Properties

Label 9801.2.a.co.1.9
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 22 x^{16} + 42 x^{15} + 198 x^{14} - 357 x^{13} - 944 x^{12} + 1579 x^{11} + \cdots - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.285148\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.285148 q^{2} -1.91869 q^{4} +2.70873 q^{5} +4.07334 q^{7} +1.11741 q^{8} -0.772391 q^{10} -3.85096 q^{13} -1.16150 q^{14} +3.51875 q^{16} +4.32020 q^{17} +1.62229 q^{19} -5.19722 q^{20} -1.86423 q^{23} +2.33724 q^{25} +1.09809 q^{26} -7.81547 q^{28} -3.55334 q^{29} -4.86459 q^{31} -3.23818 q^{32} -1.23190 q^{34} +11.0336 q^{35} +7.74449 q^{37} -0.462595 q^{38} +3.02676 q^{40} -6.87214 q^{41} -0.984991 q^{43} +0.531584 q^{46} +5.86635 q^{47} +9.59206 q^{49} -0.666460 q^{50} +7.38879 q^{52} -1.57183 q^{53} +4.55158 q^{56} +1.01323 q^{58} +11.3625 q^{59} +8.60748 q^{61} +1.38713 q^{62} -6.11414 q^{64} -10.4312 q^{65} -1.74056 q^{67} -8.28914 q^{68} -3.14621 q^{70} -5.74136 q^{71} +4.04662 q^{73} -2.20833 q^{74} -3.11268 q^{76} +4.28015 q^{79} +9.53137 q^{80} +1.95958 q^{82} +6.50019 q^{83} +11.7023 q^{85} +0.280869 q^{86} +9.26243 q^{89} -15.6862 q^{91} +3.57689 q^{92} -1.67278 q^{94} +4.39436 q^{95} -7.41268 q^{97} -2.73516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} + 12 q^{4} - q^{5} - q^{7} + 6 q^{8} + 2 q^{10} - 3 q^{13} - 8 q^{16} + 20 q^{17} + 3 q^{19} - 5 q^{20} - 10 q^{23} + 7 q^{25} + 2 q^{26} - 19 q^{28} + 21 q^{29} + 6 q^{31} + 9 q^{32} - 4 q^{34}+ \cdots + 82 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.285148 −0.201630 −0.100815 0.994905i \(-0.532145\pi\)
−0.100815 + 0.994905i \(0.532145\pi\)
\(3\) 0 0
\(4\) −1.91869 −0.959345
\(5\) 2.70873 1.21138 0.605691 0.795700i \(-0.292897\pi\)
0.605691 + 0.795700i \(0.292897\pi\)
\(6\) 0 0
\(7\) 4.07334 1.53958 0.769788 0.638300i \(-0.220362\pi\)
0.769788 + 0.638300i \(0.220362\pi\)
\(8\) 1.11741 0.395063
\(9\) 0 0
\(10\) −0.772391 −0.244251
\(11\) 0 0
\(12\) 0 0
\(13\) −3.85096 −1.06806 −0.534032 0.845465i \(-0.679324\pi\)
−0.534032 + 0.845465i \(0.679324\pi\)
\(14\) −1.16150 −0.310425
\(15\) 0 0
\(16\) 3.51875 0.879688
\(17\) 4.32020 1.04780 0.523902 0.851779i \(-0.324476\pi\)
0.523902 + 0.851779i \(0.324476\pi\)
\(18\) 0 0
\(19\) 1.62229 0.372180 0.186090 0.982533i \(-0.440418\pi\)
0.186090 + 0.982533i \(0.440418\pi\)
\(20\) −5.19722 −1.16213
\(21\) 0 0
\(22\) 0 0
\(23\) −1.86423 −0.388720 −0.194360 0.980930i \(-0.562263\pi\)
−0.194360 + 0.980930i \(0.562263\pi\)
\(24\) 0 0
\(25\) 2.33724 0.467448
\(26\) 1.09809 0.215354
\(27\) 0 0
\(28\) −7.81547 −1.47698
\(29\) −3.55334 −0.659840 −0.329920 0.944009i \(-0.607022\pi\)
−0.329920 + 0.944009i \(0.607022\pi\)
\(30\) 0 0
\(31\) −4.86459 −0.873706 −0.436853 0.899533i \(-0.643907\pi\)
−0.436853 + 0.899533i \(0.643907\pi\)
\(32\) −3.23818 −0.572435
\(33\) 0 0
\(34\) −1.23190 −0.211269
\(35\) 11.0336 1.86502
\(36\) 0 0
\(37\) 7.74449 1.27319 0.636593 0.771200i \(-0.280343\pi\)
0.636593 + 0.771200i \(0.280343\pi\)
\(38\) −0.462595 −0.0750427
\(39\) 0 0
\(40\) 3.02676 0.478573
\(41\) −6.87214 −1.07325 −0.536624 0.843821i \(-0.680301\pi\)
−0.536624 + 0.843821i \(0.680301\pi\)
\(42\) 0 0
\(43\) −0.984991 −0.150210 −0.0751049 0.997176i \(-0.523929\pi\)
−0.0751049 + 0.997176i \(0.523929\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.531584 0.0783777
\(47\) 5.86635 0.855695 0.427847 0.903851i \(-0.359272\pi\)
0.427847 + 0.903851i \(0.359272\pi\)
\(48\) 0 0
\(49\) 9.59206 1.37029
\(50\) −0.666460 −0.0942517
\(51\) 0 0
\(52\) 7.38879 1.02464
\(53\) −1.57183 −0.215907 −0.107953 0.994156i \(-0.534430\pi\)
−0.107953 + 0.994156i \(0.534430\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.55158 0.608230
\(57\) 0 0
\(58\) 1.01323 0.133044
\(59\) 11.3625 1.47927 0.739635 0.673008i \(-0.234998\pi\)
0.739635 + 0.673008i \(0.234998\pi\)
\(60\) 0 0
\(61\) 8.60748 1.10207 0.551037 0.834481i \(-0.314232\pi\)
0.551037 + 0.834481i \(0.314232\pi\)
\(62\) 1.38713 0.176166
\(63\) 0 0
\(64\) −6.11414 −0.764268
\(65\) −10.4312 −1.29383
\(66\) 0 0
\(67\) −1.74056 −0.212644 −0.106322 0.994332i \(-0.533907\pi\)
−0.106322 + 0.994332i \(0.533907\pi\)
\(68\) −8.28914 −1.00521
\(69\) 0 0
\(70\) −3.14621 −0.376044
\(71\) −5.74136 −0.681374 −0.340687 0.940177i \(-0.610660\pi\)
−0.340687 + 0.940177i \(0.610660\pi\)
\(72\) 0 0
\(73\) 4.04662 0.473622 0.236811 0.971556i \(-0.423898\pi\)
0.236811 + 0.971556i \(0.423898\pi\)
\(74\) −2.20833 −0.256713
\(75\) 0 0
\(76\) −3.11268 −0.357049
\(77\) 0 0
\(78\) 0 0
\(79\) 4.28015 0.481554 0.240777 0.970580i \(-0.422598\pi\)
0.240777 + 0.970580i \(0.422598\pi\)
\(80\) 9.53137 1.06564
\(81\) 0 0
\(82\) 1.95958 0.216400
\(83\) 6.50019 0.713488 0.356744 0.934202i \(-0.383887\pi\)
0.356744 + 0.934202i \(0.383887\pi\)
\(84\) 0 0
\(85\) 11.7023 1.26929
\(86\) 0.280869 0.0302868
\(87\) 0 0
\(88\) 0 0
\(89\) 9.26243 0.981816 0.490908 0.871211i \(-0.336665\pi\)
0.490908 + 0.871211i \(0.336665\pi\)
\(90\) 0 0
\(91\) −15.6862 −1.64436
\(92\) 3.57689 0.372916
\(93\) 0 0
\(94\) −1.67278 −0.172534
\(95\) 4.39436 0.450852
\(96\) 0 0
\(97\) −7.41268 −0.752644 −0.376322 0.926489i \(-0.622811\pi\)
−0.376322 + 0.926489i \(0.622811\pi\)
\(98\) −2.73516 −0.276293
\(99\) 0 0
\(100\) −4.48444 −0.448444
\(101\) 13.7176 1.36495 0.682476 0.730908i \(-0.260903\pi\)
0.682476 + 0.730908i \(0.260903\pi\)
\(102\) 0 0
\(103\) 5.07525 0.500079 0.250039 0.968236i \(-0.419556\pi\)
0.250039 + 0.968236i \(0.419556\pi\)
\(104\) −4.30309 −0.421953
\(105\) 0 0
\(106\) 0.448203 0.0435334
\(107\) 2.77898 0.268654 0.134327 0.990937i \(-0.457113\pi\)
0.134327 + 0.990937i \(0.457113\pi\)
\(108\) 0 0
\(109\) 17.3573 1.66253 0.831263 0.555879i \(-0.187618\pi\)
0.831263 + 0.555879i \(0.187618\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 14.3331 1.35435
\(113\) 0.943654 0.0887715 0.0443858 0.999014i \(-0.485867\pi\)
0.0443858 + 0.999014i \(0.485867\pi\)
\(114\) 0 0
\(115\) −5.04972 −0.470888
\(116\) 6.81777 0.633014
\(117\) 0 0
\(118\) −3.24000 −0.298266
\(119\) 17.5976 1.61317
\(120\) 0 0
\(121\) 0 0
\(122\) −2.45441 −0.222212
\(123\) 0 0
\(124\) 9.33364 0.838186
\(125\) −7.21271 −0.645125
\(126\) 0 0
\(127\) −2.45040 −0.217438 −0.108719 0.994073i \(-0.534675\pi\)
−0.108719 + 0.994073i \(0.534675\pi\)
\(128\) 8.21980 0.726535
\(129\) 0 0
\(130\) 2.97444 0.260876
\(131\) −3.99737 −0.349252 −0.174626 0.984635i \(-0.555872\pi\)
−0.174626 + 0.984635i \(0.555872\pi\)
\(132\) 0 0
\(133\) 6.60815 0.572999
\(134\) 0.496319 0.0428754
\(135\) 0 0
\(136\) 4.82743 0.413949
\(137\) 1.08926 0.0930615 0.0465307 0.998917i \(-0.485183\pi\)
0.0465307 + 0.998917i \(0.485183\pi\)
\(138\) 0 0
\(139\) −2.88493 −0.244696 −0.122348 0.992487i \(-0.539042\pi\)
−0.122348 + 0.992487i \(0.539042\pi\)
\(140\) −21.1700 −1.78919
\(141\) 0 0
\(142\) 1.63714 0.137386
\(143\) 0 0
\(144\) 0 0
\(145\) −9.62506 −0.799318
\(146\) −1.15389 −0.0954965
\(147\) 0 0
\(148\) −14.8593 −1.22142
\(149\) −20.1748 −1.65279 −0.826393 0.563094i \(-0.809611\pi\)
−0.826393 + 0.563094i \(0.809611\pi\)
\(150\) 0 0
\(151\) 11.0784 0.901544 0.450772 0.892639i \(-0.351149\pi\)
0.450772 + 0.892639i \(0.351149\pi\)
\(152\) 1.81276 0.147035
\(153\) 0 0
\(154\) 0 0
\(155\) −13.1769 −1.05839
\(156\) 0 0
\(157\) 0.332784 0.0265591 0.0132795 0.999912i \(-0.495773\pi\)
0.0132795 + 0.999912i \(0.495773\pi\)
\(158\) −1.22048 −0.0970959
\(159\) 0 0
\(160\) −8.77138 −0.693438
\(161\) −7.59365 −0.598464
\(162\) 0 0
\(163\) 13.3380 1.04472 0.522358 0.852726i \(-0.325053\pi\)
0.522358 + 0.852726i \(0.325053\pi\)
\(164\) 13.1855 1.02962
\(165\) 0 0
\(166\) −1.85352 −0.143861
\(167\) 18.9152 1.46370 0.731849 0.681467i \(-0.238658\pi\)
0.731849 + 0.681467i \(0.238658\pi\)
\(168\) 0 0
\(169\) 1.82986 0.140759
\(170\) −3.33689 −0.255928
\(171\) 0 0
\(172\) 1.88989 0.144103
\(173\) 1.51409 0.115114 0.0575570 0.998342i \(-0.481669\pi\)
0.0575570 + 0.998342i \(0.481669\pi\)
\(174\) 0 0
\(175\) 9.52036 0.719671
\(176\) 0 0
\(177\) 0 0
\(178\) −2.64117 −0.197964
\(179\) 13.1892 0.985810 0.492905 0.870083i \(-0.335935\pi\)
0.492905 + 0.870083i \(0.335935\pi\)
\(180\) 0 0
\(181\) 2.79883 0.208035 0.104018 0.994575i \(-0.466830\pi\)
0.104018 + 0.994575i \(0.466830\pi\)
\(182\) 4.47290 0.331554
\(183\) 0 0
\(184\) −2.08311 −0.153569
\(185\) 20.9778 1.54232
\(186\) 0 0
\(187\) 0 0
\(188\) −11.2557 −0.820907
\(189\) 0 0
\(190\) −1.25305 −0.0909055
\(191\) −16.7416 −1.21138 −0.605688 0.795702i \(-0.707102\pi\)
−0.605688 + 0.795702i \(0.707102\pi\)
\(192\) 0 0
\(193\) 22.0394 1.58643 0.793214 0.608942i \(-0.208406\pi\)
0.793214 + 0.608942i \(0.208406\pi\)
\(194\) 2.11371 0.151756
\(195\) 0 0
\(196\) −18.4042 −1.31459
\(197\) −18.2247 −1.29845 −0.649227 0.760595i \(-0.724907\pi\)
−0.649227 + 0.760595i \(0.724907\pi\)
\(198\) 0 0
\(199\) −25.0958 −1.77899 −0.889497 0.456942i \(-0.848945\pi\)
−0.889497 + 0.456942i \(0.848945\pi\)
\(200\) 2.61165 0.184672
\(201\) 0 0
\(202\) −3.91155 −0.275216
\(203\) −14.4740 −1.01587
\(204\) 0 0
\(205\) −18.6148 −1.30011
\(206\) −1.44720 −0.100831
\(207\) 0 0
\(208\) −13.5506 −0.939563
\(209\) 0 0
\(210\) 0 0
\(211\) −8.27002 −0.569332 −0.284666 0.958627i \(-0.591883\pi\)
−0.284666 + 0.958627i \(0.591883\pi\)
\(212\) 3.01585 0.207129
\(213\) 0 0
\(214\) −0.792421 −0.0541688
\(215\) −2.66808 −0.181961
\(216\) 0 0
\(217\) −19.8151 −1.34514
\(218\) −4.94940 −0.335216
\(219\) 0 0
\(220\) 0 0
\(221\) −16.6369 −1.11912
\(222\) 0 0
\(223\) −7.35208 −0.492332 −0.246166 0.969228i \(-0.579171\pi\)
−0.246166 + 0.969228i \(0.579171\pi\)
\(224\) −13.1902 −0.881308
\(225\) 0 0
\(226\) −0.269081 −0.0178990
\(227\) 18.9412 1.25717 0.628586 0.777740i \(-0.283634\pi\)
0.628586 + 0.777740i \(0.283634\pi\)
\(228\) 0 0
\(229\) −7.85945 −0.519367 −0.259683 0.965694i \(-0.583618\pi\)
−0.259683 + 0.965694i \(0.583618\pi\)
\(230\) 1.43992 0.0949454
\(231\) 0 0
\(232\) −3.97054 −0.260678
\(233\) 6.56942 0.430377 0.215188 0.976573i \(-0.430963\pi\)
0.215188 + 0.976573i \(0.430963\pi\)
\(234\) 0 0
\(235\) 15.8904 1.03657
\(236\) −21.8011 −1.41913
\(237\) 0 0
\(238\) −5.01794 −0.325265
\(239\) 25.5463 1.65245 0.826226 0.563339i \(-0.190484\pi\)
0.826226 + 0.563339i \(0.190484\pi\)
\(240\) 0 0
\(241\) 2.98198 0.192086 0.0960432 0.995377i \(-0.469381\pi\)
0.0960432 + 0.995377i \(0.469381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −16.5151 −1.05727
\(245\) 25.9823 1.65995
\(246\) 0 0
\(247\) −6.24738 −0.397511
\(248\) −5.43573 −0.345169
\(249\) 0 0
\(250\) 2.05669 0.130077
\(251\) 11.6685 0.736510 0.368255 0.929725i \(-0.379955\pi\)
0.368255 + 0.929725i \(0.379955\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.698728 0.0438421
\(255\) 0 0
\(256\) 9.88443 0.617777
\(257\) 20.7245 1.29276 0.646378 0.763017i \(-0.276283\pi\)
0.646378 + 0.763017i \(0.276283\pi\)
\(258\) 0 0
\(259\) 31.5459 1.96017
\(260\) 20.0143 1.24123
\(261\) 0 0
\(262\) 1.13984 0.0704198
\(263\) −9.08545 −0.560233 −0.280117 0.959966i \(-0.590373\pi\)
−0.280117 + 0.959966i \(0.590373\pi\)
\(264\) 0 0
\(265\) −4.25766 −0.261546
\(266\) −1.88430 −0.115534
\(267\) 0 0
\(268\) 3.33960 0.203999
\(269\) 7.94129 0.484189 0.242094 0.970253i \(-0.422166\pi\)
0.242094 + 0.970253i \(0.422166\pi\)
\(270\) 0 0
\(271\) −3.72364 −0.226195 −0.113097 0.993584i \(-0.536077\pi\)
−0.113097 + 0.993584i \(0.536077\pi\)
\(272\) 15.2017 0.921741
\(273\) 0 0
\(274\) −0.310600 −0.0187640
\(275\) 0 0
\(276\) 0 0
\(277\) 3.90064 0.234367 0.117183 0.993110i \(-0.462614\pi\)
0.117183 + 0.993110i \(0.462614\pi\)
\(278\) 0.822632 0.0493382
\(279\) 0 0
\(280\) 12.3290 0.736799
\(281\) −0.0396231 −0.00236371 −0.00118186 0.999999i \(-0.500376\pi\)
−0.00118186 + 0.999999i \(0.500376\pi\)
\(282\) 0 0
\(283\) −6.39387 −0.380076 −0.190038 0.981777i \(-0.560861\pi\)
−0.190038 + 0.981777i \(0.560861\pi\)
\(284\) 11.0159 0.653673
\(285\) 0 0
\(286\) 0 0
\(287\) −27.9925 −1.65235
\(288\) 0 0
\(289\) 1.66417 0.0978923
\(290\) 2.74457 0.161167
\(291\) 0 0
\(292\) −7.76422 −0.454367
\(293\) 23.4074 1.36748 0.683738 0.729728i \(-0.260353\pi\)
0.683738 + 0.729728i \(0.260353\pi\)
\(294\) 0 0
\(295\) 30.7780 1.79196
\(296\) 8.65375 0.502989
\(297\) 0 0
\(298\) 5.75282 0.333252
\(299\) 7.17909 0.415177
\(300\) 0 0
\(301\) −4.01220 −0.231259
\(302\) −3.15898 −0.181779
\(303\) 0 0
\(304\) 5.70845 0.327402
\(305\) 23.3154 1.33503
\(306\) 0 0
\(307\) −29.1494 −1.66365 −0.831823 0.555042i \(-0.812702\pi\)
−0.831823 + 0.555042i \(0.812702\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.75737 0.213404
\(311\) −19.7057 −1.11741 −0.558705 0.829367i \(-0.688701\pi\)
−0.558705 + 0.829367i \(0.688701\pi\)
\(312\) 0 0
\(313\) 1.33838 0.0756495 0.0378248 0.999284i \(-0.487957\pi\)
0.0378248 + 0.999284i \(0.487957\pi\)
\(314\) −0.0948929 −0.00535511
\(315\) 0 0
\(316\) −8.21228 −0.461977
\(317\) 4.00089 0.224712 0.112356 0.993668i \(-0.464160\pi\)
0.112356 + 0.993668i \(0.464160\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −16.5616 −0.925821
\(321\) 0 0
\(322\) 2.16532 0.120668
\(323\) 7.00864 0.389971
\(324\) 0 0
\(325\) −9.00060 −0.499264
\(326\) −3.80332 −0.210646
\(327\) 0 0
\(328\) −7.67899 −0.424001
\(329\) 23.8956 1.31741
\(330\) 0 0
\(331\) 3.18033 0.174807 0.0874034 0.996173i \(-0.472143\pi\)
0.0874034 + 0.996173i \(0.472143\pi\)
\(332\) −12.4718 −0.684481
\(333\) 0 0
\(334\) −5.39362 −0.295126
\(335\) −4.71472 −0.257593
\(336\) 0 0
\(337\) 18.1978 0.991298 0.495649 0.868523i \(-0.334930\pi\)
0.495649 + 0.868523i \(0.334930\pi\)
\(338\) −0.521783 −0.0283812
\(339\) 0 0
\(340\) −22.4531 −1.21769
\(341\) 0 0
\(342\) 0 0
\(343\) 10.5583 0.570096
\(344\) −1.10064 −0.0593424
\(345\) 0 0
\(346\) −0.431740 −0.0232105
\(347\) 27.4141 1.47167 0.735833 0.677163i \(-0.236791\pi\)
0.735833 + 0.677163i \(0.236791\pi\)
\(348\) 0 0
\(349\) −22.9055 −1.22610 −0.613052 0.790042i \(-0.710059\pi\)
−0.613052 + 0.790042i \(0.710059\pi\)
\(350\) −2.71471 −0.145108
\(351\) 0 0
\(352\) 0 0
\(353\) −29.7047 −1.58102 −0.790511 0.612448i \(-0.790185\pi\)
−0.790511 + 0.612448i \(0.790185\pi\)
\(354\) 0 0
\(355\) −15.5518 −0.825405
\(356\) −17.7717 −0.941900
\(357\) 0 0
\(358\) −3.76089 −0.198769
\(359\) 36.8574 1.94526 0.972631 0.232356i \(-0.0746436\pi\)
0.972631 + 0.232356i \(0.0746436\pi\)
\(360\) 0 0
\(361\) −16.3682 −0.861482
\(362\) −0.798082 −0.0419462
\(363\) 0 0
\(364\) 30.0970 1.57751
\(365\) 10.9612 0.573737
\(366\) 0 0
\(367\) −24.8606 −1.29771 −0.648857 0.760910i \(-0.724753\pi\)
−0.648857 + 0.760910i \(0.724753\pi\)
\(368\) −6.55978 −0.341952
\(369\) 0 0
\(370\) −5.98177 −0.310978
\(371\) −6.40257 −0.332405
\(372\) 0 0
\(373\) −18.2790 −0.946453 −0.473227 0.880941i \(-0.656911\pi\)
−0.473227 + 0.880941i \(0.656911\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.55511 0.338054
\(377\) 13.6838 0.704750
\(378\) 0 0
\(379\) −31.4593 −1.61595 −0.807977 0.589213i \(-0.799438\pi\)
−0.807977 + 0.589213i \(0.799438\pi\)
\(380\) −8.43142 −0.432523
\(381\) 0 0
\(382\) 4.77383 0.244250
\(383\) −12.4318 −0.635234 −0.317617 0.948219i \(-0.602883\pi\)
−0.317617 + 0.948219i \(0.602883\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.28449 −0.319872
\(387\) 0 0
\(388\) 14.2226 0.722045
\(389\) 7.31968 0.371123 0.185561 0.982633i \(-0.440590\pi\)
0.185561 + 0.982633i \(0.440590\pi\)
\(390\) 0 0
\(391\) −8.05388 −0.407302
\(392\) 10.7182 0.541353
\(393\) 0 0
\(394\) 5.19673 0.261808
\(395\) 11.5938 0.583346
\(396\) 0 0
\(397\) 34.2087 1.71688 0.858442 0.512911i \(-0.171433\pi\)
0.858442 + 0.512911i \(0.171433\pi\)
\(398\) 7.15602 0.358699
\(399\) 0 0
\(400\) 8.22417 0.411208
\(401\) 7.47577 0.373322 0.186661 0.982424i \(-0.440233\pi\)
0.186661 + 0.982424i \(0.440233\pi\)
\(402\) 0 0
\(403\) 18.7333 0.933173
\(404\) −26.3198 −1.30946
\(405\) 0 0
\(406\) 4.12723 0.204831
\(407\) 0 0
\(408\) 0 0
\(409\) −2.41020 −0.119177 −0.0595883 0.998223i \(-0.518979\pi\)
−0.0595883 + 0.998223i \(0.518979\pi\)
\(410\) 5.30798 0.262143
\(411\) 0 0
\(412\) −9.73783 −0.479748
\(413\) 46.2832 2.27745
\(414\) 0 0
\(415\) 17.6073 0.864307
\(416\) 12.4701 0.611397
\(417\) 0 0
\(418\) 0 0
\(419\) −11.2018 −0.547242 −0.273621 0.961838i \(-0.588221\pi\)
−0.273621 + 0.961838i \(0.588221\pi\)
\(420\) 0 0
\(421\) −6.90486 −0.336522 −0.168261 0.985742i \(-0.553815\pi\)
−0.168261 + 0.985742i \(0.553815\pi\)
\(422\) 2.35818 0.114795
\(423\) 0 0
\(424\) −1.75637 −0.0852969
\(425\) 10.0974 0.489793
\(426\) 0 0
\(427\) 35.0611 1.69673
\(428\) −5.33200 −0.257732
\(429\) 0 0
\(430\) 0.760798 0.0366890
\(431\) 29.1806 1.40558 0.702789 0.711398i \(-0.251938\pi\)
0.702789 + 0.711398i \(0.251938\pi\)
\(432\) 0 0
\(433\) −36.5360 −1.75581 −0.877903 0.478838i \(-0.841058\pi\)
−0.877903 + 0.478838i \(0.841058\pi\)
\(434\) 5.65025 0.271220
\(435\) 0 0
\(436\) −33.3033 −1.59494
\(437\) −3.02434 −0.144674
\(438\) 0 0
\(439\) 21.4975 1.02602 0.513009 0.858383i \(-0.328531\pi\)
0.513009 + 0.858383i \(0.328531\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.74399 0.225649
\(443\) −33.4450 −1.58902 −0.794510 0.607251i \(-0.792272\pi\)
−0.794510 + 0.607251i \(0.792272\pi\)
\(444\) 0 0
\(445\) 25.0895 1.18935
\(446\) 2.09643 0.0992690
\(447\) 0 0
\(448\) −24.9050 −1.17665
\(449\) 39.5333 1.86569 0.932846 0.360276i \(-0.117318\pi\)
0.932846 + 0.360276i \(0.117318\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.81058 −0.0851625
\(453\) 0 0
\(454\) −5.40105 −0.253484
\(455\) −42.4898 −1.99195
\(456\) 0 0
\(457\) −37.5123 −1.75475 −0.877376 0.479803i \(-0.840708\pi\)
−0.877376 + 0.479803i \(0.840708\pi\)
\(458\) 2.24111 0.104720
\(459\) 0 0
\(460\) 9.68884 0.451745
\(461\) −19.3653 −0.901932 −0.450966 0.892541i \(-0.648920\pi\)
−0.450966 + 0.892541i \(0.648920\pi\)
\(462\) 0 0
\(463\) −14.3493 −0.666867 −0.333434 0.942774i \(-0.608207\pi\)
−0.333434 + 0.942774i \(0.608207\pi\)
\(464\) −12.5033 −0.580453
\(465\) 0 0
\(466\) −1.87326 −0.0867770
\(467\) −22.3209 −1.03289 −0.516445 0.856320i \(-0.672745\pi\)
−0.516445 + 0.856320i \(0.672745\pi\)
\(468\) 0 0
\(469\) −7.08990 −0.327381
\(470\) −4.53112 −0.209005
\(471\) 0 0
\(472\) 12.6965 0.584406
\(473\) 0 0
\(474\) 0 0
\(475\) 3.79169 0.173975
\(476\) −33.7644 −1.54759
\(477\) 0 0
\(478\) −7.28448 −0.333184
\(479\) 23.2616 1.06285 0.531426 0.847105i \(-0.321657\pi\)
0.531426 + 0.847105i \(0.321657\pi\)
\(480\) 0 0
\(481\) −29.8237 −1.35984
\(482\) −0.850308 −0.0387305
\(483\) 0 0
\(484\) 0 0
\(485\) −20.0790 −0.911740
\(486\) 0 0
\(487\) 0.270802 0.0122712 0.00613559 0.999981i \(-0.498047\pi\)
0.00613559 + 0.999981i \(0.498047\pi\)
\(488\) 9.61807 0.435389
\(489\) 0 0
\(490\) −7.40882 −0.334696
\(491\) 4.20656 0.189839 0.0949196 0.995485i \(-0.469741\pi\)
0.0949196 + 0.995485i \(0.469741\pi\)
\(492\) 0 0
\(493\) −15.3512 −0.691382
\(494\) 1.78143 0.0801504
\(495\) 0 0
\(496\) −17.1173 −0.768589
\(497\) −23.3865 −1.04903
\(498\) 0 0
\(499\) −15.3642 −0.687798 −0.343899 0.939007i \(-0.611748\pi\)
−0.343899 + 0.939007i \(0.611748\pi\)
\(500\) 13.8390 0.618897
\(501\) 0 0
\(502\) −3.32726 −0.148503
\(503\) −3.91570 −0.174592 −0.0872961 0.996182i \(-0.527823\pi\)
−0.0872961 + 0.996182i \(0.527823\pi\)
\(504\) 0 0
\(505\) 37.1573 1.65348
\(506\) 0 0
\(507\) 0 0
\(508\) 4.70156 0.208598
\(509\) 28.5494 1.26543 0.632715 0.774385i \(-0.281941\pi\)
0.632715 + 0.774385i \(0.281941\pi\)
\(510\) 0 0
\(511\) 16.4833 0.729176
\(512\) −19.2581 −0.851097
\(513\) 0 0
\(514\) −5.90954 −0.260659
\(515\) 13.7475 0.605787
\(516\) 0 0
\(517\) 0 0
\(518\) −8.99526 −0.395229
\(519\) 0 0
\(520\) −11.6559 −0.511146
\(521\) −14.2748 −0.625388 −0.312694 0.949854i \(-0.601232\pi\)
−0.312694 + 0.949854i \(0.601232\pi\)
\(522\) 0 0
\(523\) 33.1573 1.44987 0.724934 0.688818i \(-0.241870\pi\)
0.724934 + 0.688818i \(0.241870\pi\)
\(524\) 7.66972 0.335053
\(525\) 0 0
\(526\) 2.59070 0.112960
\(527\) −21.0160 −0.915472
\(528\) 0 0
\(529\) −19.5246 −0.848897
\(530\) 1.21406 0.0527356
\(531\) 0 0
\(532\) −12.6790 −0.549704
\(533\) 26.4643 1.14630
\(534\) 0 0
\(535\) 7.52751 0.325443
\(536\) −1.94492 −0.0840077
\(537\) 0 0
\(538\) −2.26444 −0.0976271
\(539\) 0 0
\(540\) 0 0
\(541\) 28.4609 1.22363 0.611815 0.791001i \(-0.290440\pi\)
0.611815 + 0.791001i \(0.290440\pi\)
\(542\) 1.06179 0.0456077
\(543\) 0 0
\(544\) −13.9896 −0.599800
\(545\) 47.0163 2.01396
\(546\) 0 0
\(547\) 30.7466 1.31463 0.657316 0.753615i \(-0.271692\pi\)
0.657316 + 0.753615i \(0.271692\pi\)
\(548\) −2.08995 −0.0892781
\(549\) 0 0
\(550\) 0 0
\(551\) −5.76457 −0.245579
\(552\) 0 0
\(553\) 17.4345 0.741389
\(554\) −1.11226 −0.0472554
\(555\) 0 0
\(556\) 5.53528 0.234748
\(557\) 7.29459 0.309082 0.154541 0.987986i \(-0.450610\pi\)
0.154541 + 0.987986i \(0.450610\pi\)
\(558\) 0 0
\(559\) 3.79316 0.160433
\(560\) 38.8245 1.64063
\(561\) 0 0
\(562\) 0.0112985 0.000476597 0
\(563\) 36.5734 1.54139 0.770693 0.637206i \(-0.219910\pi\)
0.770693 + 0.637206i \(0.219910\pi\)
\(564\) 0 0
\(565\) 2.55611 0.107536
\(566\) 1.82320 0.0766349
\(567\) 0 0
\(568\) −6.41545 −0.269186
\(569\) −0.151484 −0.00635053 −0.00317527 0.999995i \(-0.501011\pi\)
−0.00317527 + 0.999995i \(0.501011\pi\)
\(570\) 0 0
\(571\) −43.2254 −1.80893 −0.904463 0.426552i \(-0.859728\pi\)
−0.904463 + 0.426552i \(0.859728\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 7.98203 0.333163
\(575\) −4.35716 −0.181706
\(576\) 0 0
\(577\) 29.1251 1.21250 0.606248 0.795276i \(-0.292674\pi\)
0.606248 + 0.795276i \(0.292674\pi\)
\(578\) −0.474535 −0.0197381
\(579\) 0 0
\(580\) 18.4675 0.766822
\(581\) 26.4774 1.09847
\(582\) 0 0
\(583\) 0 0
\(584\) 4.52173 0.187111
\(585\) 0 0
\(586\) −6.67459 −0.275725
\(587\) −22.6949 −0.936718 −0.468359 0.883538i \(-0.655155\pi\)
−0.468359 + 0.883538i \(0.655155\pi\)
\(588\) 0 0
\(589\) −7.89180 −0.325176
\(590\) −8.77629 −0.361314
\(591\) 0 0
\(592\) 27.2509 1.12001
\(593\) 22.9308 0.941656 0.470828 0.882225i \(-0.343955\pi\)
0.470828 + 0.882225i \(0.343955\pi\)
\(594\) 0 0
\(595\) 47.6673 1.95417
\(596\) 38.7092 1.58559
\(597\) 0 0
\(598\) −2.04710 −0.0837123
\(599\) −12.5007 −0.510764 −0.255382 0.966840i \(-0.582201\pi\)
−0.255382 + 0.966840i \(0.582201\pi\)
\(600\) 0 0
\(601\) −22.4788 −0.916930 −0.458465 0.888712i \(-0.651601\pi\)
−0.458465 + 0.888712i \(0.651601\pi\)
\(602\) 1.14407 0.0466289
\(603\) 0 0
\(604\) −21.2559 −0.864892
\(605\) 0 0
\(606\) 0 0
\(607\) −26.7047 −1.08391 −0.541956 0.840407i \(-0.682316\pi\)
−0.541956 + 0.840407i \(0.682316\pi\)
\(608\) −5.25329 −0.213049
\(609\) 0 0
\(610\) −6.64834 −0.269183
\(611\) −22.5911 −0.913936
\(612\) 0 0
\(613\) 43.4844 1.75632 0.878160 0.478367i \(-0.158771\pi\)
0.878160 + 0.478367i \(0.158771\pi\)
\(614\) 8.31191 0.335441
\(615\) 0 0
\(616\) 0 0
\(617\) 41.4255 1.66773 0.833864 0.551969i \(-0.186123\pi\)
0.833864 + 0.551969i \(0.186123\pi\)
\(618\) 0 0
\(619\) 8.91175 0.358194 0.179097 0.983831i \(-0.442682\pi\)
0.179097 + 0.983831i \(0.442682\pi\)
\(620\) 25.2824 1.01536
\(621\) 0 0
\(622\) 5.61906 0.225304
\(623\) 37.7290 1.51158
\(624\) 0 0
\(625\) −31.2235 −1.24894
\(626\) −0.381636 −0.0152532
\(627\) 0 0
\(628\) −0.638510 −0.0254793
\(629\) 33.4578 1.33405
\(630\) 0 0
\(631\) −5.67049 −0.225739 −0.112869 0.993610i \(-0.536004\pi\)
−0.112869 + 0.993610i \(0.536004\pi\)
\(632\) 4.78267 0.190244
\(633\) 0 0
\(634\) −1.14085 −0.0453089
\(635\) −6.63749 −0.263401
\(636\) 0 0
\(637\) −36.9386 −1.46356
\(638\) 0 0
\(639\) 0 0
\(640\) 22.2653 0.880112
\(641\) 26.8182 1.05926 0.529628 0.848230i \(-0.322332\pi\)
0.529628 + 0.848230i \(0.322332\pi\)
\(642\) 0 0
\(643\) 14.1385 0.557566 0.278783 0.960354i \(-0.410069\pi\)
0.278783 + 0.960354i \(0.410069\pi\)
\(644\) 14.5699 0.574133
\(645\) 0 0
\(646\) −1.99850 −0.0786301
\(647\) −1.27403 −0.0500875 −0.0250437 0.999686i \(-0.507973\pi\)
−0.0250437 + 0.999686i \(0.507973\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 2.56651 0.100667
\(651\) 0 0
\(652\) −25.5916 −1.00224
\(653\) −4.82833 −0.188947 −0.0944736 0.995527i \(-0.530117\pi\)
−0.0944736 + 0.995527i \(0.530117\pi\)
\(654\) 0 0
\(655\) −10.8278 −0.423078
\(656\) −24.1814 −0.944124
\(657\) 0 0
\(658\) −6.81379 −0.265629
\(659\) 22.1777 0.863921 0.431961 0.901892i \(-0.357822\pi\)
0.431961 + 0.901892i \(0.357822\pi\)
\(660\) 0 0
\(661\) −27.3975 −1.06564 −0.532820 0.846229i \(-0.678868\pi\)
−0.532820 + 0.846229i \(0.678868\pi\)
\(662\) −0.906866 −0.0352464
\(663\) 0 0
\(664\) 7.26336 0.281873
\(665\) 17.8997 0.694121
\(666\) 0 0
\(667\) 6.62427 0.256493
\(668\) −36.2923 −1.40419
\(669\) 0 0
\(670\) 1.34440 0.0519385
\(671\) 0 0
\(672\) 0 0
\(673\) −35.2435 −1.35854 −0.679269 0.733889i \(-0.737703\pi\)
−0.679269 + 0.733889i \(0.737703\pi\)
\(674\) −5.18907 −0.199876
\(675\) 0 0
\(676\) −3.51094 −0.135036
\(677\) 44.0500 1.69298 0.846489 0.532406i \(-0.178712\pi\)
0.846489 + 0.532406i \(0.178712\pi\)
\(678\) 0 0
\(679\) −30.1943 −1.15875
\(680\) 13.0762 0.501450
\(681\) 0 0
\(682\) 0 0
\(683\) 42.2845 1.61797 0.808985 0.587829i \(-0.200017\pi\)
0.808985 + 0.587829i \(0.200017\pi\)
\(684\) 0 0
\(685\) 2.95051 0.112733
\(686\) −3.01069 −0.114949
\(687\) 0 0
\(688\) −3.46594 −0.132138
\(689\) 6.05303 0.230602
\(690\) 0 0
\(691\) −8.46688 −0.322095 −0.161048 0.986947i \(-0.551487\pi\)
−0.161048 + 0.986947i \(0.551487\pi\)
\(692\) −2.90507 −0.110434
\(693\) 0 0
\(694\) −7.81709 −0.296733
\(695\) −7.81450 −0.296421
\(696\) 0 0
\(697\) −29.6891 −1.12455
\(698\) 6.53147 0.247220
\(699\) 0 0
\(700\) −18.2666 −0.690413
\(701\) −43.5518 −1.64493 −0.822465 0.568816i \(-0.807401\pi\)
−0.822465 + 0.568816i \(0.807401\pi\)
\(702\) 0 0
\(703\) 12.5638 0.473854
\(704\) 0 0
\(705\) 0 0
\(706\) 8.47025 0.318782
\(707\) 55.8764 2.10145
\(708\) 0 0
\(709\) −6.02729 −0.226360 −0.113180 0.993575i \(-0.536104\pi\)
−0.113180 + 0.993575i \(0.536104\pi\)
\(710\) 4.43458 0.166427
\(711\) 0 0
\(712\) 10.3499 0.387880
\(713\) 9.06874 0.339627
\(714\) 0 0
\(715\) 0 0
\(716\) −25.3061 −0.945732
\(717\) 0 0
\(718\) −10.5098 −0.392224
\(719\) 40.4066 1.50691 0.753457 0.657498i \(-0.228385\pi\)
0.753457 + 0.657498i \(0.228385\pi\)
\(720\) 0 0
\(721\) 20.6732 0.769909
\(722\) 4.66735 0.173701
\(723\) 0 0
\(724\) −5.37009 −0.199578
\(725\) −8.30501 −0.308441
\(726\) 0 0
\(727\) 18.7206 0.694310 0.347155 0.937808i \(-0.387148\pi\)
0.347155 + 0.937808i \(0.387148\pi\)
\(728\) −17.5279 −0.649628
\(729\) 0 0
\(730\) −3.12558 −0.115683
\(731\) −4.25536 −0.157390
\(732\) 0 0
\(733\) −0.564191 −0.0208389 −0.0104194 0.999946i \(-0.503317\pi\)
−0.0104194 + 0.999946i \(0.503317\pi\)
\(734\) 7.08897 0.261659
\(735\) 0 0
\(736\) 6.03673 0.222517
\(737\) 0 0
\(738\) 0 0
\(739\) −1.94812 −0.0716629 −0.0358315 0.999358i \(-0.511408\pi\)
−0.0358315 + 0.999358i \(0.511408\pi\)
\(740\) −40.2498 −1.47961
\(741\) 0 0
\(742\) 1.82568 0.0670229
\(743\) 27.2627 1.00017 0.500086 0.865976i \(-0.333302\pi\)
0.500086 + 0.865976i \(0.333302\pi\)
\(744\) 0 0
\(745\) −54.6482 −2.00216
\(746\) 5.21224 0.190834
\(747\) 0 0
\(748\) 0 0
\(749\) 11.3197 0.413613
\(750\) 0 0
\(751\) 30.3063 1.10589 0.552946 0.833217i \(-0.313504\pi\)
0.552946 + 0.833217i \(0.313504\pi\)
\(752\) 20.6422 0.752745
\(753\) 0 0
\(754\) −3.90191 −0.142099
\(755\) 30.0083 1.09211
\(756\) 0 0
\(757\) 11.1070 0.403689 0.201845 0.979418i \(-0.435306\pi\)
0.201845 + 0.979418i \(0.435306\pi\)
\(758\) 8.97056 0.325826
\(759\) 0 0
\(760\) 4.91030 0.178115
\(761\) 33.3410 1.20861 0.604304 0.796754i \(-0.293451\pi\)
0.604304 + 0.796754i \(0.293451\pi\)
\(762\) 0 0
\(763\) 70.7020 2.55959
\(764\) 32.1219 1.16213
\(765\) 0 0
\(766\) 3.54490 0.128082
\(767\) −43.7565 −1.57995
\(768\) 0 0
\(769\) 51.9401 1.87301 0.936504 0.350656i \(-0.114041\pi\)
0.936504 + 0.350656i \(0.114041\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −42.2867 −1.52193
\(773\) −7.72276 −0.277768 −0.138884 0.990309i \(-0.544352\pi\)
−0.138884 + 0.990309i \(0.544352\pi\)
\(774\) 0 0
\(775\) −11.3697 −0.408412
\(776\) −8.28299 −0.297342
\(777\) 0 0
\(778\) −2.08720 −0.0748296
\(779\) −11.1486 −0.399441
\(780\) 0 0
\(781\) 0 0
\(782\) 2.29655 0.0821244
\(783\) 0 0
\(784\) 33.7521 1.20543
\(785\) 0.901424 0.0321732
\(786\) 0 0
\(787\) 19.7063 0.702454 0.351227 0.936290i \(-0.385764\pi\)
0.351227 + 0.936290i \(0.385764\pi\)
\(788\) 34.9675 1.24567
\(789\) 0 0
\(790\) −3.30595 −0.117620
\(791\) 3.84382 0.136670
\(792\) 0 0
\(793\) −33.1470 −1.17709
\(794\) −9.75455 −0.346176
\(795\) 0 0
\(796\) 48.1510 1.70667
\(797\) 14.0258 0.496818 0.248409 0.968655i \(-0.420092\pi\)
0.248409 + 0.968655i \(0.420092\pi\)
\(798\) 0 0
\(799\) 25.3438 0.896600
\(800\) −7.56841 −0.267584
\(801\) 0 0
\(802\) −2.13170 −0.0752731
\(803\) 0 0
\(804\) 0 0
\(805\) −20.5692 −0.724968
\(806\) −5.34178 −0.188156
\(807\) 0 0
\(808\) 15.3282 0.539243
\(809\) 20.9298 0.735854 0.367927 0.929855i \(-0.380068\pi\)
0.367927 + 0.929855i \(0.380068\pi\)
\(810\) 0 0
\(811\) −1.94293 −0.0682255 −0.0341127 0.999418i \(-0.510861\pi\)
−0.0341127 + 0.999418i \(0.510861\pi\)
\(812\) 27.7711 0.974573
\(813\) 0 0
\(814\) 0 0
\(815\) 36.1292 1.26555
\(816\) 0 0
\(817\) −1.59795 −0.0559050
\(818\) 0.687264 0.0240296
\(819\) 0 0
\(820\) 35.7161 1.24726
\(821\) −10.8418 −0.378380 −0.189190 0.981940i \(-0.560586\pi\)
−0.189190 + 0.981940i \(0.560586\pi\)
\(822\) 0 0
\(823\) 47.6678 1.66160 0.830798 0.556575i \(-0.187885\pi\)
0.830798 + 0.556575i \(0.187885\pi\)
\(824\) 5.67112 0.197563
\(825\) 0 0
\(826\) −13.1976 −0.459203
\(827\) −37.4150 −1.30105 −0.650524 0.759486i \(-0.725451\pi\)
−0.650524 + 0.759486i \(0.725451\pi\)
\(828\) 0 0
\(829\) 10.7069 0.371866 0.185933 0.982562i \(-0.440469\pi\)
0.185933 + 0.982562i \(0.440469\pi\)
\(830\) −5.02068 −0.174271
\(831\) 0 0
\(832\) 23.5453 0.816287
\(833\) 41.4397 1.43580
\(834\) 0 0
\(835\) 51.2361 1.77310
\(836\) 0 0
\(837\) 0 0
\(838\) 3.19416 0.110341
\(839\) 15.3615 0.530338 0.265169 0.964202i \(-0.414572\pi\)
0.265169 + 0.964202i \(0.414572\pi\)
\(840\) 0 0
\(841\) −16.3737 −0.564612
\(842\) 1.96891 0.0678531
\(843\) 0 0
\(844\) 15.8676 0.546186
\(845\) 4.95661 0.170513
\(846\) 0 0
\(847\) 0 0
\(848\) −5.53087 −0.189931
\(849\) 0 0
\(850\) −2.87924 −0.0987572
\(851\) −14.4375 −0.494913
\(852\) 0 0
\(853\) −41.4642 −1.41971 −0.709854 0.704349i \(-0.751239\pi\)
−0.709854 + 0.704349i \(0.751239\pi\)
\(854\) −9.99763 −0.342112
\(855\) 0 0
\(856\) 3.10525 0.106135
\(857\) −18.4055 −0.628719 −0.314359 0.949304i \(-0.601790\pi\)
−0.314359 + 0.949304i \(0.601790\pi\)
\(858\) 0 0
\(859\) −15.0485 −0.513449 −0.256725 0.966485i \(-0.582643\pi\)
−0.256725 + 0.966485i \(0.582643\pi\)
\(860\) 5.11922 0.174564
\(861\) 0 0
\(862\) −8.32079 −0.283407
\(863\) −14.4298 −0.491196 −0.245598 0.969372i \(-0.578984\pi\)
−0.245598 + 0.969372i \(0.578984\pi\)
\(864\) 0 0
\(865\) 4.10126 0.139447
\(866\) 10.4182 0.354024
\(867\) 0 0
\(868\) 38.0191 1.29045
\(869\) 0 0
\(870\) 0 0
\(871\) 6.70283 0.227117
\(872\) 19.3952 0.656803
\(873\) 0 0
\(874\) 0.862385 0.0291706
\(875\) −29.3798 −0.993218
\(876\) 0 0
\(877\) 24.0754 0.812967 0.406484 0.913658i \(-0.366755\pi\)
0.406484 + 0.913658i \(0.366755\pi\)
\(878\) −6.12996 −0.206876
\(879\) 0 0
\(880\) 0 0
\(881\) −10.0956 −0.340129 −0.170064 0.985433i \(-0.554398\pi\)
−0.170064 + 0.985433i \(0.554398\pi\)
\(882\) 0 0
\(883\) 50.7198 1.70686 0.853429 0.521209i \(-0.174519\pi\)
0.853429 + 0.521209i \(0.174519\pi\)
\(884\) 31.9211 1.07362
\(885\) 0 0
\(886\) 9.53679 0.320395
\(887\) 2.57271 0.0863831 0.0431915 0.999067i \(-0.486247\pi\)
0.0431915 + 0.999067i \(0.486247\pi\)
\(888\) 0 0
\(889\) −9.98131 −0.334762
\(890\) −7.15422 −0.239810
\(891\) 0 0
\(892\) 14.1064 0.472316
\(893\) 9.51694 0.318472
\(894\) 0 0
\(895\) 35.7261 1.19419
\(896\) 33.4820 1.11856
\(897\) 0 0
\(898\) −11.2729 −0.376180
\(899\) 17.2856 0.576506
\(900\) 0 0
\(901\) −6.79061 −0.226228
\(902\) 0 0
\(903\) 0 0
\(904\) 1.05445 0.0350704
\(905\) 7.58129 0.252010
\(906\) 0 0
\(907\) 10.2949 0.341835 0.170918 0.985285i \(-0.445327\pi\)
0.170918 + 0.985285i \(0.445327\pi\)
\(908\) −36.3423 −1.20606
\(909\) 0 0
\(910\) 12.1159 0.401638
\(911\) −15.6025 −0.516935 −0.258468 0.966020i \(-0.583218\pi\)
−0.258468 + 0.966020i \(0.583218\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 10.6966 0.353811
\(915\) 0 0
\(916\) 15.0798 0.498252
\(917\) −16.2826 −0.537700
\(918\) 0 0
\(919\) −11.2124 −0.369864 −0.184932 0.982751i \(-0.559206\pi\)
−0.184932 + 0.982751i \(0.559206\pi\)
\(920\) −5.64259 −0.186031
\(921\) 0 0
\(922\) 5.52198 0.181857
\(923\) 22.1097 0.727751
\(924\) 0 0
\(925\) 18.1007 0.595148
\(926\) 4.09167 0.134461
\(927\) 0 0
\(928\) 11.5064 0.377715
\(929\) 23.5275 0.771912 0.385956 0.922517i \(-0.373872\pi\)
0.385956 + 0.922517i \(0.373872\pi\)
\(930\) 0 0
\(931\) 15.5611 0.509996
\(932\) −12.6047 −0.412880
\(933\) 0 0
\(934\) 6.36478 0.208262
\(935\) 0 0
\(936\) 0 0
\(937\) −18.6555 −0.609448 −0.304724 0.952441i \(-0.598564\pi\)
−0.304724 + 0.952441i \(0.598564\pi\)
\(938\) 2.02167 0.0660100
\(939\) 0 0
\(940\) −30.4887 −0.994432
\(941\) 32.4926 1.05923 0.529615 0.848238i \(-0.322337\pi\)
0.529615 + 0.848238i \(0.322337\pi\)
\(942\) 0 0
\(943\) 12.8113 0.417193
\(944\) 39.9818 1.30130
\(945\) 0 0
\(946\) 0 0
\(947\) −3.84273 −0.124872 −0.0624360 0.998049i \(-0.519887\pi\)
−0.0624360 + 0.998049i \(0.519887\pi\)
\(948\) 0 0
\(949\) −15.5834 −0.505858
\(950\) −1.08119 −0.0350786
\(951\) 0 0
\(952\) 19.6637 0.637306
\(953\) −19.0891 −0.618358 −0.309179 0.951004i \(-0.600054\pi\)
−0.309179 + 0.951004i \(0.600054\pi\)
\(954\) 0 0
\(955\) −45.3484 −1.46744
\(956\) −49.0154 −1.58527
\(957\) 0 0
\(958\) −6.63302 −0.214303
\(959\) 4.43691 0.143275
\(960\) 0 0
\(961\) −7.33576 −0.236638
\(962\) 8.50417 0.274186
\(963\) 0 0
\(964\) −5.72150 −0.184277
\(965\) 59.6988 1.92177
\(966\) 0 0
\(967\) −26.5627 −0.854198 −0.427099 0.904205i \(-0.640464\pi\)
−0.427099 + 0.904205i \(0.640464\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 5.72549 0.183834
\(971\) −51.1079 −1.64013 −0.820066 0.572269i \(-0.806063\pi\)
−0.820066 + 0.572269i \(0.806063\pi\)
\(972\) 0 0
\(973\) −11.7513 −0.376728
\(974\) −0.0772186 −0.00247424
\(975\) 0 0
\(976\) 30.2876 0.969482
\(977\) −21.1746 −0.677435 −0.338717 0.940888i \(-0.609993\pi\)
−0.338717 + 0.940888i \(0.609993\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −49.8521 −1.59247
\(981\) 0 0
\(982\) −1.19949 −0.0382774
\(983\) 50.8354 1.62140 0.810699 0.585463i \(-0.199087\pi\)
0.810699 + 0.585463i \(0.199087\pi\)
\(984\) 0 0
\(985\) −49.3658 −1.57292
\(986\) 4.37736 0.139404
\(987\) 0 0
\(988\) 11.9868 0.381351
\(989\) 1.83625 0.0583895
\(990\) 0 0
\(991\) −13.1480 −0.417662 −0.208831 0.977952i \(-0.566966\pi\)
−0.208831 + 0.977952i \(0.566966\pi\)
\(992\) 15.7524 0.500140
\(993\) 0 0
\(994\) 6.66862 0.211516
\(995\) −67.9778 −2.15504
\(996\) 0 0
\(997\) 37.2087 1.17841 0.589205 0.807983i \(-0.299441\pi\)
0.589205 + 0.807983i \(0.299441\pi\)
\(998\) 4.38109 0.138681
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.co.1.9 18
3.2 odd 2 9801.2.a.cn.1.10 18
9.4 even 3 1089.2.e.o.727.10 36
9.7 even 3 1089.2.e.o.364.10 36
11.7 odd 10 891.2.f.f.82.5 36
11.8 odd 10 891.2.f.f.163.5 36
11.10 odd 2 9801.2.a.cm.1.10 18
33.8 even 10 891.2.f.e.163.5 36
33.29 even 10 891.2.f.e.82.5 36
33.32 even 2 9801.2.a.cp.1.9 18
99.7 odd 30 99.2.m.b.49.5 yes 72
99.29 even 30 297.2.n.b.280.5 72
99.40 odd 30 99.2.m.b.16.5 72
99.41 even 30 297.2.n.b.262.5 72
99.43 odd 6 1089.2.e.p.364.9 36
99.52 odd 30 99.2.m.b.31.5 yes 72
99.74 even 30 297.2.n.b.64.5 72
99.76 odd 6 1089.2.e.p.727.9 36
99.85 odd 30 99.2.m.b.97.5 yes 72
99.95 even 30 297.2.n.b.181.5 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.5 72 99.40 odd 30
99.2.m.b.31.5 yes 72 99.52 odd 30
99.2.m.b.49.5 yes 72 99.7 odd 30
99.2.m.b.97.5 yes 72 99.85 odd 30
297.2.n.b.64.5 72 99.74 even 30
297.2.n.b.181.5 72 99.95 even 30
297.2.n.b.262.5 72 99.41 even 30
297.2.n.b.280.5 72 99.29 even 30
891.2.f.e.82.5 36 33.29 even 10
891.2.f.e.163.5 36 33.8 even 10
891.2.f.f.82.5 36 11.7 odd 10
891.2.f.f.163.5 36 11.8 odd 10
1089.2.e.o.364.10 36 9.7 even 3
1089.2.e.o.727.10 36 9.4 even 3
1089.2.e.p.364.9 36 99.43 odd 6
1089.2.e.p.727.9 36 99.76 odd 6
9801.2.a.cm.1.10 18 11.10 odd 2
9801.2.a.cn.1.10 18 3.2 odd 2
9801.2.a.co.1.9 18 1.1 even 1 trivial
9801.2.a.cp.1.9 18 33.32 even 2