Properties

Label 9802.2.a.d
Level $9802$
Weight $2$
Character orbit 9802.a
Self dual yes
Analytic conductor $78.269$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9802 = 2 \cdot 13^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9802.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(78.2693640613\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - 3 q^{3} + q^{4} + 3 q^{5} - 3 q^{6} + 2 q^{7} + q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - 3 q^{3} + q^{4} + 3 q^{5} - 3 q^{6} + 2 q^{7} + q^{8} + 6 q^{9} + 3 q^{10} + q^{11} - 3 q^{12} + 2 q^{14} - 9 q^{15} + q^{16} - 4 q^{17} + 6 q^{18} + 8 q^{19} + 3 q^{20} - 6 q^{21} + q^{22} - 3 q^{24} + 4 q^{25} - 9 q^{27} + 2 q^{28} - q^{29} - 9 q^{30} - 3 q^{31} + q^{32} - 3 q^{33} - 4 q^{34} + 6 q^{35} + 6 q^{36} + 8 q^{37} + 8 q^{38} + 3 q^{40} + 2 q^{41} - 6 q^{42} + 7 q^{43} + q^{44} + 18 q^{45} - 11 q^{47} - 3 q^{48} - 3 q^{49} + 4 q^{50} + 12 q^{51} + q^{53} - 9 q^{54} + 3 q^{55} + 2 q^{56} - 24 q^{57} - q^{58} + 4 q^{59} - 9 q^{60} + 4 q^{61} - 3 q^{62} + 12 q^{63} + q^{64} - 3 q^{66} + 4 q^{67} - 4 q^{68} + 6 q^{70} + 2 q^{71} + 6 q^{72} + 12 q^{73} + 8 q^{74} - 12 q^{75} + 8 q^{76} + 2 q^{77} - 7 q^{79} + 3 q^{80} + 9 q^{81} + 2 q^{82} - 6 q^{84} - 12 q^{85} + 7 q^{86} + 3 q^{87} + q^{88} + 6 q^{89} + 18 q^{90} + 9 q^{93} - 11 q^{94} + 24 q^{95} - 3 q^{96} + 6 q^{97} - 3 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −3.00000 1.00000 3.00000 −3.00000 2.00000 1.00000 6.00000 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(13\) \(1\)
\(29\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9802.2.a.d 1
13.b even 2 1 58.2.a.a 1
39.d odd 2 1 522.2.a.k 1
52.b odd 2 1 464.2.a.f 1
65.d even 2 1 1450.2.a.i 1
65.h odd 4 2 1450.2.b.f 2
91.b odd 2 1 2842.2.a.d 1
104.e even 2 1 1856.2.a.p 1
104.h odd 2 1 1856.2.a.b 1
143.d odd 2 1 7018.2.a.c 1
156.h even 2 1 4176.2.a.bh 1
377.d even 2 1 1682.2.a.j 1
377.i odd 4 2 1682.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.a.a 1 13.b even 2 1
464.2.a.f 1 52.b odd 2 1
522.2.a.k 1 39.d odd 2 1
1450.2.a.i 1 65.d even 2 1
1450.2.b.f 2 65.h odd 4 2
1682.2.a.j 1 377.d even 2 1
1682.2.b.e 2 377.i odd 4 2
1856.2.a.b 1 104.h odd 2 1
1856.2.a.p 1 104.e even 2 1
2842.2.a.d 1 91.b odd 2 1
4176.2.a.bh 1 156.h even 2 1
7018.2.a.c 1 143.d odd 2 1
9802.2.a.d 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9802))\):

\( T_{3} + 3 \) Copy content Toggle raw display
\( T_{5} - 3 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 4 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T + 3 \) Copy content Toggle raw display
$37$ \( T - 8 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T - 7 \) Copy content Toggle raw display
$47$ \( T + 11 \) Copy content Toggle raw display
$53$ \( T - 1 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T - 4 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T - 2 \) Copy content Toggle raw display
$73$ \( T - 12 \) Copy content Toggle raw display
$79$ \( T + 7 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 6 \) Copy content Toggle raw display
show more
show less