Defining parameters
Level: | \( N \) | = | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | = | \( 14 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(10080\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(99))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4760 | 3682 | 1078 |
Cusp forms | 4600 | 3602 | 998 |
Eisenstein series | 160 | 80 | 80 |
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(99))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
99.14.a | \(\chi_{99}(1, \cdot)\) | 99.14.a.a | 1 | 1 |
99.14.a.b | 4 | |||
99.14.a.c | 4 | |||
99.14.a.d | 5 | |||
99.14.a.e | 5 | |||
99.14.a.f | 6 | |||
99.14.a.g | 7 | |||
99.14.a.h | 11 | |||
99.14.a.i | 11 | |||
99.14.d | \(\chi_{99}(98, \cdot)\) | 99.14.d.a | 52 | 1 |
99.14.e | \(\chi_{99}(34, \cdot)\) | n/a | 260 | 2 |
99.14.f | \(\chi_{99}(37, \cdot)\) | n/a | 256 | 4 |
99.14.g | \(\chi_{99}(32, \cdot)\) | n/a | 308 | 2 |
99.14.j | \(\chi_{99}(8, \cdot)\) | n/a | 208 | 4 |
99.14.m | \(\chi_{99}(4, \cdot)\) | n/a | 1232 | 8 |
99.14.p | \(\chi_{99}(2, \cdot)\) | n/a | 1232 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(99))\) into lower level spaces
\( S_{14}^{\mathrm{old}}(\Gamma_1(99)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)