Newspace parameters
Level: | \( N \) | \(=\) | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 99.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(106.158619662\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 33) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−140.000 | 0 | 11408.0 | −48740.0 | 0 | 487486. | −450240. | 0 | 6.82360e6 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.14.a.a | 1 | |
3.b | odd | 2 | 1 | 33.14.a.a | ✓ | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.14.a.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
99.14.a.a | 1 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} + 140 \)
acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(99))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T + 140 \)
$3$
\( T \)
$5$
\( T + 48740 \)
$7$
\( T - 487486 \)
$11$
\( T - 1771561 \)
$13$
\( T + 18388304 \)
$17$
\( T - 96233254 \)
$19$
\( T + 14954652 \)
$23$
\( T + 153804394 \)
$29$
\( T + 5219010534 \)
$31$
\( T - 1183811728 \)
$37$
\( T + 17672200362 \)
$41$
\( T - 19461739306 \)
$43$
\( T + 3412304904 \)
$47$
\( T - 100327719050 \)
$53$
\( T + 275469097716 \)
$59$
\( T - 267676863080 \)
$61$
\( T - 563486626260 \)
$67$
\( T - 1080842815700 \)
$71$
\( T - 1150562265222 \)
$73$
\( T + 345914515454 \)
$79$
\( T + 2004080959294 \)
$83$
\( T - 3336732240564 \)
$89$
\( T - 5696238036294 \)
$97$
\( T + 6550114593202 \)
show more
show less