Properties

Label 9801.2.a.cn.1.18
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 22 x^{16} + 42 x^{15} + 198 x^{14} - 357 x^{13} - 944 x^{12} + 1579 x^{11} + \cdots - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Root \(-2.32900\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.32900 q^{2} +3.42425 q^{4} +0.317020 q^{5} +1.41849 q^{7} +3.31708 q^{8} +0.738340 q^{10} -4.19704 q^{13} +3.30367 q^{14} +0.876991 q^{16} -6.24422 q^{17} -3.09786 q^{19} +1.08556 q^{20} +4.52050 q^{23} -4.89950 q^{25} -9.77491 q^{26} +4.85727 q^{28} +2.92845 q^{29} -9.54176 q^{31} -4.59165 q^{32} -14.5428 q^{34} +0.449690 q^{35} +0.847494 q^{37} -7.21491 q^{38} +1.05158 q^{40} -3.86961 q^{41} -3.55302 q^{43} +10.5282 q^{46} +7.45100 q^{47} -4.98788 q^{49} -11.4109 q^{50} -14.3717 q^{52} -6.68304 q^{53} +4.70526 q^{56} +6.82035 q^{58} +12.0748 q^{59} -4.62032 q^{61} -22.2228 q^{62} -12.4479 q^{64} -1.33054 q^{65} +9.96771 q^{67} -21.3818 q^{68} +1.04733 q^{70} -2.93068 q^{71} -4.24167 q^{73} +1.97382 q^{74} -10.6078 q^{76} +3.38199 q^{79} +0.278024 q^{80} -9.01233 q^{82} -13.4875 q^{83} -1.97954 q^{85} -8.27498 q^{86} -2.69745 q^{89} -5.95347 q^{91} +15.4793 q^{92} +17.3534 q^{94} -0.982082 q^{95} -5.25744 q^{97} -11.6168 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 12 q^{4} + q^{5} - q^{7} - 6 q^{8} + 2 q^{10} - 3 q^{13} - 8 q^{16} - 20 q^{17} + 3 q^{19} + 5 q^{20} + 10 q^{23} + 7 q^{25} - 2 q^{26} - 19 q^{28} - 21 q^{29} + 6 q^{31} - 9 q^{32} - 4 q^{34}+ \cdots - 82 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.32900 1.64685 0.823427 0.567423i \(-0.192059\pi\)
0.823427 + 0.567423i \(0.192059\pi\)
\(3\) 0 0
\(4\) 3.42425 1.71213
\(5\) 0.317020 0.141776 0.0708878 0.997484i \(-0.477417\pi\)
0.0708878 + 0.997484i \(0.477417\pi\)
\(6\) 0 0
\(7\) 1.41849 0.536140 0.268070 0.963399i \(-0.413614\pi\)
0.268070 + 0.963399i \(0.413614\pi\)
\(8\) 3.31708 1.17277
\(9\) 0 0
\(10\) 0.738340 0.233484
\(11\) 0 0
\(12\) 0 0
\(13\) −4.19704 −1.16405 −0.582024 0.813171i \(-0.697739\pi\)
−0.582024 + 0.813171i \(0.697739\pi\)
\(14\) 3.30367 0.882944
\(15\) 0 0
\(16\) 0.876991 0.219248
\(17\) −6.24422 −1.51445 −0.757223 0.653157i \(-0.773444\pi\)
−0.757223 + 0.653157i \(0.773444\pi\)
\(18\) 0 0
\(19\) −3.09786 −0.710697 −0.355348 0.934734i \(-0.615638\pi\)
−0.355348 + 0.934734i \(0.615638\pi\)
\(20\) 1.08556 0.242738
\(21\) 0 0
\(22\) 0 0
\(23\) 4.52050 0.942589 0.471295 0.881976i \(-0.343787\pi\)
0.471295 + 0.881976i \(0.343787\pi\)
\(24\) 0 0
\(25\) −4.89950 −0.979900
\(26\) −9.77491 −1.91702
\(27\) 0 0
\(28\) 4.85727 0.917939
\(29\) 2.92845 0.543799 0.271899 0.962326i \(-0.412348\pi\)
0.271899 + 0.962326i \(0.412348\pi\)
\(30\) 0 0
\(31\) −9.54176 −1.71375 −0.856876 0.515523i \(-0.827598\pi\)
−0.856876 + 0.515523i \(0.827598\pi\)
\(32\) −4.59165 −0.811697
\(33\) 0 0
\(34\) −14.5428 −2.49407
\(35\) 0.449690 0.0760116
\(36\) 0 0
\(37\) 0.847494 0.139327 0.0696636 0.997571i \(-0.477807\pi\)
0.0696636 + 0.997571i \(0.477807\pi\)
\(38\) −7.21491 −1.17041
\(39\) 0 0
\(40\) 1.05158 0.166270
\(41\) −3.86961 −0.604331 −0.302166 0.953255i \(-0.597710\pi\)
−0.302166 + 0.953255i \(0.597710\pi\)
\(42\) 0 0
\(43\) −3.55302 −0.541830 −0.270915 0.962603i \(-0.587326\pi\)
−0.270915 + 0.962603i \(0.587326\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 10.5282 1.55231
\(47\) 7.45100 1.08684 0.543420 0.839461i \(-0.317129\pi\)
0.543420 + 0.839461i \(0.317129\pi\)
\(48\) 0 0
\(49\) −4.98788 −0.712554
\(50\) −11.4109 −1.61375
\(51\) 0 0
\(52\) −14.3717 −1.99300
\(53\) −6.68304 −0.917986 −0.458993 0.888440i \(-0.651790\pi\)
−0.458993 + 0.888440i \(0.651790\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.70526 0.628766
\(57\) 0 0
\(58\) 6.82035 0.895556
\(59\) 12.0748 1.57200 0.786001 0.618226i \(-0.212148\pi\)
0.786001 + 0.618226i \(0.212148\pi\)
\(60\) 0 0
\(61\) −4.62032 −0.591571 −0.295786 0.955254i \(-0.595581\pi\)
−0.295786 + 0.955254i \(0.595581\pi\)
\(62\) −22.2228 −2.82230
\(63\) 0 0
\(64\) −12.4479 −1.55599
\(65\) −1.33054 −0.165034
\(66\) 0 0
\(67\) 9.96771 1.21775 0.608875 0.793266i \(-0.291621\pi\)
0.608875 + 0.793266i \(0.291621\pi\)
\(68\) −21.3818 −2.59292
\(69\) 0 0
\(70\) 1.04733 0.125180
\(71\) −2.93068 −0.347808 −0.173904 0.984763i \(-0.555638\pi\)
−0.173904 + 0.984763i \(0.555638\pi\)
\(72\) 0 0
\(73\) −4.24167 −0.496450 −0.248225 0.968702i \(-0.579847\pi\)
−0.248225 + 0.968702i \(0.579847\pi\)
\(74\) 1.97382 0.229451
\(75\) 0 0
\(76\) −10.6078 −1.21680
\(77\) 0 0
\(78\) 0 0
\(79\) 3.38199 0.380503 0.190252 0.981735i \(-0.439070\pi\)
0.190252 + 0.981735i \(0.439070\pi\)
\(80\) 0.278024 0.0310840
\(81\) 0 0
\(82\) −9.01233 −0.995245
\(83\) −13.4875 −1.48044 −0.740221 0.672363i \(-0.765279\pi\)
−0.740221 + 0.672363i \(0.765279\pi\)
\(84\) 0 0
\(85\) −1.97954 −0.214711
\(86\) −8.27498 −0.892315
\(87\) 0 0
\(88\) 0 0
\(89\) −2.69745 −0.285929 −0.142965 0.989728i \(-0.545664\pi\)
−0.142965 + 0.989728i \(0.545664\pi\)
\(90\) 0 0
\(91\) −5.95347 −0.624093
\(92\) 15.4793 1.61383
\(93\) 0 0
\(94\) 17.3534 1.78987
\(95\) −0.982082 −0.100759
\(96\) 0 0
\(97\) −5.25744 −0.533813 −0.266906 0.963722i \(-0.586001\pi\)
−0.266906 + 0.963722i \(0.586001\pi\)
\(98\) −11.6168 −1.17347
\(99\) 0 0
\(100\) −16.7771 −1.67771
\(101\) −9.52974 −0.948245 −0.474123 0.880459i \(-0.657235\pi\)
−0.474123 + 0.880459i \(0.657235\pi\)
\(102\) 0 0
\(103\) 9.53563 0.939574 0.469787 0.882780i \(-0.344331\pi\)
0.469787 + 0.882780i \(0.344331\pi\)
\(104\) −13.9219 −1.36516
\(105\) 0 0
\(106\) −15.5648 −1.51179
\(107\) 5.17260 0.500054 0.250027 0.968239i \(-0.419560\pi\)
0.250027 + 0.968239i \(0.419560\pi\)
\(108\) 0 0
\(109\) −14.4767 −1.38661 −0.693307 0.720643i \(-0.743847\pi\)
−0.693307 + 0.720643i \(0.743847\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.24401 0.117547
\(113\) 7.43161 0.699107 0.349553 0.936916i \(-0.386333\pi\)
0.349553 + 0.936916i \(0.386333\pi\)
\(114\) 0 0
\(115\) 1.43309 0.133636
\(116\) 10.0277 0.931051
\(117\) 0 0
\(118\) 28.1222 2.58886
\(119\) −8.85738 −0.811954
\(120\) 0 0
\(121\) 0 0
\(122\) −10.7607 −0.974231
\(123\) 0 0
\(124\) −32.6734 −2.93416
\(125\) −3.13834 −0.280702
\(126\) 0 0
\(127\) 13.2044 1.17171 0.585853 0.810418i \(-0.300760\pi\)
0.585853 + 0.810418i \(0.300760\pi\)
\(128\) −19.8080 −1.75080
\(129\) 0 0
\(130\) −3.09884 −0.271786
\(131\) −7.30043 −0.637841 −0.318921 0.947781i \(-0.603320\pi\)
−0.318921 + 0.947781i \(0.603320\pi\)
\(132\) 0 0
\(133\) −4.39429 −0.381033
\(134\) 23.2148 2.00545
\(135\) 0 0
\(136\) −20.7126 −1.77609
\(137\) −9.80733 −0.837897 −0.418948 0.908010i \(-0.637601\pi\)
−0.418948 + 0.908010i \(0.637601\pi\)
\(138\) 0 0
\(139\) 9.47690 0.803820 0.401910 0.915679i \(-0.368347\pi\)
0.401910 + 0.915679i \(0.368347\pi\)
\(140\) 1.53985 0.130141
\(141\) 0 0
\(142\) −6.82556 −0.572789
\(143\) 0 0
\(144\) 0 0
\(145\) 0.928375 0.0770974
\(146\) −9.87886 −0.817580
\(147\) 0 0
\(148\) 2.90203 0.238546
\(149\) −4.12745 −0.338134 −0.169067 0.985605i \(-0.554075\pi\)
−0.169067 + 0.985605i \(0.554075\pi\)
\(150\) 0 0
\(151\) 17.7753 1.44653 0.723265 0.690570i \(-0.242640\pi\)
0.723265 + 0.690570i \(0.242640\pi\)
\(152\) −10.2758 −0.833481
\(153\) 0 0
\(154\) 0 0
\(155\) −3.02493 −0.242968
\(156\) 0 0
\(157\) −2.01726 −0.160995 −0.0804974 0.996755i \(-0.525651\pi\)
−0.0804974 + 0.996755i \(0.525651\pi\)
\(158\) 7.87666 0.626633
\(159\) 0 0
\(160\) −1.45564 −0.115079
\(161\) 6.41229 0.505359
\(162\) 0 0
\(163\) −1.58042 −0.123788 −0.0618940 0.998083i \(-0.519714\pi\)
−0.0618940 + 0.998083i \(0.519714\pi\)
\(164\) −13.2505 −1.03469
\(165\) 0 0
\(166\) −31.4124 −2.43807
\(167\) 15.3216 1.18562 0.592812 0.805341i \(-0.298018\pi\)
0.592812 + 0.805341i \(0.298018\pi\)
\(168\) 0 0
\(169\) 4.61512 0.355009
\(170\) −4.61036 −0.353598
\(171\) 0 0
\(172\) −12.1664 −0.927681
\(173\) −0.986039 −0.0749672 −0.0374836 0.999297i \(-0.511934\pi\)
−0.0374836 + 0.999297i \(0.511934\pi\)
\(174\) 0 0
\(175\) −6.94990 −0.525363
\(176\) 0 0
\(177\) 0 0
\(178\) −6.28237 −0.470884
\(179\) 11.2258 0.839056 0.419528 0.907742i \(-0.362196\pi\)
0.419528 + 0.907742i \(0.362196\pi\)
\(180\) 0 0
\(181\) 17.9256 1.33240 0.666201 0.745773i \(-0.267919\pi\)
0.666201 + 0.745773i \(0.267919\pi\)
\(182\) −13.8656 −1.02779
\(183\) 0 0
\(184\) 14.9949 1.10544
\(185\) 0.268673 0.0197532
\(186\) 0 0
\(187\) 0 0
\(188\) 25.5141 1.86081
\(189\) 0 0
\(190\) −2.28727 −0.165936
\(191\) −12.8879 −0.932539 −0.466269 0.884643i \(-0.654402\pi\)
−0.466269 + 0.884643i \(0.654402\pi\)
\(192\) 0 0
\(193\) 23.1510 1.66645 0.833224 0.552936i \(-0.186493\pi\)
0.833224 + 0.552936i \(0.186493\pi\)
\(194\) −12.2446 −0.879111
\(195\) 0 0
\(196\) −17.0797 −1.21998
\(197\) 1.07766 0.0767801 0.0383900 0.999263i \(-0.487777\pi\)
0.0383900 + 0.999263i \(0.487777\pi\)
\(198\) 0 0
\(199\) 16.4307 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(200\) −16.2520 −1.14919
\(201\) 0 0
\(202\) −22.1948 −1.56162
\(203\) 4.15398 0.291552
\(204\) 0 0
\(205\) −1.22674 −0.0856795
\(206\) 22.2085 1.54734
\(207\) 0 0
\(208\) −3.68076 −0.255215
\(209\) 0 0
\(210\) 0 0
\(211\) 14.9498 1.02919 0.514593 0.857435i \(-0.327943\pi\)
0.514593 + 0.857435i \(0.327943\pi\)
\(212\) −22.8844 −1.57171
\(213\) 0 0
\(214\) 12.0470 0.823516
\(215\) −1.12638 −0.0768183
\(216\) 0 0
\(217\) −13.5349 −0.918810
\(218\) −33.7162 −2.28355
\(219\) 0 0
\(220\) 0 0
\(221\) 26.2072 1.76289
\(222\) 0 0
\(223\) 1.92628 0.128993 0.0644966 0.997918i \(-0.479456\pi\)
0.0644966 + 0.997918i \(0.479456\pi\)
\(224\) −6.51322 −0.435183
\(225\) 0 0
\(226\) 17.3082 1.15133
\(227\) −16.0111 −1.06269 −0.531347 0.847154i \(-0.678314\pi\)
−0.531347 + 0.847154i \(0.678314\pi\)
\(228\) 0 0
\(229\) −0.522925 −0.0345559 −0.0172779 0.999851i \(-0.505500\pi\)
−0.0172779 + 0.999851i \(0.505500\pi\)
\(230\) 3.33766 0.220079
\(231\) 0 0
\(232\) 9.71389 0.637748
\(233\) −10.2525 −0.671665 −0.335833 0.941922i \(-0.609018\pi\)
−0.335833 + 0.941922i \(0.609018\pi\)
\(234\) 0 0
\(235\) 2.36212 0.154087
\(236\) 41.3470 2.69146
\(237\) 0 0
\(238\) −20.6288 −1.33717
\(239\) −9.64104 −0.623627 −0.311814 0.950143i \(-0.600936\pi\)
−0.311814 + 0.950143i \(0.600936\pi\)
\(240\) 0 0
\(241\) 0.278731 0.0179547 0.00897733 0.999960i \(-0.497142\pi\)
0.00897733 + 0.999960i \(0.497142\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −15.8211 −1.01284
\(245\) −1.58126 −0.101023
\(246\) 0 0
\(247\) 13.0018 0.827286
\(248\) −31.6508 −2.00983
\(249\) 0 0
\(250\) −7.30920 −0.462274
\(251\) −4.42541 −0.279329 −0.139665 0.990199i \(-0.544602\pi\)
−0.139665 + 0.990199i \(0.544602\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 30.7532 1.92963
\(255\) 0 0
\(256\) −21.2370 −1.32731
\(257\) −3.65452 −0.227963 −0.113981 0.993483i \(-0.536360\pi\)
−0.113981 + 0.993483i \(0.536360\pi\)
\(258\) 0 0
\(259\) 1.20216 0.0746989
\(260\) −4.55612 −0.282558
\(261\) 0 0
\(262\) −17.0027 −1.05043
\(263\) −14.4524 −0.891174 −0.445587 0.895239i \(-0.647005\pi\)
−0.445587 + 0.895239i \(0.647005\pi\)
\(264\) 0 0
\(265\) −2.11866 −0.130148
\(266\) −10.2343 −0.627505
\(267\) 0 0
\(268\) 34.1319 2.08494
\(269\) −0.917748 −0.0559561 −0.0279780 0.999609i \(-0.508907\pi\)
−0.0279780 + 0.999609i \(0.508907\pi\)
\(270\) 0 0
\(271\) 2.64421 0.160624 0.0803120 0.996770i \(-0.474408\pi\)
0.0803120 + 0.996770i \(0.474408\pi\)
\(272\) −5.47612 −0.332039
\(273\) 0 0
\(274\) −22.8413 −1.37989
\(275\) 0 0
\(276\) 0 0
\(277\) −28.9045 −1.73670 −0.868351 0.495949i \(-0.834820\pi\)
−0.868351 + 0.495949i \(0.834820\pi\)
\(278\) 22.0717 1.32377
\(279\) 0 0
\(280\) 1.49166 0.0891437
\(281\) 8.74257 0.521538 0.260769 0.965401i \(-0.416024\pi\)
0.260769 + 0.965401i \(0.416024\pi\)
\(282\) 0 0
\(283\) 23.2173 1.38012 0.690061 0.723751i \(-0.257583\pi\)
0.690061 + 0.723751i \(0.257583\pi\)
\(284\) −10.0354 −0.595491
\(285\) 0 0
\(286\) 0 0
\(287\) −5.48901 −0.324006
\(288\) 0 0
\(289\) 21.9902 1.29354
\(290\) 2.16219 0.126968
\(291\) 0 0
\(292\) −14.5245 −0.849984
\(293\) −20.9754 −1.22540 −0.612698 0.790317i \(-0.709916\pi\)
−0.612698 + 0.790317i \(0.709916\pi\)
\(294\) 0 0
\(295\) 3.82794 0.222871
\(296\) 2.81121 0.163398
\(297\) 0 0
\(298\) −9.61284 −0.556857
\(299\) −18.9727 −1.09722
\(300\) 0 0
\(301\) −5.03993 −0.290497
\(302\) 41.3986 2.38222
\(303\) 0 0
\(304\) −2.71679 −0.155819
\(305\) −1.46473 −0.0838704
\(306\) 0 0
\(307\) −23.1324 −1.32024 −0.660118 0.751162i \(-0.729494\pi\)
−0.660118 + 0.751162i \(0.729494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −7.04507 −0.400133
\(311\) −20.4148 −1.15762 −0.578809 0.815463i \(-0.696482\pi\)
−0.578809 + 0.815463i \(0.696482\pi\)
\(312\) 0 0
\(313\) −34.0393 −1.92402 −0.962008 0.273020i \(-0.911978\pi\)
−0.962008 + 0.273020i \(0.911978\pi\)
\(314\) −4.69820 −0.265135
\(315\) 0 0
\(316\) 11.5808 0.651469
\(317\) 27.4204 1.54008 0.770042 0.637993i \(-0.220235\pi\)
0.770042 + 0.637993i \(0.220235\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −3.94625 −0.220602
\(321\) 0 0
\(322\) 14.9342 0.832253
\(323\) 19.3437 1.07631
\(324\) 0 0
\(325\) 20.5634 1.14065
\(326\) −3.68080 −0.203861
\(327\) 0 0
\(328\) −12.8358 −0.708739
\(329\) 10.5692 0.582698
\(330\) 0 0
\(331\) −17.9724 −0.987854 −0.493927 0.869503i \(-0.664439\pi\)
−0.493927 + 0.869503i \(0.664439\pi\)
\(332\) −46.1845 −2.53470
\(333\) 0 0
\(334\) 35.6841 1.95255
\(335\) 3.15996 0.172647
\(336\) 0 0
\(337\) −10.9721 −0.597691 −0.298845 0.954302i \(-0.596601\pi\)
−0.298845 + 0.954302i \(0.596601\pi\)
\(338\) 10.7486 0.584648
\(339\) 0 0
\(340\) −6.77845 −0.367613
\(341\) 0 0
\(342\) 0 0
\(343\) −17.0047 −0.918168
\(344\) −11.7857 −0.635440
\(345\) 0 0
\(346\) −2.29649 −0.123460
\(347\) 22.0988 1.18633 0.593163 0.805082i \(-0.297879\pi\)
0.593163 + 0.805082i \(0.297879\pi\)
\(348\) 0 0
\(349\) 18.4037 0.985129 0.492564 0.870276i \(-0.336060\pi\)
0.492564 + 0.870276i \(0.336060\pi\)
\(350\) −16.1863 −0.865196
\(351\) 0 0
\(352\) 0 0
\(353\) −33.0708 −1.76018 −0.880089 0.474808i \(-0.842517\pi\)
−0.880089 + 0.474808i \(0.842517\pi\)
\(354\) 0 0
\(355\) −0.929084 −0.0493107
\(356\) −9.23676 −0.489547
\(357\) 0 0
\(358\) 26.1449 1.38180
\(359\) 2.99864 0.158262 0.0791311 0.996864i \(-0.474785\pi\)
0.0791311 + 0.996864i \(0.474785\pi\)
\(360\) 0 0
\(361\) −9.40329 −0.494910
\(362\) 41.7488 2.19427
\(363\) 0 0
\(364\) −20.3862 −1.06852
\(365\) −1.34469 −0.0703845
\(366\) 0 0
\(367\) 1.66246 0.0867797 0.0433899 0.999058i \(-0.486184\pi\)
0.0433899 + 0.999058i \(0.486184\pi\)
\(368\) 3.96444 0.206661
\(369\) 0 0
\(370\) 0.625739 0.0325306
\(371\) −9.47985 −0.492169
\(372\) 0 0
\(373\) 21.5087 1.11368 0.556839 0.830621i \(-0.312014\pi\)
0.556839 + 0.830621i \(0.312014\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 24.7156 1.27461
\(377\) −12.2908 −0.633008
\(378\) 0 0
\(379\) 12.4193 0.637938 0.318969 0.947765i \(-0.396663\pi\)
0.318969 + 0.947765i \(0.396663\pi\)
\(380\) −3.36290 −0.172513
\(381\) 0 0
\(382\) −30.0160 −1.53575
\(383\) −0.799677 −0.0408616 −0.0204308 0.999791i \(-0.506504\pi\)
−0.0204308 + 0.999791i \(0.506504\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 53.9188 2.74439
\(387\) 0 0
\(388\) −18.0028 −0.913954
\(389\) 1.73669 0.0880534 0.0440267 0.999030i \(-0.485981\pi\)
0.0440267 + 0.999030i \(0.485981\pi\)
\(390\) 0 0
\(391\) −28.2270 −1.42750
\(392\) −16.5452 −0.835659
\(393\) 0 0
\(394\) 2.50987 0.126446
\(395\) 1.07216 0.0539461
\(396\) 0 0
\(397\) −24.7599 −1.24267 −0.621333 0.783547i \(-0.713409\pi\)
−0.621333 + 0.783547i \(0.713409\pi\)
\(398\) 38.2672 1.91816
\(399\) 0 0
\(400\) −4.29682 −0.214841
\(401\) −21.8523 −1.09125 −0.545627 0.838028i \(-0.683708\pi\)
−0.545627 + 0.838028i \(0.683708\pi\)
\(402\) 0 0
\(403\) 40.0471 1.99489
\(404\) −32.6322 −1.62351
\(405\) 0 0
\(406\) 9.67462 0.480143
\(407\) 0 0
\(408\) 0 0
\(409\) −8.03477 −0.397294 −0.198647 0.980071i \(-0.563655\pi\)
−0.198647 + 0.980071i \(0.563655\pi\)
\(410\) −2.85709 −0.141101
\(411\) 0 0
\(412\) 32.6524 1.60867
\(413\) 17.1280 0.842812
\(414\) 0 0
\(415\) −4.27580 −0.209891
\(416\) 19.2713 0.944855
\(417\) 0 0
\(418\) 0 0
\(419\) 5.59681 0.273422 0.136711 0.990611i \(-0.456347\pi\)
0.136711 + 0.990611i \(0.456347\pi\)
\(420\) 0 0
\(421\) 37.8544 1.84491 0.922455 0.386105i \(-0.126180\pi\)
0.922455 + 0.386105i \(0.126180\pi\)
\(422\) 34.8181 1.69492
\(423\) 0 0
\(424\) −22.1682 −1.07658
\(425\) 30.5935 1.48400
\(426\) 0 0
\(427\) −6.55389 −0.317165
\(428\) 17.7123 0.856155
\(429\) 0 0
\(430\) −2.62333 −0.126508
\(431\) −29.7844 −1.43466 −0.717332 0.696731i \(-0.754637\pi\)
−0.717332 + 0.696731i \(0.754637\pi\)
\(432\) 0 0
\(433\) −0.279271 −0.0134209 −0.00671046 0.999977i \(-0.502136\pi\)
−0.00671046 + 0.999977i \(0.502136\pi\)
\(434\) −31.5229 −1.51315
\(435\) 0 0
\(436\) −49.5717 −2.37406
\(437\) −14.0039 −0.669895
\(438\) 0 0
\(439\) −14.9965 −0.715746 −0.357873 0.933770i \(-0.616498\pi\)
−0.357873 + 0.933770i \(0.616498\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 61.0366 2.90322
\(443\) −14.4998 −0.688907 −0.344453 0.938803i \(-0.611936\pi\)
−0.344453 + 0.938803i \(0.611936\pi\)
\(444\) 0 0
\(445\) −0.855146 −0.0405378
\(446\) 4.48631 0.212433
\(447\) 0 0
\(448\) −17.6573 −0.834230
\(449\) 21.2217 1.00151 0.500757 0.865588i \(-0.333055\pi\)
0.500757 + 0.865588i \(0.333055\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 25.4477 1.19696
\(453\) 0 0
\(454\) −37.2899 −1.75010
\(455\) −1.88737 −0.0884811
\(456\) 0 0
\(457\) 3.20950 0.150134 0.0750671 0.997178i \(-0.476083\pi\)
0.0750671 + 0.997178i \(0.476083\pi\)
\(458\) −1.21789 −0.0569085
\(459\) 0 0
\(460\) 4.90725 0.228802
\(461\) 26.3256 1.22610 0.613052 0.790042i \(-0.289942\pi\)
0.613052 + 0.790042i \(0.289942\pi\)
\(462\) 0 0
\(463\) 3.62824 0.168619 0.0843093 0.996440i \(-0.473132\pi\)
0.0843093 + 0.996440i \(0.473132\pi\)
\(464\) 2.56822 0.119227
\(465\) 0 0
\(466\) −23.8782 −1.10613
\(467\) 18.4952 0.855854 0.427927 0.903813i \(-0.359244\pi\)
0.427927 + 0.903813i \(0.359244\pi\)
\(468\) 0 0
\(469\) 14.1391 0.652884
\(470\) 5.50137 0.253759
\(471\) 0 0
\(472\) 40.0530 1.84359
\(473\) 0 0
\(474\) 0 0
\(475\) 15.1779 0.696412
\(476\) −30.3299 −1.39017
\(477\) 0 0
\(478\) −22.4540 −1.02702
\(479\) −0.156998 −0.00717343 −0.00358672 0.999994i \(-0.501142\pi\)
−0.00358672 + 0.999994i \(0.501142\pi\)
\(480\) 0 0
\(481\) −3.55697 −0.162184
\(482\) 0.649165 0.0295687
\(483\) 0 0
\(484\) 0 0
\(485\) −1.66671 −0.0756816
\(486\) 0 0
\(487\) 17.9265 0.812327 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(488\) −15.3260 −0.693775
\(489\) 0 0
\(490\) −3.68275 −0.166370
\(491\) −6.64797 −0.300019 −0.150009 0.988685i \(-0.547930\pi\)
−0.150009 + 0.988685i \(0.547930\pi\)
\(492\) 0 0
\(493\) −18.2858 −0.823553
\(494\) 30.2813 1.36242
\(495\) 0 0
\(496\) −8.36804 −0.375736
\(497\) −4.15715 −0.186474
\(498\) 0 0
\(499\) 33.9473 1.51969 0.759846 0.650103i \(-0.225274\pi\)
0.759846 + 0.650103i \(0.225274\pi\)
\(500\) −10.7465 −0.480596
\(501\) 0 0
\(502\) −10.3068 −0.460014
\(503\) 3.13729 0.139885 0.0699423 0.997551i \(-0.477718\pi\)
0.0699423 + 0.997551i \(0.477718\pi\)
\(504\) 0 0
\(505\) −3.02112 −0.134438
\(506\) 0 0
\(507\) 0 0
\(508\) 45.2153 2.00611
\(509\) −22.8035 −1.01075 −0.505374 0.862901i \(-0.668645\pi\)
−0.505374 + 0.862901i \(0.668645\pi\)
\(510\) 0 0
\(511\) −6.01678 −0.266167
\(512\) −9.84494 −0.435089
\(513\) 0 0
\(514\) −8.51139 −0.375421
\(515\) 3.02298 0.133209
\(516\) 0 0
\(517\) 0 0
\(518\) 2.79984 0.123018
\(519\) 0 0
\(520\) −4.41353 −0.193546
\(521\) −5.26812 −0.230801 −0.115400 0.993319i \(-0.536815\pi\)
−0.115400 + 0.993319i \(0.536815\pi\)
\(522\) 0 0
\(523\) −11.8956 −0.520159 −0.260080 0.965587i \(-0.583749\pi\)
−0.260080 + 0.965587i \(0.583749\pi\)
\(524\) −24.9985 −1.09206
\(525\) 0 0
\(526\) −33.6597 −1.46763
\(527\) 59.5808 2.59538
\(528\) 0 0
\(529\) −2.56510 −0.111526
\(530\) −4.93436 −0.214335
\(531\) 0 0
\(532\) −15.0471 −0.652376
\(533\) 16.2409 0.703471
\(534\) 0 0
\(535\) 1.63982 0.0708955
\(536\) 33.0637 1.42813
\(537\) 0 0
\(538\) −2.13744 −0.0921515
\(539\) 0 0
\(540\) 0 0
\(541\) −40.5807 −1.74470 −0.872350 0.488882i \(-0.837405\pi\)
−0.872350 + 0.488882i \(0.837405\pi\)
\(542\) 6.15836 0.264524
\(543\) 0 0
\(544\) 28.6713 1.22927
\(545\) −4.58939 −0.196588
\(546\) 0 0
\(547\) −23.5343 −1.00625 −0.503127 0.864212i \(-0.667817\pi\)
−0.503127 + 0.864212i \(0.667817\pi\)
\(548\) −33.5828 −1.43458
\(549\) 0 0
\(550\) 0 0
\(551\) −9.07190 −0.386476
\(552\) 0 0
\(553\) 4.79732 0.204003
\(554\) −67.3186 −2.86009
\(555\) 0 0
\(556\) 32.4513 1.37624
\(557\) −6.28652 −0.266369 −0.133184 0.991091i \(-0.542520\pi\)
−0.133184 + 0.991091i \(0.542520\pi\)
\(558\) 0 0
\(559\) 14.9121 0.630716
\(560\) 0.394374 0.0166654
\(561\) 0 0
\(562\) 20.3615 0.858896
\(563\) −16.9664 −0.715049 −0.357524 0.933904i \(-0.616379\pi\)
−0.357524 + 0.933904i \(0.616379\pi\)
\(564\) 0 0
\(565\) 2.35597 0.0991163
\(566\) 54.0731 2.27286
\(567\) 0 0
\(568\) −9.72131 −0.407897
\(569\) 22.2505 0.932790 0.466395 0.884577i \(-0.345553\pi\)
0.466395 + 0.884577i \(0.345553\pi\)
\(570\) 0 0
\(571\) −35.3152 −1.47789 −0.738947 0.673763i \(-0.764677\pi\)
−0.738947 + 0.673763i \(0.764677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −12.7839 −0.533591
\(575\) −22.1482 −0.923643
\(576\) 0 0
\(577\) −38.2361 −1.59179 −0.795894 0.605436i \(-0.792999\pi\)
−0.795894 + 0.605436i \(0.792999\pi\)
\(578\) 51.2153 2.13028
\(579\) 0 0
\(580\) 3.17899 0.132000
\(581\) −19.1319 −0.793724
\(582\) 0 0
\(583\) 0 0
\(584\) −14.0700 −0.582219
\(585\) 0 0
\(586\) −48.8517 −2.01805
\(587\) 12.3896 0.511375 0.255688 0.966759i \(-0.417698\pi\)
0.255688 + 0.966759i \(0.417698\pi\)
\(588\) 0 0
\(589\) 29.5590 1.21796
\(590\) 8.91529 0.367037
\(591\) 0 0
\(592\) 0.743245 0.0305472
\(593\) 4.18039 0.171668 0.0858340 0.996309i \(-0.472645\pi\)
0.0858340 + 0.996309i \(0.472645\pi\)
\(594\) 0 0
\(595\) −2.80796 −0.115115
\(596\) −14.1334 −0.578927
\(597\) 0 0
\(598\) −44.1875 −1.80696
\(599\) 44.0788 1.80101 0.900505 0.434847i \(-0.143197\pi\)
0.900505 + 0.434847i \(0.143197\pi\)
\(600\) 0 0
\(601\) 1.75132 0.0714377 0.0357188 0.999362i \(-0.488628\pi\)
0.0357188 + 0.999362i \(0.488628\pi\)
\(602\) −11.7380 −0.478405
\(603\) 0 0
\(604\) 60.8670 2.47664
\(605\) 0 0
\(606\) 0 0
\(607\) 10.8691 0.441165 0.220583 0.975368i \(-0.429204\pi\)
0.220583 + 0.975368i \(0.429204\pi\)
\(608\) 14.2243 0.576870
\(609\) 0 0
\(610\) −3.41137 −0.138122
\(611\) −31.2721 −1.26513
\(612\) 0 0
\(613\) −17.7933 −0.718665 −0.359333 0.933210i \(-0.616996\pi\)
−0.359333 + 0.933210i \(0.616996\pi\)
\(614\) −53.8754 −2.17423
\(615\) 0 0
\(616\) 0 0
\(617\) −3.99611 −0.160877 −0.0804386 0.996760i \(-0.525632\pi\)
−0.0804386 + 0.996760i \(0.525632\pi\)
\(618\) 0 0
\(619\) −10.9754 −0.441138 −0.220569 0.975371i \(-0.570791\pi\)
−0.220569 + 0.975371i \(0.570791\pi\)
\(620\) −10.3581 −0.415992
\(621\) 0 0
\(622\) −47.5462 −1.90643
\(623\) −3.82632 −0.153298
\(624\) 0 0
\(625\) 23.5026 0.940103
\(626\) −79.2777 −3.16857
\(627\) 0 0
\(628\) −6.90760 −0.275643
\(629\) −5.29194 −0.211003
\(630\) 0 0
\(631\) 8.64921 0.344319 0.172160 0.985069i \(-0.444925\pi\)
0.172160 + 0.985069i \(0.444925\pi\)
\(632\) 11.2183 0.446241
\(633\) 0 0
\(634\) 63.8622 2.53629
\(635\) 4.18607 0.166119
\(636\) 0 0
\(637\) 20.9343 0.829448
\(638\) 0 0
\(639\) 0 0
\(640\) −6.27953 −0.248220
\(641\) −37.0876 −1.46487 −0.732436 0.680836i \(-0.761617\pi\)
−0.732436 + 0.680836i \(0.761617\pi\)
\(642\) 0 0
\(643\) −40.7326 −1.60634 −0.803168 0.595752i \(-0.796854\pi\)
−0.803168 + 0.595752i \(0.796854\pi\)
\(644\) 21.9573 0.865239
\(645\) 0 0
\(646\) 45.0515 1.77253
\(647\) 0.568944 0.0223675 0.0111837 0.999937i \(-0.496440\pi\)
0.0111837 + 0.999937i \(0.496440\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 47.8921 1.87848
\(651\) 0 0
\(652\) −5.41175 −0.211941
\(653\) 36.5276 1.42944 0.714718 0.699413i \(-0.246555\pi\)
0.714718 + 0.699413i \(0.246555\pi\)
\(654\) 0 0
\(655\) −2.31438 −0.0904304
\(656\) −3.39361 −0.132498
\(657\) 0 0
\(658\) 24.6157 0.959618
\(659\) −24.0070 −0.935179 −0.467590 0.883946i \(-0.654877\pi\)
−0.467590 + 0.883946i \(0.654877\pi\)
\(660\) 0 0
\(661\) 12.9833 0.504992 0.252496 0.967598i \(-0.418749\pi\)
0.252496 + 0.967598i \(0.418749\pi\)
\(662\) −41.8578 −1.62685
\(663\) 0 0
\(664\) −44.7391 −1.73621
\(665\) −1.39308 −0.0540212
\(666\) 0 0
\(667\) 13.2380 0.512579
\(668\) 52.4651 2.02994
\(669\) 0 0
\(670\) 7.35956 0.284325
\(671\) 0 0
\(672\) 0 0
\(673\) −17.0257 −0.656291 −0.328145 0.944627i \(-0.606424\pi\)
−0.328145 + 0.944627i \(0.606424\pi\)
\(674\) −25.5541 −0.984309
\(675\) 0 0
\(676\) 15.8033 0.607820
\(677\) −35.4316 −1.36175 −0.680874 0.732400i \(-0.738400\pi\)
−0.680874 + 0.732400i \(0.738400\pi\)
\(678\) 0 0
\(679\) −7.45764 −0.286198
\(680\) −6.56630 −0.251806
\(681\) 0 0
\(682\) 0 0
\(683\) −23.8967 −0.914381 −0.457191 0.889369i \(-0.651144\pi\)
−0.457191 + 0.889369i \(0.651144\pi\)
\(684\) 0 0
\(685\) −3.10912 −0.118793
\(686\) −39.6040 −1.51209
\(687\) 0 0
\(688\) −3.11596 −0.118795
\(689\) 28.0490 1.06858
\(690\) 0 0
\(691\) −0.592615 −0.0225441 −0.0112721 0.999936i \(-0.503588\pi\)
−0.0112721 + 0.999936i \(0.503588\pi\)
\(692\) −3.37645 −0.128353
\(693\) 0 0
\(694\) 51.4682 1.95371
\(695\) 3.00436 0.113962
\(696\) 0 0
\(697\) 24.1627 0.915227
\(698\) 42.8623 1.62236
\(699\) 0 0
\(700\) −23.7982 −0.899488
\(701\) −25.4261 −0.960329 −0.480164 0.877179i \(-0.659423\pi\)
−0.480164 + 0.877179i \(0.659423\pi\)
\(702\) 0 0
\(703\) −2.62542 −0.0990194
\(704\) 0 0
\(705\) 0 0
\(706\) −77.0219 −2.89876
\(707\) −13.5179 −0.508392
\(708\) 0 0
\(709\) 15.1047 0.567268 0.283634 0.958933i \(-0.408460\pi\)
0.283634 + 0.958933i \(0.408460\pi\)
\(710\) −2.16384 −0.0812074
\(711\) 0 0
\(712\) −8.94768 −0.335328
\(713\) −43.1335 −1.61536
\(714\) 0 0
\(715\) 0 0
\(716\) 38.4399 1.43657
\(717\) 0 0
\(718\) 6.98384 0.260635
\(719\) −12.0428 −0.449120 −0.224560 0.974460i \(-0.572094\pi\)
−0.224560 + 0.974460i \(0.572094\pi\)
\(720\) 0 0
\(721\) 13.5262 0.503743
\(722\) −21.9003 −0.815044
\(723\) 0 0
\(724\) 61.3818 2.28124
\(725\) −14.3479 −0.532868
\(726\) 0 0
\(727\) 49.5932 1.83931 0.919654 0.392729i \(-0.128469\pi\)
0.919654 + 0.392729i \(0.128469\pi\)
\(728\) −19.7481 −0.731915
\(729\) 0 0
\(730\) −3.13179 −0.115913
\(731\) 22.1858 0.820572
\(732\) 0 0
\(733\) 32.2654 1.19175 0.595875 0.803078i \(-0.296806\pi\)
0.595875 + 0.803078i \(0.296806\pi\)
\(734\) 3.87187 0.142913
\(735\) 0 0
\(736\) −20.7566 −0.765097
\(737\) 0 0
\(738\) 0 0
\(739\) 3.13253 0.115232 0.0576160 0.998339i \(-0.481650\pi\)
0.0576160 + 0.998339i \(0.481650\pi\)
\(740\) 0.920002 0.0338200
\(741\) 0 0
\(742\) −22.0786 −0.810530
\(743\) 7.78877 0.285742 0.142871 0.989741i \(-0.454367\pi\)
0.142871 + 0.989741i \(0.454367\pi\)
\(744\) 0 0
\(745\) −1.30848 −0.0479391
\(746\) 50.0938 1.83406
\(747\) 0 0
\(748\) 0 0
\(749\) 7.33730 0.268099
\(750\) 0 0
\(751\) 49.6890 1.81318 0.906589 0.422015i \(-0.138677\pi\)
0.906589 + 0.422015i \(0.138677\pi\)
\(752\) 6.53446 0.238287
\(753\) 0 0
\(754\) −28.6253 −1.04247
\(755\) 5.63511 0.205083
\(756\) 0 0
\(757\) −27.0307 −0.982449 −0.491225 0.871033i \(-0.663451\pi\)
−0.491225 + 0.871033i \(0.663451\pi\)
\(758\) 28.9247 1.05059
\(759\) 0 0
\(760\) −3.25765 −0.118167
\(761\) 44.5105 1.61351 0.806753 0.590889i \(-0.201223\pi\)
0.806753 + 0.590889i \(0.201223\pi\)
\(762\) 0 0
\(763\) −20.5350 −0.743419
\(764\) −44.1315 −1.59662
\(765\) 0 0
\(766\) −1.86245 −0.0672930
\(767\) −50.6783 −1.82989
\(768\) 0 0
\(769\) 3.31905 0.119688 0.0598440 0.998208i \(-0.480940\pi\)
0.0598440 + 0.998208i \(0.480940\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 79.2749 2.85317
\(773\) −28.4878 −1.02463 −0.512317 0.858797i \(-0.671213\pi\)
−0.512317 + 0.858797i \(0.671213\pi\)
\(774\) 0 0
\(775\) 46.7498 1.67930
\(776\) −17.4394 −0.626037
\(777\) 0 0
\(778\) 4.04474 0.145011
\(779\) 11.9875 0.429496
\(780\) 0 0
\(781\) 0 0
\(782\) −65.7407 −2.35088
\(783\) 0 0
\(784\) −4.37433 −0.156226
\(785\) −0.639511 −0.0228251
\(786\) 0 0
\(787\) −13.0487 −0.465136 −0.232568 0.972580i \(-0.574713\pi\)
−0.232568 + 0.972580i \(0.574713\pi\)
\(788\) 3.69018 0.131457
\(789\) 0 0
\(790\) 2.49706 0.0888413
\(791\) 10.5417 0.374819
\(792\) 0 0
\(793\) 19.3917 0.688618
\(794\) −57.6660 −2.04649
\(795\) 0 0
\(796\) 56.2629 1.99418
\(797\) −50.1733 −1.77723 −0.888616 0.458653i \(-0.848332\pi\)
−0.888616 + 0.458653i \(0.848332\pi\)
\(798\) 0 0
\(799\) −46.5257 −1.64596
\(800\) 22.4968 0.795382
\(801\) 0 0
\(802\) −50.8941 −1.79713
\(803\) 0 0
\(804\) 0 0
\(805\) 2.03282 0.0716477
\(806\) 93.2698 3.28529
\(807\) 0 0
\(808\) −31.6110 −1.11207
\(809\) −35.1505 −1.23583 −0.617914 0.786246i \(-0.712022\pi\)
−0.617914 + 0.786246i \(0.712022\pi\)
\(810\) 0 0
\(811\) −22.1055 −0.776228 −0.388114 0.921611i \(-0.626873\pi\)
−0.388114 + 0.921611i \(0.626873\pi\)
\(812\) 14.2243 0.499174
\(813\) 0 0
\(814\) 0 0
\(815\) −0.501025 −0.0175501
\(816\) 0 0
\(817\) 11.0067 0.385077
\(818\) −18.7130 −0.654285
\(819\) 0 0
\(820\) −4.20068 −0.146694
\(821\) 2.53720 0.0885488 0.0442744 0.999019i \(-0.485902\pi\)
0.0442744 + 0.999019i \(0.485902\pi\)
\(822\) 0 0
\(823\) −10.3727 −0.361569 −0.180785 0.983523i \(-0.557864\pi\)
−0.180785 + 0.983523i \(0.557864\pi\)
\(824\) 31.6305 1.10190
\(825\) 0 0
\(826\) 39.8911 1.38799
\(827\) 52.7236 1.83338 0.916690 0.399599i \(-0.130851\pi\)
0.916690 + 0.399599i \(0.130851\pi\)
\(828\) 0 0
\(829\) 37.8438 1.31437 0.657184 0.753730i \(-0.271747\pi\)
0.657184 + 0.753730i \(0.271747\pi\)
\(830\) −9.95834 −0.345659
\(831\) 0 0
\(832\) 52.2445 1.81125
\(833\) 31.1454 1.07912
\(834\) 0 0
\(835\) 4.85726 0.168092
\(836\) 0 0
\(837\) 0 0
\(838\) 13.0350 0.450286
\(839\) 20.1156 0.694466 0.347233 0.937779i \(-0.387121\pi\)
0.347233 + 0.937779i \(0.387121\pi\)
\(840\) 0 0
\(841\) −20.4242 −0.704283
\(842\) 88.1629 3.03830
\(843\) 0 0
\(844\) 51.1918 1.76209
\(845\) 1.46308 0.0503316
\(846\) 0 0
\(847\) 0 0
\(848\) −5.86097 −0.201266
\(849\) 0 0
\(850\) 71.2524 2.44394
\(851\) 3.83110 0.131328
\(852\) 0 0
\(853\) −9.12019 −0.312269 −0.156135 0.987736i \(-0.549903\pi\)
−0.156135 + 0.987736i \(0.549903\pi\)
\(854\) −15.2640 −0.522324
\(855\) 0 0
\(856\) 17.1579 0.586446
\(857\) −1.84536 −0.0630362 −0.0315181 0.999503i \(-0.510034\pi\)
−0.0315181 + 0.999503i \(0.510034\pi\)
\(858\) 0 0
\(859\) 28.5111 0.972785 0.486392 0.873741i \(-0.338313\pi\)
0.486392 + 0.873741i \(0.338313\pi\)
\(860\) −3.85700 −0.131523
\(861\) 0 0
\(862\) −69.3680 −2.36268
\(863\) 10.6994 0.364210 0.182105 0.983279i \(-0.441709\pi\)
0.182105 + 0.983279i \(0.441709\pi\)
\(864\) 0 0
\(865\) −0.312594 −0.0106285
\(866\) −0.650424 −0.0221023
\(867\) 0 0
\(868\) −46.3470 −1.57312
\(869\) 0 0
\(870\) 0 0
\(871\) −41.8348 −1.41752
\(872\) −48.0203 −1.62617
\(873\) 0 0
\(874\) −32.6150 −1.10322
\(875\) −4.45171 −0.150495
\(876\) 0 0
\(877\) −40.8322 −1.37881 −0.689404 0.724377i \(-0.742127\pi\)
−0.689404 + 0.724377i \(0.742127\pi\)
\(878\) −34.9270 −1.17873
\(879\) 0 0
\(880\) 0 0
\(881\) −21.0458 −0.709050 −0.354525 0.935047i \(-0.615357\pi\)
−0.354525 + 0.935047i \(0.615357\pi\)
\(882\) 0 0
\(883\) 12.7282 0.428338 0.214169 0.976797i \(-0.431296\pi\)
0.214169 + 0.976797i \(0.431296\pi\)
\(884\) 89.7401 3.01828
\(885\) 0 0
\(886\) −33.7701 −1.13453
\(887\) 10.7250 0.360110 0.180055 0.983657i \(-0.442372\pi\)
0.180055 + 0.983657i \(0.442372\pi\)
\(888\) 0 0
\(889\) 18.7304 0.628198
\(890\) −1.99164 −0.0667599
\(891\) 0 0
\(892\) 6.59606 0.220852
\(893\) −23.0821 −0.772414
\(894\) 0 0
\(895\) 3.55880 0.118958
\(896\) −28.0975 −0.938671
\(897\) 0 0
\(898\) 49.4254 1.64935
\(899\) −27.9425 −0.931935
\(900\) 0 0
\(901\) 41.7304 1.39024
\(902\) 0 0
\(903\) 0 0
\(904\) 24.6513 0.819889
\(905\) 5.68278 0.188902
\(906\) 0 0
\(907\) −13.2456 −0.439812 −0.219906 0.975521i \(-0.570575\pi\)
−0.219906 + 0.975521i \(0.570575\pi\)
\(908\) −54.8260 −1.81946
\(909\) 0 0
\(910\) −4.39568 −0.145715
\(911\) 57.1245 1.89262 0.946309 0.323264i \(-0.104780\pi\)
0.946309 + 0.323264i \(0.104780\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 7.47494 0.247249
\(915\) 0 0
\(916\) −1.79063 −0.0591640
\(917\) −10.3556 −0.341972
\(918\) 0 0
\(919\) −16.5780 −0.546856 −0.273428 0.961892i \(-0.588158\pi\)
−0.273428 + 0.961892i \(0.588158\pi\)
\(920\) 4.75367 0.156724
\(921\) 0 0
\(922\) 61.3123 2.01921
\(923\) 12.3002 0.404865
\(924\) 0 0
\(925\) −4.15230 −0.136527
\(926\) 8.45018 0.277690
\(927\) 0 0
\(928\) −13.4464 −0.441400
\(929\) 7.36379 0.241598 0.120799 0.992677i \(-0.461454\pi\)
0.120799 + 0.992677i \(0.461454\pi\)
\(930\) 0 0
\(931\) 15.4517 0.506410
\(932\) −35.1072 −1.14997
\(933\) 0 0
\(934\) 43.0753 1.40947
\(935\) 0 0
\(936\) 0 0
\(937\) −47.2573 −1.54383 −0.771914 0.635727i \(-0.780701\pi\)
−0.771914 + 0.635727i \(0.780701\pi\)
\(938\) 32.9300 1.07520
\(939\) 0 0
\(940\) 8.08847 0.263817
\(941\) −56.1287 −1.82974 −0.914872 0.403744i \(-0.867709\pi\)
−0.914872 + 0.403744i \(0.867709\pi\)
\(942\) 0 0
\(943\) −17.4926 −0.569636
\(944\) 10.5895 0.344658
\(945\) 0 0
\(946\) 0 0
\(947\) 12.7865 0.415504 0.207752 0.978182i \(-0.433385\pi\)
0.207752 + 0.978182i \(0.433385\pi\)
\(948\) 0 0
\(949\) 17.8024 0.577892
\(950\) 35.3495 1.14689
\(951\) 0 0
\(952\) −29.3806 −0.952232
\(953\) −23.2974 −0.754677 −0.377338 0.926075i \(-0.623161\pi\)
−0.377338 + 0.926075i \(0.623161\pi\)
\(954\) 0 0
\(955\) −4.08573 −0.132211
\(956\) −33.0133 −1.06773
\(957\) 0 0
\(958\) −0.365649 −0.0118136
\(959\) −13.9116 −0.449230
\(960\) 0 0
\(961\) 60.0452 1.93694
\(962\) −8.28418 −0.267093
\(963\) 0 0
\(964\) 0.954445 0.0307406
\(965\) 7.33934 0.236262
\(966\) 0 0
\(967\) 55.5173 1.78531 0.892657 0.450736i \(-0.148838\pi\)
0.892657 + 0.450736i \(0.148838\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −3.88178 −0.124636
\(971\) 4.52027 0.145063 0.0725313 0.997366i \(-0.476892\pi\)
0.0725313 + 0.997366i \(0.476892\pi\)
\(972\) 0 0
\(973\) 13.4429 0.430960
\(974\) 41.7509 1.33778
\(975\) 0 0
\(976\) −4.05198 −0.129701
\(977\) 27.0393 0.865063 0.432532 0.901619i \(-0.357620\pi\)
0.432532 + 0.901619i \(0.357620\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −5.41462 −0.172964
\(981\) 0 0
\(982\) −15.4831 −0.494087
\(983\) −10.6376 −0.339287 −0.169643 0.985506i \(-0.554262\pi\)
−0.169643 + 0.985506i \(0.554262\pi\)
\(984\) 0 0
\(985\) 0.341640 0.0108855
\(986\) −42.5878 −1.35627
\(987\) 0 0
\(988\) 44.5215 1.41642
\(989\) −16.0614 −0.510723
\(990\) 0 0
\(991\) −18.7938 −0.597005 −0.298502 0.954409i \(-0.596487\pi\)
−0.298502 + 0.954409i \(0.596487\pi\)
\(992\) 43.8124 1.39105
\(993\) 0 0
\(994\) −9.68201 −0.307095
\(995\) 5.20886 0.165132
\(996\) 0 0
\(997\) 26.1274 0.827464 0.413732 0.910399i \(-0.364225\pi\)
0.413732 + 0.910399i \(0.364225\pi\)
\(998\) 79.0634 2.50271
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.cn.1.18 18
3.2 odd 2 9801.2.a.co.1.1 18
9.2 odd 6 1089.2.e.o.364.18 36
9.5 odd 6 1089.2.e.o.727.18 36
11.7 odd 10 891.2.f.e.82.1 36
11.8 odd 10 891.2.f.e.163.1 36
11.10 odd 2 9801.2.a.cp.1.1 18
33.8 even 10 891.2.f.f.163.9 36
33.29 even 10 891.2.f.f.82.9 36
33.32 even 2 9801.2.a.cm.1.18 18
99.7 odd 30 297.2.n.b.280.1 72
99.29 even 30 99.2.m.b.49.9 yes 72
99.32 even 6 1089.2.e.p.727.1 36
99.40 odd 30 297.2.n.b.181.9 72
99.41 even 30 99.2.m.b.97.9 yes 72
99.52 odd 30 297.2.n.b.64.9 72
99.65 even 6 1089.2.e.p.364.1 36
99.74 even 30 99.2.m.b.31.1 yes 72
99.85 odd 30 297.2.n.b.262.1 72
99.95 even 30 99.2.m.b.16.1 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.1 72 99.95 even 30
99.2.m.b.31.1 yes 72 99.74 even 30
99.2.m.b.49.9 yes 72 99.29 even 30
99.2.m.b.97.9 yes 72 99.41 even 30
297.2.n.b.64.9 72 99.52 odd 30
297.2.n.b.181.9 72 99.40 odd 30
297.2.n.b.262.1 72 99.85 odd 30
297.2.n.b.280.1 72 99.7 odd 30
891.2.f.e.82.1 36 11.7 odd 10
891.2.f.e.163.1 36 11.8 odd 10
891.2.f.f.82.9 36 33.29 even 10
891.2.f.f.163.9 36 33.8 even 10
1089.2.e.o.364.18 36 9.2 odd 6
1089.2.e.o.727.18 36 9.5 odd 6
1089.2.e.p.364.1 36 99.65 even 6
1089.2.e.p.727.1 36 99.32 even 6
9801.2.a.cm.1.18 18 33.32 even 2
9801.2.a.cn.1.18 18 1.1 even 1 trivial
9801.2.a.co.1.1 18 3.2 odd 2
9801.2.a.cp.1.1 18 11.10 odd 2