Properties

Label 9801.2.a.m
Level $9801$
Weight $2$
Character orbit 9801.a
Self dual yes
Analytic conductor $78.261$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} + 3 \beta q^{4} - 2 \beta q^{5} + q^{7} + ( - 4 \beta - 1) q^{8} + (4 \beta + 2) q^{10} + ( - 4 \beta + 4) q^{13} + ( - \beta - 1) q^{14} + (3 \beta + 5) q^{16} + ( - 3 \beta + 3) q^{17} + \cdots + (6 \beta + 6) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 3 q^{4} - 2 q^{5} + 2 q^{7} - 6 q^{8} + 8 q^{10} + 4 q^{13} - 3 q^{14} + 13 q^{16} + 3 q^{17} - 2 q^{19} - 18 q^{20} - 7 q^{23} + 2 q^{25} + 4 q^{26} + 3 q^{28} - 3 q^{29} - q^{31} - 15 q^{32}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.61803 0 4.85410 −3.23607 0 1.00000 −7.47214 0 8.47214
1.2 −0.381966 0 −1.85410 1.23607 0 1.00000 1.47214 0 −0.472136
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9801.2.a.m 2
3.b odd 2 1 9801.2.a.bc 2
9.d odd 6 2 1089.2.e.d 4
11.b odd 2 1 9801.2.a.bb 2
11.d odd 10 2 891.2.f.a 4
33.d even 2 1 9801.2.a.n 2
33.f even 10 2 891.2.f.b 4
99.g even 6 2 1089.2.e.g 4
99.o odd 30 4 297.2.n.a 8
99.p even 30 4 99.2.m.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.m.a 8 99.p even 30 4
297.2.n.a 8 99.o odd 30 4
891.2.f.a 4 11.d odd 10 2
891.2.f.b 4 33.f even 10 2
1089.2.e.d 4 9.d odd 6 2
1089.2.e.g 4 99.g even 6 2
9801.2.a.m 2 1.a even 1 1 trivial
9801.2.a.n 2 33.d even 2 1
9801.2.a.bb 2 11.b odd 2 1
9801.2.a.bc 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9801))\):

\( T_{2}^{2} + 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 2T_{5} - 4 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display
\( T_{17}^{2} - 3T_{17} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$29$ \( T^{2} + 3T - 9 \) Copy content Toggle raw display
$31$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} - T - 31 \) Copy content Toggle raw display
$41$ \( T^{2} + 14T + 29 \) Copy content Toggle raw display
$43$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T - 71 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$59$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$61$ \( T^{2} + 15T + 45 \) Copy content Toggle raw display
$67$ \( (T - 6)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 17T + 41 \) Copy content Toggle raw display
$73$ \( T^{2} - 7T + 1 \) Copy content Toggle raw display
$79$ \( T^{2} + T - 101 \) Copy content Toggle raw display
$83$ \( T^{2} + 24T + 139 \) Copy content Toggle raw display
$89$ \( T^{2} - 18T + 76 \) Copy content Toggle raw display
$97$ \( (T - 6)^{2} \) Copy content Toggle raw display
show more
show less