Properties

Label 99.2
Level 99
Weight 2
Dimension 240
Nonzero newspaces 8
Newform subspaces 19
Sturm bound 1440
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 19 \)
Sturm bound: \(1440\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(99))\).

Total New Old
Modular forms 440 320 120
Cusp forms 281 240 41
Eisenstein series 159 80 79

Trace form

\( 240 q - 15 q^{2} - 20 q^{3} - 15 q^{4} - 15 q^{5} - 20 q^{6} - 20 q^{7} - 25 q^{8} - 20 q^{9} - 60 q^{10} - 20 q^{11} - 40 q^{12} - 20 q^{13} - 30 q^{14} - 20 q^{15} - 45 q^{16} - 30 q^{17} - 20 q^{18}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(99))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
99.2.a \(\chi_{99}(1, \cdot)\) 99.2.a.a 1 1
99.2.a.b 1
99.2.a.c 1
99.2.a.d 1
99.2.d \(\chi_{99}(98, \cdot)\) 99.2.d.a 4 1
99.2.e \(\chi_{99}(34, \cdot)\) 99.2.e.a 2 2
99.2.e.b 2
99.2.e.c 2
99.2.e.d 6
99.2.e.e 8
99.2.f \(\chi_{99}(37, \cdot)\) 99.2.f.a 4 4
99.2.f.b 4
99.2.f.c 8
99.2.g \(\chi_{99}(32, \cdot)\) 99.2.g.a 4 2
99.2.g.b 16
99.2.j \(\chi_{99}(8, \cdot)\) 99.2.j.a 16 4
99.2.m \(\chi_{99}(4, \cdot)\) 99.2.m.a 8 8
99.2.m.b 72
99.2.p \(\chi_{99}(2, \cdot)\) 99.2.p.a 80 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(99))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(99)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)