Properties

Label 99.2.d
Level $99$
Weight $2$
Character orbit 99.d
Rep. character $\chi_{99}(98,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(99, [\chi])\).

Total New Old
Modular forms 16 4 12
Cusp forms 8 4 4
Eisenstein series 8 0 8

Trace form

\( 4 q + 4 q^{4} - 20 q^{16} - 12 q^{22} + 12 q^{25} - 16 q^{31} + 32 q^{37} + 4 q^{49} - 16 q^{55} + 48 q^{58} + 4 q^{64} - 16 q^{67} + 24 q^{70} - 48 q^{82} + 12 q^{88} - 48 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(99, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
99.2.d.a 99.d 33.d $4$ $0.791$ \(\Q(\sqrt{-2}, \sqrt{3})\) None 99.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+q^{4}-\beta _{1}q^{5}-\beta _{3}q^{7}+\beta _{2}q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(99, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(99, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)