Properties

Label 9801.2.a.cp.1.8
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 22 x^{16} + 42 x^{15} + 198 x^{14} - 357 x^{13} - 944 x^{12} + 1579 x^{11} + \cdots - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.577812\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.577812 q^{2} -1.66613 q^{4} -3.00443 q^{5} -1.16432 q^{7} +2.11834 q^{8} +1.73599 q^{10} -3.94617 q^{13} +0.672758 q^{14} +2.10827 q^{16} +0.314191 q^{17} +6.36839 q^{19} +5.00578 q^{20} +0.0855002 q^{23} +4.02659 q^{25} +2.28015 q^{26} +1.93991 q^{28} +7.69982 q^{29} +6.52884 q^{31} -5.45485 q^{32} -0.181543 q^{34} +3.49812 q^{35} -6.24309 q^{37} -3.67973 q^{38} -6.36439 q^{40} -5.80907 q^{41} -6.78458 q^{43} -0.0494030 q^{46} +0.327736 q^{47} -5.64436 q^{49} -2.32661 q^{50} +6.57485 q^{52} +2.42269 q^{53} -2.46642 q^{56} -4.44905 q^{58} +2.29603 q^{59} -13.6872 q^{61} -3.77244 q^{62} -1.06465 q^{64} +11.8560 q^{65} +11.6798 q^{67} -0.523483 q^{68} -2.02125 q^{70} -8.71765 q^{71} +2.94656 q^{73} +3.60733 q^{74} -10.6106 q^{76} -8.88719 q^{79} -6.33413 q^{80} +3.35655 q^{82} -4.95778 q^{83} -0.943963 q^{85} +3.92021 q^{86} -2.12862 q^{89} +4.59461 q^{91} -0.142455 q^{92} -0.189370 q^{94} -19.1334 q^{95} -0.0888392 q^{97} +3.26138 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} + 12 q^{4} + q^{5} + q^{7} + 6 q^{8} - 2 q^{10} + 3 q^{13} - 8 q^{16} + 20 q^{17} - 3 q^{19} + 5 q^{20} + 10 q^{23} + 7 q^{25} - 2 q^{26} + 19 q^{28} + 21 q^{29} + 6 q^{31} + 9 q^{32} - 4 q^{34}+ \cdots + 82 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.577812 −0.408575 −0.204287 0.978911i \(-0.565488\pi\)
−0.204287 + 0.978911i \(0.565488\pi\)
\(3\) 0 0
\(4\) −1.66613 −0.833067
\(5\) −3.00443 −1.34362 −0.671810 0.740723i \(-0.734483\pi\)
−0.671810 + 0.740723i \(0.734483\pi\)
\(6\) 0 0
\(7\) −1.16432 −0.440072 −0.220036 0.975492i \(-0.570617\pi\)
−0.220036 + 0.975492i \(0.570617\pi\)
\(8\) 2.11834 0.748945
\(9\) 0 0
\(10\) 1.73599 0.548970
\(11\) 0 0
\(12\) 0 0
\(13\) −3.94617 −1.09447 −0.547236 0.836979i \(-0.684320\pi\)
−0.547236 + 0.836979i \(0.684320\pi\)
\(14\) 0.672758 0.179802
\(15\) 0 0
\(16\) 2.10827 0.527067
\(17\) 0.314191 0.0762024 0.0381012 0.999274i \(-0.487869\pi\)
0.0381012 + 0.999274i \(0.487869\pi\)
\(18\) 0 0
\(19\) 6.36839 1.46101 0.730504 0.682908i \(-0.239285\pi\)
0.730504 + 0.682908i \(0.239285\pi\)
\(20\) 5.00578 1.11933
\(21\) 0 0
\(22\) 0 0
\(23\) 0.0855002 0.0178280 0.00891401 0.999960i \(-0.497163\pi\)
0.00891401 + 0.999960i \(0.497163\pi\)
\(24\) 0 0
\(25\) 4.02659 0.805317
\(26\) 2.28015 0.447173
\(27\) 0 0
\(28\) 1.93991 0.366609
\(29\) 7.69982 1.42982 0.714910 0.699216i \(-0.246468\pi\)
0.714910 + 0.699216i \(0.246468\pi\)
\(30\) 0 0
\(31\) 6.52884 1.17261 0.586307 0.810089i \(-0.300581\pi\)
0.586307 + 0.810089i \(0.300581\pi\)
\(32\) −5.45485 −0.964291
\(33\) 0 0
\(34\) −0.181543 −0.0311344
\(35\) 3.49812 0.591290
\(36\) 0 0
\(37\) −6.24309 −1.02636 −0.513179 0.858282i \(-0.671532\pi\)
−0.513179 + 0.858282i \(0.671532\pi\)
\(38\) −3.67973 −0.596931
\(39\) 0 0
\(40\) −6.36439 −1.00630
\(41\) −5.80907 −0.907224 −0.453612 0.891199i \(-0.649865\pi\)
−0.453612 + 0.891199i \(0.649865\pi\)
\(42\) 0 0
\(43\) −6.78458 −1.03464 −0.517320 0.855792i \(-0.673070\pi\)
−0.517320 + 0.855792i \(0.673070\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.0494030 −0.00728408
\(47\) 0.327736 0.0478052 0.0239026 0.999714i \(-0.492391\pi\)
0.0239026 + 0.999714i \(0.492391\pi\)
\(48\) 0 0
\(49\) −5.64436 −0.806337
\(50\) −2.32661 −0.329032
\(51\) 0 0
\(52\) 6.57485 0.911767
\(53\) 2.42269 0.332782 0.166391 0.986060i \(-0.446789\pi\)
0.166391 + 0.986060i \(0.446789\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.46642 −0.329589
\(57\) 0 0
\(58\) −4.44905 −0.584189
\(59\) 2.29603 0.298918 0.149459 0.988768i \(-0.452247\pi\)
0.149459 + 0.988768i \(0.452247\pi\)
\(60\) 0 0
\(61\) −13.6872 −1.75247 −0.876233 0.481887i \(-0.839951\pi\)
−0.876233 + 0.481887i \(0.839951\pi\)
\(62\) −3.77244 −0.479100
\(63\) 0 0
\(64\) −1.06465 −0.133081
\(65\) 11.8560 1.47055
\(66\) 0 0
\(67\) 11.6798 1.42691 0.713456 0.700700i \(-0.247129\pi\)
0.713456 + 0.700700i \(0.247129\pi\)
\(68\) −0.523483 −0.0634817
\(69\) 0 0
\(70\) −2.02125 −0.241586
\(71\) −8.71765 −1.03459 −0.517297 0.855806i \(-0.673062\pi\)
−0.517297 + 0.855806i \(0.673062\pi\)
\(72\) 0 0
\(73\) 2.94656 0.344869 0.172434 0.985021i \(-0.444837\pi\)
0.172434 + 0.985021i \(0.444837\pi\)
\(74\) 3.60733 0.419344
\(75\) 0 0
\(76\) −10.6106 −1.21712
\(77\) 0 0
\(78\) 0 0
\(79\) −8.88719 −0.999887 −0.499944 0.866058i \(-0.666646\pi\)
−0.499944 + 0.866058i \(0.666646\pi\)
\(80\) −6.33413 −0.708178
\(81\) 0 0
\(82\) 3.35655 0.370669
\(83\) −4.95778 −0.544187 −0.272094 0.962271i \(-0.587716\pi\)
−0.272094 + 0.962271i \(0.587716\pi\)
\(84\) 0 0
\(85\) −0.943963 −0.102387
\(86\) 3.92021 0.422728
\(87\) 0 0
\(88\) 0 0
\(89\) −2.12862 −0.225634 −0.112817 0.993616i \(-0.535987\pi\)
−0.112817 + 0.993616i \(0.535987\pi\)
\(90\) 0 0
\(91\) 4.59461 0.481646
\(92\) −0.142455 −0.0148519
\(93\) 0 0
\(94\) −0.189370 −0.0195320
\(95\) −19.1334 −1.96304
\(96\) 0 0
\(97\) −0.0888392 −0.00902026 −0.00451013 0.999990i \(-0.501436\pi\)
−0.00451013 + 0.999990i \(0.501436\pi\)
\(98\) 3.26138 0.329449
\(99\) 0 0
\(100\) −6.70883 −0.670883
\(101\) 2.05648 0.204628 0.102314 0.994752i \(-0.467375\pi\)
0.102314 + 0.994752i \(0.467375\pi\)
\(102\) 0 0
\(103\) −3.01672 −0.297246 −0.148623 0.988894i \(-0.547484\pi\)
−0.148623 + 0.988894i \(0.547484\pi\)
\(104\) −8.35932 −0.819698
\(105\) 0 0
\(106\) −1.39986 −0.135967
\(107\) −11.9929 −1.15939 −0.579697 0.814832i \(-0.696829\pi\)
−0.579697 + 0.814832i \(0.696829\pi\)
\(108\) 0 0
\(109\) 5.20013 0.498082 0.249041 0.968493i \(-0.419885\pi\)
0.249041 + 0.968493i \(0.419885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.45470 −0.231947
\(113\) −19.2276 −1.80878 −0.904388 0.426711i \(-0.859672\pi\)
−0.904388 + 0.426711i \(0.859672\pi\)
\(114\) 0 0
\(115\) −0.256879 −0.0239541
\(116\) −12.8289 −1.19114
\(117\) 0 0
\(118\) −1.32667 −0.122130
\(119\) −0.365818 −0.0335345
\(120\) 0 0
\(121\) 0 0
\(122\) 7.90863 0.716014
\(123\) 0 0
\(124\) −10.8779 −0.976865
\(125\) 2.92455 0.261580
\(126\) 0 0
\(127\) −13.1829 −1.16980 −0.584898 0.811107i \(-0.698865\pi\)
−0.584898 + 0.811107i \(0.698865\pi\)
\(128\) 11.5249 1.01866
\(129\) 0 0
\(130\) −6.85053 −0.600831
\(131\) 17.9718 1.57020 0.785100 0.619369i \(-0.212611\pi\)
0.785100 + 0.619369i \(0.212611\pi\)
\(132\) 0 0
\(133\) −7.41484 −0.642949
\(134\) −6.74872 −0.583001
\(135\) 0 0
\(136\) 0.665561 0.0570714
\(137\) 16.4017 1.40130 0.700648 0.713507i \(-0.252895\pi\)
0.700648 + 0.713507i \(0.252895\pi\)
\(138\) 0 0
\(139\) −11.9016 −1.00948 −0.504740 0.863271i \(-0.668412\pi\)
−0.504740 + 0.863271i \(0.668412\pi\)
\(140\) −5.82833 −0.492584
\(141\) 0 0
\(142\) 5.03716 0.422709
\(143\) 0 0
\(144\) 0 0
\(145\) −23.1336 −1.92114
\(146\) −1.70256 −0.140905
\(147\) 0 0
\(148\) 10.4018 0.855024
\(149\) 4.53172 0.371253 0.185626 0.982620i \(-0.440569\pi\)
0.185626 + 0.982620i \(0.440569\pi\)
\(150\) 0 0
\(151\) −2.93086 −0.238510 −0.119255 0.992864i \(-0.538051\pi\)
−0.119255 + 0.992864i \(0.538051\pi\)
\(152\) 13.4904 1.09422
\(153\) 0 0
\(154\) 0 0
\(155\) −19.6154 −1.57555
\(156\) 0 0
\(157\) −18.0536 −1.44084 −0.720419 0.693539i \(-0.756050\pi\)
−0.720419 + 0.693539i \(0.756050\pi\)
\(158\) 5.13513 0.408529
\(159\) 0 0
\(160\) 16.3887 1.29564
\(161\) −0.0995496 −0.00784561
\(162\) 0 0
\(163\) −5.82347 −0.456130 −0.228065 0.973646i \(-0.573240\pi\)
−0.228065 + 0.973646i \(0.573240\pi\)
\(164\) 9.67868 0.755778
\(165\) 0 0
\(166\) 2.86467 0.222341
\(167\) 5.02173 0.388593 0.194296 0.980943i \(-0.437758\pi\)
0.194296 + 0.980943i \(0.437758\pi\)
\(168\) 0 0
\(169\) 2.57227 0.197867
\(170\) 0.545433 0.0418328
\(171\) 0 0
\(172\) 11.3040 0.861923
\(173\) 15.5899 1.18528 0.592638 0.805469i \(-0.298087\pi\)
0.592638 + 0.805469i \(0.298087\pi\)
\(174\) 0 0
\(175\) −4.68824 −0.354397
\(176\) 0 0
\(177\) 0 0
\(178\) 1.22994 0.0921882
\(179\) −7.04887 −0.526857 −0.263428 0.964679i \(-0.584853\pi\)
−0.263428 + 0.964679i \(0.584853\pi\)
\(180\) 0 0
\(181\) 2.49770 0.185652 0.0928262 0.995682i \(-0.470410\pi\)
0.0928262 + 0.995682i \(0.470410\pi\)
\(182\) −2.65482 −0.196788
\(183\) 0 0
\(184\) 0.181118 0.0133522
\(185\) 18.7569 1.37904
\(186\) 0 0
\(187\) 0 0
\(188\) −0.546051 −0.0398249
\(189\) 0 0
\(190\) 11.0555 0.802050
\(191\) 11.8230 0.855481 0.427740 0.903902i \(-0.359310\pi\)
0.427740 + 0.903902i \(0.359310\pi\)
\(192\) 0 0
\(193\) 6.74666 0.485635 0.242817 0.970072i \(-0.421928\pi\)
0.242817 + 0.970072i \(0.421928\pi\)
\(194\) 0.0513324 0.00368545
\(195\) 0 0
\(196\) 9.40425 0.671732
\(197\) 20.6474 1.47107 0.735534 0.677488i \(-0.236931\pi\)
0.735534 + 0.677488i \(0.236931\pi\)
\(198\) 0 0
\(199\) −13.2862 −0.941832 −0.470916 0.882178i \(-0.656077\pi\)
−0.470916 + 0.882178i \(0.656077\pi\)
\(200\) 8.52966 0.603138
\(201\) 0 0
\(202\) −1.18826 −0.0836058
\(203\) −8.96506 −0.629224
\(204\) 0 0
\(205\) 17.4529 1.21897
\(206\) 1.74309 0.121447
\(207\) 0 0
\(208\) −8.31958 −0.576859
\(209\) 0 0
\(210\) 0 0
\(211\) −8.34502 −0.574495 −0.287247 0.957856i \(-0.592740\pi\)
−0.287247 + 0.957856i \(0.592740\pi\)
\(212\) −4.03653 −0.277230
\(213\) 0 0
\(214\) 6.92962 0.473699
\(215\) 20.3838 1.39016
\(216\) 0 0
\(217\) −7.60166 −0.516034
\(218\) −3.00470 −0.203504
\(219\) 0 0
\(220\) 0 0
\(221\) −1.23985 −0.0834013
\(222\) 0 0
\(223\) −0.383656 −0.0256915 −0.0128457 0.999917i \(-0.504089\pi\)
−0.0128457 + 0.999917i \(0.504089\pi\)
\(224\) 6.35120 0.424357
\(225\) 0 0
\(226\) 11.1099 0.739020
\(227\) −18.0140 −1.19563 −0.597817 0.801633i \(-0.703965\pi\)
−0.597817 + 0.801633i \(0.703965\pi\)
\(228\) 0 0
\(229\) 13.4279 0.887339 0.443669 0.896191i \(-0.353676\pi\)
0.443669 + 0.896191i \(0.353676\pi\)
\(230\) 0.148428 0.00978704
\(231\) 0 0
\(232\) 16.3108 1.07086
\(233\) 3.36965 0.220753 0.110377 0.993890i \(-0.464794\pi\)
0.110377 + 0.993890i \(0.464794\pi\)
\(234\) 0 0
\(235\) −0.984658 −0.0642320
\(236\) −3.82549 −0.249018
\(237\) 0 0
\(238\) 0.211374 0.0137014
\(239\) 23.1968 1.50048 0.750238 0.661168i \(-0.229939\pi\)
0.750238 + 0.661168i \(0.229939\pi\)
\(240\) 0 0
\(241\) 15.1641 0.976807 0.488404 0.872618i \(-0.337579\pi\)
0.488404 + 0.872618i \(0.337579\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 22.8047 1.45992
\(245\) 16.9581 1.08341
\(246\) 0 0
\(247\) −25.1308 −1.59903
\(248\) 13.8303 0.878223
\(249\) 0 0
\(250\) −1.68984 −0.106875
\(251\) 0.582306 0.0367548 0.0183774 0.999831i \(-0.494150\pi\)
0.0183774 + 0.999831i \(0.494150\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 7.61725 0.477949
\(255\) 0 0
\(256\) −4.52991 −0.283119
\(257\) 10.9714 0.684378 0.342189 0.939631i \(-0.388832\pi\)
0.342189 + 0.939631i \(0.388832\pi\)
\(258\) 0 0
\(259\) 7.26895 0.451671
\(260\) −19.7537 −1.22507
\(261\) 0 0
\(262\) −10.3843 −0.641544
\(263\) 14.3954 0.887656 0.443828 0.896112i \(-0.353620\pi\)
0.443828 + 0.896112i \(0.353620\pi\)
\(264\) 0 0
\(265\) −7.27881 −0.447134
\(266\) 4.28439 0.262693
\(267\) 0 0
\(268\) −19.4601 −1.18871
\(269\) −0.488976 −0.0298134 −0.0149067 0.999889i \(-0.504745\pi\)
−0.0149067 + 0.999889i \(0.504745\pi\)
\(270\) 0 0
\(271\) 21.9389 1.33270 0.666348 0.745641i \(-0.267857\pi\)
0.666348 + 0.745641i \(0.267857\pi\)
\(272\) 0.662397 0.0401637
\(273\) 0 0
\(274\) −9.47712 −0.572534
\(275\) 0 0
\(276\) 0 0
\(277\) 2.86952 0.172413 0.0862065 0.996277i \(-0.472526\pi\)
0.0862065 + 0.996277i \(0.472526\pi\)
\(278\) 6.87689 0.412448
\(279\) 0 0
\(280\) 7.41019 0.442843
\(281\) −18.1781 −1.08441 −0.542206 0.840245i \(-0.682411\pi\)
−0.542206 + 0.840245i \(0.682411\pi\)
\(282\) 0 0
\(283\) −20.5371 −1.22080 −0.610402 0.792092i \(-0.708992\pi\)
−0.610402 + 0.792092i \(0.708992\pi\)
\(284\) 14.5248 0.861886
\(285\) 0 0
\(286\) 0 0
\(287\) 6.76362 0.399244
\(288\) 0 0
\(289\) −16.9013 −0.994193
\(290\) 13.3668 0.784928
\(291\) 0 0
\(292\) −4.90936 −0.287299
\(293\) −0.860067 −0.0502456 −0.0251228 0.999684i \(-0.507998\pi\)
−0.0251228 + 0.999684i \(0.507998\pi\)
\(294\) 0 0
\(295\) −6.89826 −0.401632
\(296\) −13.2250 −0.768685
\(297\) 0 0
\(298\) −2.61848 −0.151684
\(299\) −0.337398 −0.0195122
\(300\) 0 0
\(301\) 7.89943 0.455315
\(302\) 1.69349 0.0974493
\(303\) 0 0
\(304\) 13.4263 0.770049
\(305\) 41.1222 2.35465
\(306\) 0 0
\(307\) 3.48920 0.199139 0.0995696 0.995031i \(-0.468253\pi\)
0.0995696 + 0.995031i \(0.468253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 11.3340 0.643729
\(311\) −10.8453 −0.614981 −0.307490 0.951551i \(-0.599489\pi\)
−0.307490 + 0.951551i \(0.599489\pi\)
\(312\) 0 0
\(313\) −28.2811 −1.59854 −0.799270 0.600972i \(-0.794780\pi\)
−0.799270 + 0.600972i \(0.794780\pi\)
\(314\) 10.4316 0.588690
\(315\) 0 0
\(316\) 14.8072 0.832973
\(317\) 1.11253 0.0624857 0.0312429 0.999512i \(-0.490053\pi\)
0.0312429 + 0.999512i \(0.490053\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.19867 0.178811
\(321\) 0 0
\(322\) 0.0575209 0.00320552
\(323\) 2.00089 0.111332
\(324\) 0 0
\(325\) −15.8896 −0.881396
\(326\) 3.36487 0.186363
\(327\) 0 0
\(328\) −12.3056 −0.679461
\(329\) −0.381589 −0.0210377
\(330\) 0 0
\(331\) −12.3783 −0.680373 −0.340187 0.940358i \(-0.610490\pi\)
−0.340187 + 0.940358i \(0.610490\pi\)
\(332\) 8.26033 0.453344
\(333\) 0 0
\(334\) −2.90161 −0.158769
\(335\) −35.0911 −1.91723
\(336\) 0 0
\(337\) 13.4736 0.733955 0.366977 0.930230i \(-0.380393\pi\)
0.366977 + 0.930230i \(0.380393\pi\)
\(338\) −1.48629 −0.0808434
\(339\) 0 0
\(340\) 1.57277 0.0852953
\(341\) 0 0
\(342\) 0 0
\(343\) 14.7221 0.794918
\(344\) −14.3720 −0.774888
\(345\) 0 0
\(346\) −9.00801 −0.484274
\(347\) −9.73917 −0.522826 −0.261413 0.965227i \(-0.584188\pi\)
−0.261413 + 0.965227i \(0.584188\pi\)
\(348\) 0 0
\(349\) −4.44019 −0.237678 −0.118839 0.992914i \(-0.537917\pi\)
−0.118839 + 0.992914i \(0.537917\pi\)
\(350\) 2.70892 0.144798
\(351\) 0 0
\(352\) 0 0
\(353\) −32.5235 −1.73105 −0.865527 0.500863i \(-0.833016\pi\)
−0.865527 + 0.500863i \(0.833016\pi\)
\(354\) 0 0
\(355\) 26.1915 1.39010
\(356\) 3.54657 0.187968
\(357\) 0 0
\(358\) 4.07292 0.215260
\(359\) 27.7701 1.46565 0.732825 0.680417i \(-0.238201\pi\)
0.732825 + 0.680417i \(0.238201\pi\)
\(360\) 0 0
\(361\) 21.5564 1.13455
\(362\) −1.44320 −0.0758529
\(363\) 0 0
\(364\) −7.65523 −0.401243
\(365\) −8.85273 −0.463373
\(366\) 0 0
\(367\) 1.17220 0.0611882 0.0305941 0.999532i \(-0.490260\pi\)
0.0305941 + 0.999532i \(0.490260\pi\)
\(368\) 0.180257 0.00939655
\(369\) 0 0
\(370\) −10.8380 −0.563439
\(371\) −2.82079 −0.146448
\(372\) 0 0
\(373\) 21.7668 1.12704 0.563520 0.826102i \(-0.309447\pi\)
0.563520 + 0.826102i \(0.309447\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.694254 0.0358034
\(377\) −30.3848 −1.56490
\(378\) 0 0
\(379\) −16.2469 −0.834545 −0.417273 0.908781i \(-0.637014\pi\)
−0.417273 + 0.908781i \(0.637014\pi\)
\(380\) 31.8787 1.63534
\(381\) 0 0
\(382\) −6.83146 −0.349528
\(383\) −6.19335 −0.316465 −0.158233 0.987402i \(-0.550580\pi\)
−0.158233 + 0.987402i \(0.550580\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.89830 −0.198418
\(387\) 0 0
\(388\) 0.148018 0.00751447
\(389\) 0.723213 0.0366684 0.0183342 0.999832i \(-0.494164\pi\)
0.0183342 + 0.999832i \(0.494164\pi\)
\(390\) 0 0
\(391\) 0.0268633 0.00135854
\(392\) −11.9566 −0.603902
\(393\) 0 0
\(394\) −11.9303 −0.601041
\(395\) 26.7009 1.34347
\(396\) 0 0
\(397\) 4.08994 0.205268 0.102634 0.994719i \(-0.467273\pi\)
0.102634 + 0.994719i \(0.467273\pi\)
\(398\) 7.67691 0.384809
\(399\) 0 0
\(400\) 8.48912 0.424456
\(401\) 5.64627 0.281961 0.140981 0.990012i \(-0.454974\pi\)
0.140981 + 0.990012i \(0.454974\pi\)
\(402\) 0 0
\(403\) −25.7639 −1.28339
\(404\) −3.42638 −0.170469
\(405\) 0 0
\(406\) 5.18012 0.257085
\(407\) 0 0
\(408\) 0 0
\(409\) 9.44877 0.467212 0.233606 0.972331i \(-0.424947\pi\)
0.233606 + 0.972331i \(0.424947\pi\)
\(410\) −10.0845 −0.498039
\(411\) 0 0
\(412\) 5.02625 0.247626
\(413\) −2.67332 −0.131545
\(414\) 0 0
\(415\) 14.8953 0.731182
\(416\) 21.5258 1.05539
\(417\) 0 0
\(418\) 0 0
\(419\) −0.151564 −0.00740438 −0.00370219 0.999993i \(-0.501178\pi\)
−0.00370219 + 0.999993i \(0.501178\pi\)
\(420\) 0 0
\(421\) 16.9766 0.827387 0.413693 0.910416i \(-0.364239\pi\)
0.413693 + 0.910416i \(0.364239\pi\)
\(422\) 4.82185 0.234724
\(423\) 0 0
\(424\) 5.13208 0.249236
\(425\) 1.26512 0.0613671
\(426\) 0 0
\(427\) 15.9363 0.771211
\(428\) 19.9817 0.965852
\(429\) 0 0
\(430\) −11.7780 −0.567986
\(431\) 25.3694 1.22200 0.610999 0.791631i \(-0.290768\pi\)
0.610999 + 0.791631i \(0.290768\pi\)
\(432\) 0 0
\(433\) 16.5347 0.794607 0.397303 0.917687i \(-0.369946\pi\)
0.397303 + 0.917687i \(0.369946\pi\)
\(434\) 4.39233 0.210839
\(435\) 0 0
\(436\) −8.66410 −0.414935
\(437\) 0.544498 0.0260469
\(438\) 0 0
\(439\) −39.2413 −1.87289 −0.936443 0.350819i \(-0.885903\pi\)
−0.936443 + 0.350819i \(0.885903\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.716400 0.0340757
\(443\) −32.1894 −1.52936 −0.764681 0.644409i \(-0.777104\pi\)
−0.764681 + 0.644409i \(0.777104\pi\)
\(444\) 0 0
\(445\) 6.39529 0.303166
\(446\) 0.221681 0.0104969
\(447\) 0 0
\(448\) 1.23960 0.0585654
\(449\) 25.8443 1.21967 0.609833 0.792530i \(-0.291236\pi\)
0.609833 + 0.792530i \(0.291236\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 32.0357 1.50683
\(453\) 0 0
\(454\) 10.4087 0.488506
\(455\) −13.8042 −0.647149
\(456\) 0 0
\(457\) −12.7163 −0.594842 −0.297421 0.954746i \(-0.596127\pi\)
−0.297421 + 0.954746i \(0.596127\pi\)
\(458\) −7.75879 −0.362544
\(459\) 0 0
\(460\) 0.427995 0.0199554
\(461\) 19.0217 0.885931 0.442965 0.896539i \(-0.353927\pi\)
0.442965 + 0.896539i \(0.353927\pi\)
\(462\) 0 0
\(463\) −22.8667 −1.06271 −0.531353 0.847150i \(-0.678316\pi\)
−0.531353 + 0.847150i \(0.678316\pi\)
\(464\) 16.2333 0.753611
\(465\) 0 0
\(466\) −1.94703 −0.0901942
\(467\) −15.9228 −0.736821 −0.368411 0.929663i \(-0.620098\pi\)
−0.368411 + 0.929663i \(0.620098\pi\)
\(468\) 0 0
\(469\) −13.5990 −0.627944
\(470\) 0.568947 0.0262436
\(471\) 0 0
\(472\) 4.86377 0.223873
\(473\) 0 0
\(474\) 0 0
\(475\) 25.6429 1.17658
\(476\) 0.609502 0.0279365
\(477\) 0 0
\(478\) −13.4034 −0.613057
\(479\) 16.3900 0.748877 0.374438 0.927252i \(-0.377836\pi\)
0.374438 + 0.927252i \(0.377836\pi\)
\(480\) 0 0
\(481\) 24.6363 1.12332
\(482\) −8.76202 −0.399099
\(483\) 0 0
\(484\) 0 0
\(485\) 0.266911 0.0121198
\(486\) 0 0
\(487\) 22.7865 1.03256 0.516278 0.856421i \(-0.327317\pi\)
0.516278 + 0.856421i \(0.327317\pi\)
\(488\) −28.9941 −1.31250
\(489\) 0 0
\(490\) −9.79858 −0.442655
\(491\) 43.6430 1.96958 0.984791 0.173745i \(-0.0555868\pi\)
0.984791 + 0.173745i \(0.0555868\pi\)
\(492\) 0 0
\(493\) 2.41921 0.108956
\(494\) 14.5209 0.653324
\(495\) 0 0
\(496\) 13.7645 0.618045
\(497\) 10.1501 0.455296
\(498\) 0 0
\(499\) −20.1035 −0.899957 −0.449978 0.893039i \(-0.648568\pi\)
−0.449978 + 0.893039i \(0.648568\pi\)
\(500\) −4.87269 −0.217913
\(501\) 0 0
\(502\) −0.336463 −0.0150171
\(503\) 10.6083 0.473001 0.236500 0.971631i \(-0.424000\pi\)
0.236500 + 0.971631i \(0.424000\pi\)
\(504\) 0 0
\(505\) −6.17856 −0.274942
\(506\) 0 0
\(507\) 0 0
\(508\) 21.9645 0.974517
\(509\) 44.4684 1.97103 0.985513 0.169601i \(-0.0542478\pi\)
0.985513 + 0.169601i \(0.0542478\pi\)
\(510\) 0 0
\(511\) −3.43074 −0.151767
\(512\) −20.4323 −0.902989
\(513\) 0 0
\(514\) −6.33942 −0.279620
\(515\) 9.06350 0.399386
\(516\) 0 0
\(517\) 0 0
\(518\) −4.20009 −0.184541
\(519\) 0 0
\(520\) 25.1150 1.10136
\(521\) −16.9511 −0.742643 −0.371322 0.928504i \(-0.621095\pi\)
−0.371322 + 0.928504i \(0.621095\pi\)
\(522\) 0 0
\(523\) 30.2142 1.32117 0.660587 0.750749i \(-0.270307\pi\)
0.660587 + 0.750749i \(0.270307\pi\)
\(524\) −29.9434 −1.30808
\(525\) 0 0
\(526\) −8.31782 −0.362674
\(527\) 2.05130 0.0893560
\(528\) 0 0
\(529\) −22.9927 −0.999682
\(530\) 4.20578 0.182688
\(531\) 0 0
\(532\) 12.3541 0.535619
\(533\) 22.9236 0.992931
\(534\) 0 0
\(535\) 36.0317 1.55779
\(536\) 24.7417 1.06868
\(537\) 0 0
\(538\) 0.282536 0.0121810
\(539\) 0 0
\(540\) 0 0
\(541\) 11.8312 0.508663 0.254332 0.967117i \(-0.418145\pi\)
0.254332 + 0.967117i \(0.418145\pi\)
\(542\) −12.6766 −0.544506
\(543\) 0 0
\(544\) −1.71386 −0.0734813
\(545\) −15.6234 −0.669233
\(546\) 0 0
\(547\) 2.54581 0.108851 0.0544255 0.998518i \(-0.482667\pi\)
0.0544255 + 0.998518i \(0.482667\pi\)
\(548\) −27.3275 −1.16737
\(549\) 0 0
\(550\) 0 0
\(551\) 49.0355 2.08898
\(552\) 0 0
\(553\) 10.3475 0.440022
\(554\) −1.65805 −0.0704436
\(555\) 0 0
\(556\) 19.8297 0.840965
\(557\) −9.67543 −0.409961 −0.204981 0.978766i \(-0.565713\pi\)
−0.204981 + 0.978766i \(0.565713\pi\)
\(558\) 0 0
\(559\) 26.7731 1.13238
\(560\) 7.37496 0.311649
\(561\) 0 0
\(562\) 10.5035 0.443064
\(563\) 23.9872 1.01094 0.505470 0.862844i \(-0.331319\pi\)
0.505470 + 0.862844i \(0.331319\pi\)
\(564\) 0 0
\(565\) 57.7678 2.43031
\(566\) 11.8666 0.498790
\(567\) 0 0
\(568\) −18.4669 −0.774854
\(569\) 37.6191 1.57708 0.788538 0.614986i \(-0.210838\pi\)
0.788538 + 0.614986i \(0.210838\pi\)
\(570\) 0 0
\(571\) −14.7548 −0.617469 −0.308735 0.951148i \(-0.599905\pi\)
−0.308735 + 0.951148i \(0.599905\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −3.90810 −0.163121
\(575\) 0.344274 0.0143572
\(576\) 0 0
\(577\) −22.3068 −0.928644 −0.464322 0.885667i \(-0.653702\pi\)
−0.464322 + 0.885667i \(0.653702\pi\)
\(578\) 9.76577 0.406202
\(579\) 0 0
\(580\) 38.5436 1.60043
\(581\) 5.77245 0.239481
\(582\) 0 0
\(583\) 0 0
\(584\) 6.24181 0.258288
\(585\) 0 0
\(586\) 0.496957 0.0205291
\(587\) 2.50017 0.103193 0.0515965 0.998668i \(-0.483569\pi\)
0.0515965 + 0.998668i \(0.483569\pi\)
\(588\) 0 0
\(589\) 41.5782 1.71320
\(590\) 3.98590 0.164097
\(591\) 0 0
\(592\) −13.1621 −0.540959
\(593\) 10.8953 0.447417 0.223708 0.974656i \(-0.428184\pi\)
0.223708 + 0.974656i \(0.428184\pi\)
\(594\) 0 0
\(595\) 1.09907 0.0450577
\(596\) −7.55044 −0.309278
\(597\) 0 0
\(598\) 0.194953 0.00797221
\(599\) 36.8381 1.50516 0.752582 0.658499i \(-0.228808\pi\)
0.752582 + 0.658499i \(0.228808\pi\)
\(600\) 0 0
\(601\) −15.4543 −0.630393 −0.315197 0.949026i \(-0.602070\pi\)
−0.315197 + 0.949026i \(0.602070\pi\)
\(602\) −4.56438 −0.186030
\(603\) 0 0
\(604\) 4.88321 0.198695
\(605\) 0 0
\(606\) 0 0
\(607\) −25.4769 −1.03408 −0.517038 0.855963i \(-0.672965\pi\)
−0.517038 + 0.855963i \(0.672965\pi\)
\(608\) −34.7386 −1.40884
\(609\) 0 0
\(610\) −23.7609 −0.962051
\(611\) −1.29330 −0.0523214
\(612\) 0 0
\(613\) −37.7740 −1.52568 −0.762839 0.646588i \(-0.776195\pi\)
−0.762839 + 0.646588i \(0.776195\pi\)
\(614\) −2.01610 −0.0813633
\(615\) 0 0
\(616\) 0 0
\(617\) −41.8928 −1.68654 −0.843271 0.537489i \(-0.819373\pi\)
−0.843271 + 0.537489i \(0.819373\pi\)
\(618\) 0 0
\(619\) −5.98961 −0.240743 −0.120371 0.992729i \(-0.538409\pi\)
−0.120371 + 0.992729i \(0.538409\pi\)
\(620\) 32.6819 1.31254
\(621\) 0 0
\(622\) 6.26655 0.251266
\(623\) 2.47840 0.0992950
\(624\) 0 0
\(625\) −28.9195 −1.15678
\(626\) 16.3411 0.653123
\(627\) 0 0
\(628\) 30.0798 1.20031
\(629\) −1.96152 −0.0782109
\(630\) 0 0
\(631\) −21.4994 −0.855878 −0.427939 0.903808i \(-0.640760\pi\)
−0.427939 + 0.903808i \(0.640760\pi\)
\(632\) −18.8261 −0.748861
\(633\) 0 0
\(634\) −0.642832 −0.0255301
\(635\) 39.6071 1.57176
\(636\) 0 0
\(637\) 22.2736 0.882512
\(638\) 0 0
\(639\) 0 0
\(640\) −34.6257 −1.36870
\(641\) −12.8370 −0.507031 −0.253516 0.967331i \(-0.581587\pi\)
−0.253516 + 0.967331i \(0.581587\pi\)
\(642\) 0 0
\(643\) 28.3556 1.11823 0.559117 0.829089i \(-0.311140\pi\)
0.559117 + 0.829089i \(0.311140\pi\)
\(644\) 0.165863 0.00653591
\(645\) 0 0
\(646\) −1.15614 −0.0454876
\(647\) 17.4948 0.687792 0.343896 0.939008i \(-0.388253\pi\)
0.343896 + 0.939008i \(0.388253\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 9.18120 0.360116
\(651\) 0 0
\(652\) 9.70268 0.379986
\(653\) 29.3022 1.14668 0.573342 0.819316i \(-0.305647\pi\)
0.573342 + 0.819316i \(0.305647\pi\)
\(654\) 0 0
\(655\) −53.9949 −2.10975
\(656\) −12.2471 −0.478168
\(657\) 0 0
\(658\) 0.220487 0.00859547
\(659\) −27.5870 −1.07464 −0.537319 0.843379i \(-0.680563\pi\)
−0.537319 + 0.843379i \(0.680563\pi\)
\(660\) 0 0
\(661\) 29.7552 1.15734 0.578672 0.815560i \(-0.303571\pi\)
0.578672 + 0.815560i \(0.303571\pi\)
\(662\) 7.15234 0.277983
\(663\) 0 0
\(664\) −10.5023 −0.407566
\(665\) 22.2774 0.863879
\(666\) 0 0
\(667\) 0.658336 0.0254909
\(668\) −8.36687 −0.323724
\(669\) 0 0
\(670\) 20.2760 0.783332
\(671\) 0 0
\(672\) 0 0
\(673\) 9.65367 0.372122 0.186061 0.982538i \(-0.440428\pi\)
0.186061 + 0.982538i \(0.440428\pi\)
\(674\) −7.78522 −0.299875
\(675\) 0 0
\(676\) −4.28574 −0.164836
\(677\) 0.0981151 0.00377087 0.00188544 0.999998i \(-0.499400\pi\)
0.00188544 + 0.999998i \(0.499400\pi\)
\(678\) 0 0
\(679\) 0.103437 0.00396956
\(680\) −1.99963 −0.0766823
\(681\) 0 0
\(682\) 0 0
\(683\) −30.5246 −1.16799 −0.583996 0.811756i \(-0.698512\pi\)
−0.583996 + 0.811756i \(0.698512\pi\)
\(684\) 0 0
\(685\) −49.2778 −1.88281
\(686\) −8.50660 −0.324783
\(687\) 0 0
\(688\) −14.3037 −0.545324
\(689\) −9.56036 −0.364221
\(690\) 0 0
\(691\) 32.8017 1.24784 0.623918 0.781490i \(-0.285540\pi\)
0.623918 + 0.781490i \(0.285540\pi\)
\(692\) −25.9748 −0.987413
\(693\) 0 0
\(694\) 5.62741 0.213614
\(695\) 35.7575 1.35636
\(696\) 0 0
\(697\) −1.82515 −0.0691327
\(698\) 2.56560 0.0971093
\(699\) 0 0
\(700\) 7.81123 0.295237
\(701\) 8.74920 0.330453 0.165226 0.986256i \(-0.447165\pi\)
0.165226 + 0.986256i \(0.447165\pi\)
\(702\) 0 0
\(703\) −39.7584 −1.49952
\(704\) 0 0
\(705\) 0 0
\(706\) 18.7925 0.707265
\(707\) −2.39441 −0.0900509
\(708\) 0 0
\(709\) 26.7759 1.00559 0.502795 0.864406i \(-0.332305\pi\)
0.502795 + 0.864406i \(0.332305\pi\)
\(710\) −15.1338 −0.567961
\(711\) 0 0
\(712\) −4.50914 −0.168987
\(713\) 0.558217 0.0209054
\(714\) 0 0
\(715\) 0 0
\(716\) 11.7443 0.438907
\(717\) 0 0
\(718\) −16.0459 −0.598828
\(719\) 15.0047 0.559582 0.279791 0.960061i \(-0.409735\pi\)
0.279791 + 0.960061i \(0.409735\pi\)
\(720\) 0 0
\(721\) 3.51242 0.130809
\(722\) −12.4555 −0.463547
\(723\) 0 0
\(724\) −4.16150 −0.154661
\(725\) 31.0040 1.15146
\(726\) 0 0
\(727\) 27.5325 1.02112 0.510562 0.859841i \(-0.329437\pi\)
0.510562 + 0.859841i \(0.329437\pi\)
\(728\) 9.73292 0.360726
\(729\) 0 0
\(730\) 5.11522 0.189323
\(731\) −2.13165 −0.0788420
\(732\) 0 0
\(733\) 47.7397 1.76331 0.881653 0.471899i \(-0.156431\pi\)
0.881653 + 0.471899i \(0.156431\pi\)
\(734\) −0.677309 −0.0249999
\(735\) 0 0
\(736\) −0.466391 −0.0171914
\(737\) 0 0
\(738\) 0 0
\(739\) 1.48849 0.0547549 0.0273774 0.999625i \(-0.491284\pi\)
0.0273774 + 0.999625i \(0.491284\pi\)
\(740\) −31.2515 −1.14883
\(741\) 0 0
\(742\) 1.62989 0.0598350
\(743\) 18.1602 0.666232 0.333116 0.942886i \(-0.391900\pi\)
0.333116 + 0.942886i \(0.391900\pi\)
\(744\) 0 0
\(745\) −13.6152 −0.498823
\(746\) −12.5771 −0.460481
\(747\) 0 0
\(748\) 0 0
\(749\) 13.9635 0.510216
\(750\) 0 0
\(751\) −4.39465 −0.160363 −0.0801816 0.996780i \(-0.525550\pi\)
−0.0801816 + 0.996780i \(0.525550\pi\)
\(752\) 0.690954 0.0251965
\(753\) 0 0
\(754\) 17.5567 0.639378
\(755\) 8.80557 0.320467
\(756\) 0 0
\(757\) −13.7659 −0.500331 −0.250165 0.968203i \(-0.580485\pi\)
−0.250165 + 0.968203i \(0.580485\pi\)
\(758\) 9.38763 0.340974
\(759\) 0 0
\(760\) −40.5309 −1.47021
\(761\) 31.1061 1.12760 0.563798 0.825913i \(-0.309340\pi\)
0.563798 + 0.825913i \(0.309340\pi\)
\(762\) 0 0
\(763\) −6.05461 −0.219192
\(764\) −19.6987 −0.712672
\(765\) 0 0
\(766\) 3.57859 0.129300
\(767\) −9.06053 −0.327157
\(768\) 0 0
\(769\) 21.9353 0.791009 0.395504 0.918464i \(-0.370570\pi\)
0.395504 + 0.918464i \(0.370570\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.2408 −0.404566
\(773\) 12.7166 0.457385 0.228693 0.973499i \(-0.426555\pi\)
0.228693 + 0.973499i \(0.426555\pi\)
\(774\) 0 0
\(775\) 26.2889 0.944326
\(776\) −0.188191 −0.00675568
\(777\) 0 0
\(778\) −0.417881 −0.0149818
\(779\) −36.9944 −1.32546
\(780\) 0 0
\(781\) 0 0
\(782\) −0.0155220 −0.000555064 0
\(783\) 0 0
\(784\) −11.8998 −0.424993
\(785\) 54.2409 1.93594
\(786\) 0 0
\(787\) −17.2617 −0.615312 −0.307656 0.951498i \(-0.599545\pi\)
−0.307656 + 0.951498i \(0.599545\pi\)
\(788\) −34.4014 −1.22550
\(789\) 0 0
\(790\) −15.4281 −0.548908
\(791\) 22.3870 0.795991
\(792\) 0 0
\(793\) 54.0120 1.91802
\(794\) −2.36321 −0.0838673
\(795\) 0 0
\(796\) 22.1365 0.784609
\(797\) −35.2015 −1.24690 −0.623451 0.781863i \(-0.714270\pi\)
−0.623451 + 0.781863i \(0.714270\pi\)
\(798\) 0 0
\(799\) 0.102971 0.00364287
\(800\) −21.9644 −0.776560
\(801\) 0 0
\(802\) −3.26248 −0.115202
\(803\) 0 0
\(804\) 0 0
\(805\) 0.299090 0.0105415
\(806\) 14.8867 0.524362
\(807\) 0 0
\(808\) 4.35632 0.153255
\(809\) 19.0808 0.670845 0.335423 0.942068i \(-0.391121\pi\)
0.335423 + 0.942068i \(0.391121\pi\)
\(810\) 0 0
\(811\) −31.0588 −1.09062 −0.545311 0.838234i \(-0.683588\pi\)
−0.545311 + 0.838234i \(0.683588\pi\)
\(812\) 14.9370 0.524185
\(813\) 0 0
\(814\) 0 0
\(815\) 17.4962 0.612865
\(816\) 0 0
\(817\) −43.2069 −1.51162
\(818\) −5.45961 −0.190891
\(819\) 0 0
\(820\) −29.0789 −1.01548
\(821\) −34.0085 −1.18691 −0.593453 0.804869i \(-0.702236\pi\)
−0.593453 + 0.804869i \(0.702236\pi\)
\(822\) 0 0
\(823\) 15.5560 0.542248 0.271124 0.962544i \(-0.412605\pi\)
0.271124 + 0.962544i \(0.412605\pi\)
\(824\) −6.39042 −0.222621
\(825\) 0 0
\(826\) 1.54467 0.0537461
\(827\) −16.0277 −0.557337 −0.278669 0.960387i \(-0.589893\pi\)
−0.278669 + 0.960387i \(0.589893\pi\)
\(828\) 0 0
\(829\) 19.0994 0.663351 0.331675 0.943394i \(-0.392386\pi\)
0.331675 + 0.943394i \(0.392386\pi\)
\(830\) −8.60669 −0.298742
\(831\) 0 0
\(832\) 4.20130 0.145654
\(833\) −1.77340 −0.0614448
\(834\) 0 0
\(835\) −15.0874 −0.522122
\(836\) 0 0
\(837\) 0 0
\(838\) 0.0875755 0.00302524
\(839\) −1.48792 −0.0513687 −0.0256844 0.999670i \(-0.508176\pi\)
−0.0256844 + 0.999670i \(0.508176\pi\)
\(840\) 0 0
\(841\) 30.2872 1.04439
\(842\) −9.80926 −0.338049
\(843\) 0 0
\(844\) 13.9039 0.478592
\(845\) −7.72819 −0.265858
\(846\) 0 0
\(847\) 0 0
\(848\) 5.10768 0.175399
\(849\) 0 0
\(850\) −0.730999 −0.0250731
\(851\) −0.533785 −0.0182979
\(852\) 0 0
\(853\) 37.8021 1.29432 0.647159 0.762355i \(-0.275957\pi\)
0.647159 + 0.762355i \(0.275957\pi\)
\(854\) −9.20818 −0.315097
\(855\) 0 0
\(856\) −25.4049 −0.868322
\(857\) −19.8270 −0.677276 −0.338638 0.940917i \(-0.609966\pi\)
−0.338638 + 0.940917i \(0.609966\pi\)
\(858\) 0 0
\(859\) −15.7153 −0.536199 −0.268099 0.963391i \(-0.586396\pi\)
−0.268099 + 0.963391i \(0.586396\pi\)
\(860\) −33.9621 −1.15810
\(861\) 0 0
\(862\) −14.6587 −0.499278
\(863\) −8.12774 −0.276671 −0.138336 0.990385i \(-0.544175\pi\)
−0.138336 + 0.990385i \(0.544175\pi\)
\(864\) 0 0
\(865\) −46.8386 −1.59256
\(866\) −9.55395 −0.324656
\(867\) 0 0
\(868\) 12.6654 0.429891
\(869\) 0 0
\(870\) 0 0
\(871\) −46.0904 −1.56171
\(872\) 11.0156 0.373036
\(873\) 0 0
\(874\) −0.314618 −0.0106421
\(875\) −3.40511 −0.115114
\(876\) 0 0
\(877\) −2.53353 −0.0855512 −0.0427756 0.999085i \(-0.513620\pi\)
−0.0427756 + 0.999085i \(0.513620\pi\)
\(878\) 22.6741 0.765214
\(879\) 0 0
\(880\) 0 0
\(881\) 47.4109 1.59731 0.798657 0.601786i \(-0.205544\pi\)
0.798657 + 0.601786i \(0.205544\pi\)
\(882\) 0 0
\(883\) 26.5129 0.892231 0.446116 0.894975i \(-0.352807\pi\)
0.446116 + 0.894975i \(0.352807\pi\)
\(884\) 2.06575 0.0694789
\(885\) 0 0
\(886\) 18.5994 0.624859
\(887\) 47.8293 1.60595 0.802976 0.596011i \(-0.203249\pi\)
0.802976 + 0.596011i \(0.203249\pi\)
\(888\) 0 0
\(889\) 15.3491 0.514794
\(890\) −3.69528 −0.123866
\(891\) 0 0
\(892\) 0.639221 0.0214027
\(893\) 2.08715 0.0698438
\(894\) 0 0
\(895\) 21.1778 0.707896
\(896\) −13.4186 −0.448286
\(897\) 0 0
\(898\) −14.9331 −0.498325
\(899\) 50.2709 1.67663
\(900\) 0 0
\(901\) 0.761187 0.0253588
\(902\) 0 0
\(903\) 0 0
\(904\) −40.7304 −1.35467
\(905\) −7.50415 −0.249446
\(906\) 0 0
\(907\) 47.4583 1.57583 0.787914 0.615785i \(-0.211161\pi\)
0.787914 + 0.615785i \(0.211161\pi\)
\(908\) 30.0138 0.996042
\(909\) 0 0
\(910\) 7.97621 0.264409
\(911\) 28.4322 0.942002 0.471001 0.882133i \(-0.343893\pi\)
0.471001 + 0.882133i \(0.343893\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 7.34762 0.243038
\(915\) 0 0
\(916\) −22.3726 −0.739212
\(917\) −20.9249 −0.691001
\(918\) 0 0
\(919\) 38.3728 1.26580 0.632901 0.774233i \(-0.281864\pi\)
0.632901 + 0.774233i \(0.281864\pi\)
\(920\) −0.544156 −0.0179403
\(921\) 0 0
\(922\) −10.9910 −0.361969
\(923\) 34.4013 1.13233
\(924\) 0 0
\(925\) −25.1383 −0.826543
\(926\) 13.2127 0.434195
\(927\) 0 0
\(928\) −42.0014 −1.37876
\(929\) −13.3877 −0.439235 −0.219618 0.975586i \(-0.570481\pi\)
−0.219618 + 0.975586i \(0.570481\pi\)
\(930\) 0 0
\(931\) −35.9455 −1.17807
\(932\) −5.61429 −0.183902
\(933\) 0 0
\(934\) 9.20041 0.301047
\(935\) 0 0
\(936\) 0 0
\(937\) −24.6705 −0.805950 −0.402975 0.915211i \(-0.632024\pi\)
−0.402975 + 0.915211i \(0.632024\pi\)
\(938\) 7.85767 0.256562
\(939\) 0 0
\(940\) 1.64057 0.0535095
\(941\) −8.30230 −0.270647 −0.135324 0.990801i \(-0.543207\pi\)
−0.135324 + 0.990801i \(0.543207\pi\)
\(942\) 0 0
\(943\) −0.496676 −0.0161740
\(944\) 4.84065 0.157550
\(945\) 0 0
\(946\) 0 0
\(947\) −37.9496 −1.23320 −0.616598 0.787278i \(-0.711490\pi\)
−0.616598 + 0.787278i \(0.711490\pi\)
\(948\) 0 0
\(949\) −11.6276 −0.377449
\(950\) −14.8168 −0.480719
\(951\) 0 0
\(952\) −0.774926 −0.0251155
\(953\) 48.6705 1.57659 0.788297 0.615295i \(-0.210963\pi\)
0.788297 + 0.615295i \(0.210963\pi\)
\(954\) 0 0
\(955\) −35.5213 −1.14944
\(956\) −38.6490 −1.25000
\(957\) 0 0
\(958\) −9.47032 −0.305972
\(959\) −19.0969 −0.616670
\(960\) 0 0
\(961\) 11.6257 0.375023
\(962\) −14.2352 −0.458960
\(963\) 0 0
\(964\) −25.2655 −0.813746
\(965\) −20.2698 −0.652509
\(966\) 0 0
\(967\) 10.9780 0.353029 0.176515 0.984298i \(-0.443518\pi\)
0.176515 + 0.984298i \(0.443518\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −0.154224 −0.00495185
\(971\) −13.0636 −0.419231 −0.209615 0.977784i \(-0.567221\pi\)
−0.209615 + 0.977784i \(0.567221\pi\)
\(972\) 0 0
\(973\) 13.8573 0.444244
\(974\) −13.1663 −0.421876
\(975\) 0 0
\(976\) −28.8563 −0.923666
\(977\) 11.0763 0.354362 0.177181 0.984178i \(-0.443302\pi\)
0.177181 + 0.984178i \(0.443302\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −28.2544 −0.902554
\(981\) 0 0
\(982\) −25.2175 −0.804721
\(983\) 26.4315 0.843033 0.421517 0.906821i \(-0.361498\pi\)
0.421517 + 0.906821i \(0.361498\pi\)
\(984\) 0 0
\(985\) −62.0337 −1.97656
\(986\) −1.39785 −0.0445166
\(987\) 0 0
\(988\) 41.8712 1.33210
\(989\) −0.580083 −0.0184456
\(990\) 0 0
\(991\) −18.9911 −0.603272 −0.301636 0.953423i \(-0.597533\pi\)
−0.301636 + 0.953423i \(0.597533\pi\)
\(992\) −35.6138 −1.13074
\(993\) 0 0
\(994\) −5.86487 −0.186022
\(995\) 39.9174 1.26547
\(996\) 0 0
\(997\) 22.1132 0.700331 0.350165 0.936688i \(-0.386125\pi\)
0.350165 + 0.936688i \(0.386125\pi\)
\(998\) 11.6161 0.367700
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.cp.1.8 18
3.2 odd 2 9801.2.a.cm.1.11 18
9.2 odd 6 1089.2.e.p.364.8 36
9.5 odd 6 1089.2.e.p.727.8 36
11.5 even 5 891.2.f.e.487.6 36
11.9 even 5 891.2.f.e.730.6 36
11.10 odd 2 9801.2.a.cn.1.11 18
33.5 odd 10 891.2.f.f.487.4 36
33.20 odd 10 891.2.f.f.730.4 36
33.32 even 2 9801.2.a.co.1.8 18
99.5 odd 30 99.2.m.b.25.4 yes 72
99.16 even 15 297.2.n.b.91.4 72
99.20 odd 30 99.2.m.b.4.4 72
99.31 even 15 297.2.n.b.235.4 72
99.32 even 6 1089.2.e.o.727.11 36
99.38 odd 30 99.2.m.b.58.6 yes 72
99.49 even 15 297.2.n.b.289.6 72
99.65 even 6 1089.2.e.o.364.11 36
99.86 odd 30 99.2.m.b.70.6 yes 72
99.97 even 15 297.2.n.b.37.6 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.4 72 99.20 odd 30
99.2.m.b.25.4 yes 72 99.5 odd 30
99.2.m.b.58.6 yes 72 99.38 odd 30
99.2.m.b.70.6 yes 72 99.86 odd 30
297.2.n.b.37.6 72 99.97 even 15
297.2.n.b.91.4 72 99.16 even 15
297.2.n.b.235.4 72 99.31 even 15
297.2.n.b.289.6 72 99.49 even 15
891.2.f.e.487.6 36 11.5 even 5
891.2.f.e.730.6 36 11.9 even 5
891.2.f.f.487.4 36 33.5 odd 10
891.2.f.f.730.4 36 33.20 odd 10
1089.2.e.o.364.11 36 99.65 even 6
1089.2.e.o.727.11 36 99.32 even 6
1089.2.e.p.364.8 36 9.2 odd 6
1089.2.e.p.727.8 36 9.5 odd 6
9801.2.a.cm.1.11 18 3.2 odd 2
9801.2.a.cn.1.11 18 11.10 odd 2
9801.2.a.co.1.8 18 33.32 even 2
9801.2.a.cp.1.8 18 1.1 even 1 trivial