Properties

Label 99.1
Level 99
Weight 1
Dimension 2
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 720
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(720\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(99))\).

Total New Old
Modular forms 82 43 39
Cusp forms 2 2 0
Eisenstein series 80 41 39

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - q^{3} - q^{4} + q^{5} - q^{9} + O(q^{10}) \) \( 2 q - q^{3} - q^{4} + q^{5} - q^{9} - q^{11} - q^{12} + q^{15} - q^{16} + q^{20} - 2 q^{23} + 2 q^{27} + q^{31} + 2 q^{33} + 2 q^{36} - 2 q^{37} + 2 q^{44} - 2 q^{45} + q^{47} + 2 q^{48} - q^{49} - 2 q^{53} - 2 q^{55} + q^{59} - 2 q^{60} + 2 q^{64} + q^{67} - 2 q^{69} - 2 q^{71} - 2 q^{80} - q^{81} + 4 q^{89} - 2 q^{92} + q^{93} + q^{97} - q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(99))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
99.1.b \(\chi_{99}(89, \cdot)\) None 0 1
99.1.c \(\chi_{99}(10, \cdot)\) None 0 1
99.1.h \(\chi_{99}(43, \cdot)\) 99.1.h.a 2 2
99.1.i \(\chi_{99}(23, \cdot)\) None 0 2
99.1.k \(\chi_{99}(19, \cdot)\) None 0 4
99.1.l \(\chi_{99}(26, \cdot)\) None 0 4
99.1.n \(\chi_{99}(5, \cdot)\) None 0 8
99.1.o \(\chi_{99}(7, \cdot)\) None 0 8