.110808 + 0.191924i −0.916096 0.400959i \(-0.868677\pi\)
0.805289 + 0.592883i \(0.202010\pi\)
\(734\) −8.00000 + 13.8564i −0.295285 + 0.511449i
\(735\) −27.0000 + 15.5885i −0.995910 + 0.574989i
\(736\) 4.00000 + 6.92820i 0.147442 + 0.255377i
\(737\) −4.00000 −0.147342
\(738\) −12.0000 −0.441726
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 6.00000 + 10.3923i 0.220564 + 0.382029i
\(741\) 36.0000 + 20.7846i 1.32249 + 0.763542i
\(742\) 12.0000 20.7846i 0.440534 0.763027i
\(743\) −5.00000 + 8.66025i −0.183432 + 0.317714i −0.943047 0.332659i \(-0.892054\pi\)
0.759615 + 0.650373i \(0.225387\pi\)
\(744\) 0 0
\(745\) 2.00000 + 3.46410i 0.0732743 + 0.126915i
\(746\) −44.0000 −1.61095
\(747\) 18.0000 + 31.1769i 0.658586 + 1.14070i
\(748\) 8.00000 0.292509
\(749\) 12.0000 + 20.7846i 0.438470 + 0.759453i
\(750\) −36.0000 + 20.7846i −1.31453 + 0.758947i
\(751\) 2.50000 4.33013i 0.0912263 0.158009i −0.816801 0.576919i \(-0.804255\pi\)
0.908027 + 0.418911i \(0.137588\pi\)
\(752\) −14.0000 + 24.2487i −0.510527 + 0.884260i
\(753\) 22.5167i 0.820553i
\(754\) 0 0
\(755\) 20.0000 0.727875
\(756\) 41.5692i 1.51186i
\(757\) −43.0000 −1.56286 −0.781431 0.623992i \(-0.785510\pi\)
−0.781431 + 0.623992i \(0.785510\pi\)
\(758\) −29.0000 50.2295i −1.05333 1.82442i
\(759\) 1.73205i 0.0628695i
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) −6.00000 + 3.46410i −0.217357 + 0.125491i
\(763\) −20.0000 34.6410i −0.724049 1.25409i
\(764\) 40.0000 1.44715
\(765\) −12.0000 + 20.7846i −0.433861 + 0.751469i
\(766\) −16.0000 −0.578103
\(767\) −22.0000 38.1051i −0.794374 1.37590i
\(768\) −24.0000 13.8564i −0.866025 0.500000i
\(769\) 17.0000 29.4449i 0.613036 1.06181i −0.377690 0.925932i \(-0.623282\pi\)
0.990726 0.135877i \(-0.0433852\pi\)
\(770\) −8.00000 + 13.8564i −0.288300 + 0.499350i
\(771\) 39.0000 + 22.5167i 1.40455 + 0.810918i
\(772\) 14.0000 + 24.2487i 0.503871 + 0.872730i
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) −36.0000 + 62.3538i −1.29399 + 2.24126i
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) 18.0000 10.3923i 0.645746 0.372822i
\(778\) 9.00000 15.5885i 0.322666 0.558873i
\(779\) −6.00000 + 10.3923i −0.214972 + 0.372343i
\(780\) 27.7128i 0.992278i
\(781\) −7.50000 12.9904i −0.268371 0.464832i
\(782\) 8.00000 0.286079
\(783\) 0 0
\(784\) −36.0000 −1.28571
\(785\) 14.0000 + 24.2487i 0.499681 + 0.865474i
\(786\) 62.3538i 2.22409i
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) 2.00000 3.46410i 0.0712470 0.123404i
\(789\) 3.00000 1.73205i 0.106803 0.0616626i
\(790\) 20.0000 + 34.6410i 0.711568 + 1.23247i
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 0 0
\(794\) 25.0000 + 43.3013i 0.887217 + 1.53670i
\(795\) 9.00000 + 5.19615i 0.319197 + 0.184289i
\(796\) 15.0000 25.9808i 0.531661 0.920864i
\(797\) 15.5000 26.8468i 0.549038 0.950962i −0.449303 0.893380i \(-0.648327\pi\)
0.998341 0.0575824i \(-0.0183392\pi\)
\(798\) −72.0000 41.5692i −2.54877 1.47153i
\(799\) 14.0000 + 24.2487i 0.495284 + 0.857858i
\(800\) −8.00000 −0.282843
\(801\) −9.00000 −0.317999
\(802\) −58.0000 −2.04805
\(803\) 4.00000 + 6.92820i 0.141157 + 0.244491i
\(804\) −12.0000 + 6.92820i −0.423207 + 0.244339i
\(805\) −4.00000 + 6.92820i −0.140981 + 0.244187i
\(806\) 4.00000 6.92820i 0.140894 0.244036i
\(807\) 8.66025i 0.304855i
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 36.0000 1.26491
\(811\) 40.0000 1.40459 0.702295 0.711886i \(-0.252159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(812\) 0 0
\(813\) 3.46410i 0.121491i
\(814\) 3.00000 5.19615i 0.105150 0.182125i
\(815\) 13.0000 22.5167i 0.455370 0.788724i
\(816\) −24.0000 + 13.8564i −0.840168 + 0.485071i
\(817\) 36.0000 + 62.3538i 1.25948 + 2.18148i
\(818\) −36.0000 −1.25871
\(819\) −48.0000 −1.67726
\(820\) 8.00000 0.279372
\(821\) −26.0000 45.0333i −0.907406 1.57167i −0.817654 0.575710i \(-0.804726\pi\)
−0.0897520 0.995964i \(-0.528607\pi\)
\(822\) −21.0000 12.1244i −0.732459 0.422885i
\(823\) 4.50000 7.79423i 0.156860 0.271690i −0.776875 0.629655i \(-0.783196\pi\)
0.933735 + 0.357966i \(0.116529\pi\)
\(824\) 0 0
\(825\) 1.50000 + 0.866025i 0.0522233 + 0.0301511i
\(826\) 44.0000 + 76.2102i 1.53096 + 2.65169i
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) −3.00000 5.19615i −0.104257 0.180579i
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) −24.0000 41.5692i −0.833052 1.44289i
\(831\) −3.00000 + 1.73205i −0.104069 + 0.0600842i
\(832\) 16.0000 27.7128i 0.554700 0.960769i
\(833\) −18.0000 + 31.1769i −0.623663 + 1.08022i
\(834\) 55.4256i 1.91923i
\(835\) −18.0000 31.1769i −0.622916 1.07892i
\(836\) −12.0000 −0.415029
\(837\) 4.50000 + 2.59808i 0.155543 + 0.0898027i
\(838\) 14.0000 0.483622
\(839\) 2.50000 + 4.33013i 0.0863096 + 0.149493i 0.905949 0.423388i \(-0.139159\pi\)
−0.819639 + 0.572880i \(0.805826\pi\)
\(840\) 0 0
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 37.0000 64.0859i 1.27510 2.20855i
\(843\) −9.00000 + 5.19615i −0.309976 + 0.178965i
\(844\) 12.0000 + 20.7846i 0.413057 + 0.715436i
\(845\) −6.00000 −0.206406
\(846\) 21.0000 36.3731i 0.721995 1.25053i
\(847\) 4.00000 0.137442
\(848\) 6.00000 + 10.3923i 0.206041 + 0.356873i
\(849\) 3.00000 + 1.73205i 0.102960 + 0.0594438i
\(850\) −4.00000 + 6.92820i −0.137199 + 0.237635i
\(851\) 1.50000 2.59808i 0.0514193 0.0890609i
\(852\) −45.0000 25.9808i −1.54167 0.890086i
\(853\) 8.00000 + 13.8564i 0.273915 + 0.474434i 0.969861 0.243660i \(-0.0783480\pi\)
−0.695946 + 0.718094i \(0.745015\pi\)
\(854\) 0 0
\(855\) 18.0000 31.1769i 0.615587 1.06623i
\(856\) 0 0
\(857\) 11.0000 + 19.0526i 0.375753 + 0.650823i 0.990439 0.137948i \(-0.0440508\pi\)
−0.614687 + 0.788771i \(0.710717\pi\)
\(858\) −12.0000 + 6.92820i −0.409673 + 0.236525i
\(859\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(860\) 24.0000 41.5692i 0.818393 1.41750i
\(861\) 13.8564i 0.472225i
\(862\) 12.0000 + 20.7846i 0.408722 + 0.707927i
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 36.0000 + 20.7846i 1.22474 + 0.707107i
\(865\) −12.0000 −0.408012
\(866\) 13.0000 + 22.5167i 0.441758 + 0.765147i
\(867\) 1.73205i 0.0588235i
\(868\) −4.00000 + 6.92820i −0.135769 + 0.235159i
\(869\) 5.00000 8.66025i 0.169613 0.293779i
\(870\) 0 0
\(871\) 8.00000 + 13.8564i 0.271070 + 0.469506i
\(872\) 0 0
\(873\) 25.5000 + 44.1673i 0.863044 + 1.49484i
\(874\) −12.0000 −0.405906
\(875\) −24.0000 41.5692i −0.811348 1.40530i
\(876\) 24.0000 + 13.8564i 0.810885 + 0.468165i
\(877\) 9.00000 15.5885i 0.303908 0.526385i −0.673109 0.739543i \(-0.735042\pi\)
0.977018 + 0.213158i \(0.0683750\pi\)
\(878\) −20.0000 + 34.6410i −0.674967 + 1.16908i
\(879\) 27.0000 + 15.5885i 0.910687 + 0.525786i
\(880\) −4.00000 6.92820i −0.134840 0.233550i
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 54.0000 1.81827
\(883\) −41.0000 −1.37976 −0.689880 0.723924i \(-0.742337\pi\)
−0.689880 + 0.723924i \(0.742337\pi\)
\(884\) −16.0000 27.7128i −0.538138 0.932083i
\(885\) −33.0000 + 19.0526i −1.10928 + 0.640445i
\(886\) −41.0000 + 71.0141i −1.37742 + 2.38576i
\(887\) 26.0000 45.0333i 0.872995 1.51207i 0.0141108 0.999900i \(-0.495508\pi\)
0.858884 0.512170i \(-0.171158\pi\)
\(888\) 0 0
\(889\) −4.00000 6.92820i −0.134156 0.232364i
\(890\) 12.0000 0.402241
\(891\) −4.50000 7.79423i −0.150756 0.261116i
\(892\) 14.0000 0.468755
\(893\) −21.0000 36.3731i −0.702738 1.21718i
\(894\) 6.92820i 0.231714i
\(895\) −12.0000 + 20.7846i −0.401116 + 0.694753i
\(896\) 0 0
\(897\) −6.00000 + 3.46410i −0.200334 + 0.115663i
\(898\) −1.00000 1.73205i −0.0333704 0.0577993i
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 12.0000 0.399778
\(902\) −2.00000 3.46410i −0.0665927 0.115342i
\(903\) −72.0000 41.5692i −2.39601 1.38334i
\(904\) 0 0
\(905\) −14.0000 + 24.2487i −0.465376 + 0.806054i
\(906\) −30.0000 17.3205i −0.996683 0.575435i
\(907\) 30.0000 + 51.9615i 0.996134 + 1.72535i 0.574148 + 0.818752i \(0.305333\pi\)
0.421986 + 0.906602i \(0.361333\pi\)
\(908\) −24.0000 −0.796468
\(909\) 3.00000 + 5.19615i 0.0995037 + 0.172345i
\(910\) 64.0000 2.12158
\(911\) 28.5000 + 49.3634i 0.944247 + 1.63548i 0.757252 + 0.653123i \(0.226542\pi\)
0.186995 + 0.982361i \(0.440125\pi\)
\(912\) 36.0000 20.7846i 1.19208 0.688247i
\(913\) −6.00000 + 10.3923i −0.198571 + 0.343935i
\(914\) −18.0000 + 31.1769i −0.595387 + 1.03124i
\(915\) 0 0
\(916\) −3.00000 5.19615i −0.0991228 0.171686i
\(917\) 72.0000 2.37765
\(918\) 36.0000 20.7846i 1.18818 0.685994i
\(919\) 22.0000 0.725713 0.362857 0.931845i \(-0.381802\pi\)
0.362857 + 0.931845i \(0.381802\pi\)
\(920\) 0 0
\(921\) 34.6410i 1.14146i
\(922\) −30.0000 + 51.9615i −0.987997 + 1.71126i
\(923\) −30.0000 + 51.9615i −0.987462 + 1.71033i
\(924\) 12.0000 6.92820i 0.394771 0.227921i
\(925\) 1.50000 + 2.59808i 0.0493197 + 0.0854242i
\(926\) 70.0000 2.30034
\(927\) −1.50000 + 2.59808i −0.0492665 + 0.0853320i
\(928\) 0 0
\(929\) 1.50000 + 2.59808i 0.0492134 + 0.0852401i 0.889583 0.456774i \(-0.150995\pi\)
−0.840369 + 0.542014i \(0.817662\pi\)
\(930\) −6.00000 3.46410i −0.196748 0.113592i
\(931\) 27.0000 46.7654i 0.884889 1.53267i
\(932\) 0 0
\(933\) −4.50000 2.59808i −0.147323 0.0850572i
\(934\) −36.0000 62.3538i −1.17796 2.04028i
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) −16.0000 −0.522697 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(938\) −16.0000 27.7128i −0.522419 0.904855i
\(939\) 16.5000 9.52628i 0.538457 0.310878i
\(940\) −14.0000 + 24.2487i −0.456630 + 0.790906i
\(941\) 12.0000 20.7846i 0.391189 0.677559i −0.601418 0.798935i \(-0.705397\pi\)
0.992607 + 0.121376i \(0.0387306\pi\)
\(942\) 48.4974i 1.58013i
\(943\) −1.00000 1.73205i −0.0325645 0.0564033i
\(944\) −44.0000 −1.43208
\(945\) 41.5692i 1.35225i
\(946\) −24.0000 −0.780307
\(947\) −6.00000 10.3923i −0.194974 0.337705i 0.751918 0.659256i \(-0.229129\pi\)
−0.946892 + 0.321552i \(0.895796\pi\)
\(948\) 34.6410i 1.12509i
\(949\) 16.0000 27.7128i 0.519382 0.899596i
\(950\) 6.00000 10.3923i 0.194666 0.337171i
\(951\) 19.5000 11.2583i 0.632331 0.365076i
\(952\) 0 0
\(953\) −20.0000 −0.647864 −0.323932 0.946080i \(-0.605005\pi\)
−0.323932 + 0.946080i \(0.605005\pi\)
\(954\) −9.00000 15.5885i −0.291386 0.504695i
\(955\) −40.0000 −1.29437
\(956\) 24.0000 + 41.5692i 0.776215 + 1.34444i
\(957\) 0 0
\(958\) −34.0000 + 58.8897i −1.09849 + 1.90264i
\(959\) 14.0000 24.2487i 0.452084 0.783032i
\(960\) −24.0000 13.8564i −0.774597 0.447214i
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) −24.0000 −0.773791
\(963\) 18.0000 0.580042
\(964\) 20.0000 0.644157
\(965\) −14.0000 24.2487i −0.450676 0.780594i
\(966\) 12.0000 6.92820i 0.386094 0.222911i
\(967\) −29.0000 + 50.2295i −0.932577 + 1.61527i −0.153679 + 0.988121i \(0.549112\pi\)
−0.778898 + 0.627150i \(0.784221\pi\)
\(968\) 0 0
\(969\) 41.5692i 1.33540i
\(970\) −34.0000 58.8897i −1.09167 1.89084i
\(971\) 35.0000 1.12320 0.561602 0.827408i \(-0.310185\pi\)
0.561602 + 0.827408i \(0.310185\pi\)
\(972\) −27.0000 15.5885i −0.866025 0.500000i
\(973\) 64.0000 2.05175
\(974\) −19.0000 32.9090i −0.608799 1.05447i
\(975\) 6.92820i 0.221880i
\(976\) 0 0
\(977\) 13.5000 23.3827i 0.431903 0.748078i −0.565134 0.824999i \(-0.691176\pi\)
0.997037 + 0.0769208i \(0.0245089\pi\)
\(978\) −39.0000 + 22.5167i −1.24708 + 0.720003i
\(979\) −1.50000 2.59808i −0.0479402 0.0830349i
\(980\) −36.0000 −1.14998
\(981\) −30.0000 −0.957826
\(982\) −20.0000 −0.638226
\(983\) −16.5000 28.5788i −0.526268 0.911523i −0.999532 0.0306024i \(-0.990257\pi\)
0.473263 0.880921i \(-0.343076\pi\)
\(984\) 0 0
\(985\) −2.00000 + 3.46410i −0.0637253 + 0.110375i
\(986\) 0 0
\(987\) 42.0000 + 24.2487i 1.33687 + 0.771845i
\(988\) 24.0000 + 41.5692i 0.763542 + 1.32249i
\(989\) −12.0000 −0.381578
\(990\) 6.00000 + 10.3923i 0.190693 + 0.330289i
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) −4.00000 6.92820i −0.127000 0.219971i
\(993\) 6.00000 3.46410i 0.190404 0.109930i
\(994\) 60.0000 103.923i 1.90308 3.29624i
\(995\) −15.0000 + 25.9808i −0.475532 + 0.823646i
\(996\) 41.5692i 1.31717i
\(997\) 26.0000 + 45.0333i 0.823428 + 1.42622i 0.903115 + 0.429400i \(0.141275\pi\)
−0.0796863 + 0.996820i \(0.525392\pi\)
\(998\) 50.0000 1.58272
\(999\) 15.5885i 0.493197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.2.e.c.67.1 yes 2
3.2 odd 2 297.2.e.a.199.1 2
9.2 odd 6 297.2.e.a.100.1 2
9.4 even 3 891.2.a.a.1.1 1
9.5 odd 6 891.2.a.h.1.1 1
9.7 even 3 inner 99.2.e.c.34.1 2
11.10 odd 2 1089.2.e.a.364.1 2
99.32 even 6 9801.2.a.a.1.1 1
99.43 odd 6 1089.2.e.a.727.1 2
99.76 odd 6 9801.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.c.34.1 2 9.7 even 3 inner
99.2.e.c.67.1 yes 2 1.1 even 1 trivial
297.2.e.a.100.1 2 9.2 odd 6
297.2.e.a.199.1 2 3.2 odd 2
891.2.a.a.1.1 1 9.4 even 3
891.2.a.h.1.1 1 9.5 odd 6
1089.2.e.a.364.1 2 11.10 odd 2
1089.2.e.a.727.1 2 99.43 odd 6
9801.2.a.a.1.1 1 99.32 even 6
9801.2.a.l.1.1 1 99.76 odd 6