Defining parameters
Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 99.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(99, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 20 | 8 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(99, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
99.2.e.a | $2$ | $0.791$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(-3\) | \(-1\) | \(-4\) | \(q+(-1+\zeta_{6})q^{2}+(-2+\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\) |
99.2.e.b | $2$ | $0.791$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-3\) | \(3\) | \(4\) | \(q+(-1-\zeta_{6})q^{3}+2\zeta_{6}q^{4}+3\zeta_{6}q^{5}+\cdots\) |
99.2.e.c | $2$ | $0.791$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(0\) | \(2\) | \(-4\) | \(q+(2-2\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\) |
99.2.e.d | $6$ | $0.791$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(-3\) | \(3\) | \(q+(\beta_{5}-\beta_{4}+\cdots+\beta_{2})q^{2}+\cdots+(\beta_{4}+\beta_{2})q^{3}+\cdots\) |
99.2.e.e | $8$ | $0.791$ | 8.0.508277025.1 | None | \(-1\) | \(5\) | \(-4\) | \(-1\) | \(q+(-\beta _{2}-\beta _{7})q^{2}+(1+\beta _{7})q^{3}+(-2+\cdots)q^{4}+\cdots\) |