Properties

Label 9801.2.a.cn.1.10
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 22 x^{16} + 42 x^{15} + 198 x^{14} - 357 x^{13} - 944 x^{12} + 1579 x^{11} + \cdots - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-0.285148\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.285148 q^{2} -1.91869 q^{4} -2.70873 q^{5} +4.07334 q^{7} -1.11741 q^{8} -0.772391 q^{10} -3.85096 q^{13} +1.16150 q^{14} +3.51875 q^{16} -4.32020 q^{17} +1.62229 q^{19} +5.19722 q^{20} +1.86423 q^{23} +2.33724 q^{25} -1.09809 q^{26} -7.81547 q^{28} +3.55334 q^{29} -4.86459 q^{31} +3.23818 q^{32} -1.23190 q^{34} -11.0336 q^{35} +7.74449 q^{37} +0.462595 q^{38} +3.02676 q^{40} +6.87214 q^{41} -0.984991 q^{43} +0.531584 q^{46} -5.86635 q^{47} +9.59206 q^{49} +0.666460 q^{50} +7.38879 q^{52} +1.57183 q^{53} -4.55158 q^{56} +1.01323 q^{58} -11.3625 q^{59} +8.60748 q^{61} -1.38713 q^{62} -6.11414 q^{64} +10.4312 q^{65} -1.74056 q^{67} +8.28914 q^{68} -3.14621 q^{70} +5.74136 q^{71} +4.04662 q^{73} +2.20833 q^{74} -3.11268 q^{76} +4.28015 q^{79} -9.53137 q^{80} +1.95958 q^{82} -6.50019 q^{83} +11.7023 q^{85} -0.280869 q^{86} -9.26243 q^{89} -15.6862 q^{91} -3.57689 q^{92} -1.67278 q^{94} -4.39436 q^{95} -7.41268 q^{97} +2.73516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 12 q^{4} + q^{5} - q^{7} - 6 q^{8} + 2 q^{10} - 3 q^{13} - 8 q^{16} - 20 q^{17} + 3 q^{19} + 5 q^{20} + 10 q^{23} + 7 q^{25} - 2 q^{26} - 19 q^{28} - 21 q^{29} + 6 q^{31} - 9 q^{32} - 4 q^{34}+ \cdots - 82 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.285148 0.201630 0.100815 0.994905i \(-0.467855\pi\)
0.100815 + 0.994905i \(0.467855\pi\)
\(3\) 0 0
\(4\) −1.91869 −0.959345
\(5\) −2.70873 −1.21138 −0.605691 0.795700i \(-0.707103\pi\)
−0.605691 + 0.795700i \(0.707103\pi\)
\(6\) 0 0
\(7\) 4.07334 1.53958 0.769788 0.638300i \(-0.220362\pi\)
0.769788 + 0.638300i \(0.220362\pi\)
\(8\) −1.11741 −0.395063
\(9\) 0 0
\(10\) −0.772391 −0.244251
\(11\) 0 0
\(12\) 0 0
\(13\) −3.85096 −1.06806 −0.534032 0.845465i \(-0.679324\pi\)
−0.534032 + 0.845465i \(0.679324\pi\)
\(14\) 1.16150 0.310425
\(15\) 0 0
\(16\) 3.51875 0.879688
\(17\) −4.32020 −1.04780 −0.523902 0.851779i \(-0.675524\pi\)
−0.523902 + 0.851779i \(0.675524\pi\)
\(18\) 0 0
\(19\) 1.62229 0.372180 0.186090 0.982533i \(-0.440418\pi\)
0.186090 + 0.982533i \(0.440418\pi\)
\(20\) 5.19722 1.16213
\(21\) 0 0
\(22\) 0 0
\(23\) 1.86423 0.388720 0.194360 0.980930i \(-0.437737\pi\)
0.194360 + 0.980930i \(0.437737\pi\)
\(24\) 0 0
\(25\) 2.33724 0.467448
\(26\) −1.09809 −0.215354
\(27\) 0 0
\(28\) −7.81547 −1.47698
\(29\) 3.55334 0.659840 0.329920 0.944009i \(-0.392978\pi\)
0.329920 + 0.944009i \(0.392978\pi\)
\(30\) 0 0
\(31\) −4.86459 −0.873706 −0.436853 0.899533i \(-0.643907\pi\)
−0.436853 + 0.899533i \(0.643907\pi\)
\(32\) 3.23818 0.572435
\(33\) 0 0
\(34\) −1.23190 −0.211269
\(35\) −11.0336 −1.86502
\(36\) 0 0
\(37\) 7.74449 1.27319 0.636593 0.771200i \(-0.280343\pi\)
0.636593 + 0.771200i \(0.280343\pi\)
\(38\) 0.462595 0.0750427
\(39\) 0 0
\(40\) 3.02676 0.478573
\(41\) 6.87214 1.07325 0.536624 0.843821i \(-0.319699\pi\)
0.536624 + 0.843821i \(0.319699\pi\)
\(42\) 0 0
\(43\) −0.984991 −0.150210 −0.0751049 0.997176i \(-0.523929\pi\)
−0.0751049 + 0.997176i \(0.523929\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.531584 0.0783777
\(47\) −5.86635 −0.855695 −0.427847 0.903851i \(-0.640728\pi\)
−0.427847 + 0.903851i \(0.640728\pi\)
\(48\) 0 0
\(49\) 9.59206 1.37029
\(50\) 0.666460 0.0942517
\(51\) 0 0
\(52\) 7.38879 1.02464
\(53\) 1.57183 0.215907 0.107953 0.994156i \(-0.465570\pi\)
0.107953 + 0.994156i \(0.465570\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.55158 −0.608230
\(57\) 0 0
\(58\) 1.01323 0.133044
\(59\) −11.3625 −1.47927 −0.739635 0.673008i \(-0.765002\pi\)
−0.739635 + 0.673008i \(0.765002\pi\)
\(60\) 0 0
\(61\) 8.60748 1.10207 0.551037 0.834481i \(-0.314232\pi\)
0.551037 + 0.834481i \(0.314232\pi\)
\(62\) −1.38713 −0.176166
\(63\) 0 0
\(64\) −6.11414 −0.764268
\(65\) 10.4312 1.29383
\(66\) 0 0
\(67\) −1.74056 −0.212644 −0.106322 0.994332i \(-0.533907\pi\)
−0.106322 + 0.994332i \(0.533907\pi\)
\(68\) 8.28914 1.00521
\(69\) 0 0
\(70\) −3.14621 −0.376044
\(71\) 5.74136 0.681374 0.340687 0.940177i \(-0.389340\pi\)
0.340687 + 0.940177i \(0.389340\pi\)
\(72\) 0 0
\(73\) 4.04662 0.473622 0.236811 0.971556i \(-0.423898\pi\)
0.236811 + 0.971556i \(0.423898\pi\)
\(74\) 2.20833 0.256713
\(75\) 0 0
\(76\) −3.11268 −0.357049
\(77\) 0 0
\(78\) 0 0
\(79\) 4.28015 0.481554 0.240777 0.970580i \(-0.422598\pi\)
0.240777 + 0.970580i \(0.422598\pi\)
\(80\) −9.53137 −1.06564
\(81\) 0 0
\(82\) 1.95958 0.216400
\(83\) −6.50019 −0.713488 −0.356744 0.934202i \(-0.616113\pi\)
−0.356744 + 0.934202i \(0.616113\pi\)
\(84\) 0 0
\(85\) 11.7023 1.26929
\(86\) −0.280869 −0.0302868
\(87\) 0 0
\(88\) 0 0
\(89\) −9.26243 −0.981816 −0.490908 0.871211i \(-0.663335\pi\)
−0.490908 + 0.871211i \(0.663335\pi\)
\(90\) 0 0
\(91\) −15.6862 −1.64436
\(92\) −3.57689 −0.372916
\(93\) 0 0
\(94\) −1.67278 −0.172534
\(95\) −4.39436 −0.450852
\(96\) 0 0
\(97\) −7.41268 −0.752644 −0.376322 0.926489i \(-0.622811\pi\)
−0.376322 + 0.926489i \(0.622811\pi\)
\(98\) 2.73516 0.276293
\(99\) 0 0
\(100\) −4.48444 −0.448444
\(101\) −13.7176 −1.36495 −0.682476 0.730908i \(-0.739097\pi\)
−0.682476 + 0.730908i \(0.739097\pi\)
\(102\) 0 0
\(103\) 5.07525 0.500079 0.250039 0.968236i \(-0.419556\pi\)
0.250039 + 0.968236i \(0.419556\pi\)
\(104\) 4.30309 0.421953
\(105\) 0 0
\(106\) 0.448203 0.0435334
\(107\) −2.77898 −0.268654 −0.134327 0.990937i \(-0.542887\pi\)
−0.134327 + 0.990937i \(0.542887\pi\)
\(108\) 0 0
\(109\) 17.3573 1.66253 0.831263 0.555879i \(-0.187618\pi\)
0.831263 + 0.555879i \(0.187618\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 14.3331 1.35435
\(113\) −0.943654 −0.0887715 −0.0443858 0.999014i \(-0.514133\pi\)
−0.0443858 + 0.999014i \(0.514133\pi\)
\(114\) 0 0
\(115\) −5.04972 −0.470888
\(116\) −6.81777 −0.633014
\(117\) 0 0
\(118\) −3.24000 −0.298266
\(119\) −17.5976 −1.61317
\(120\) 0 0
\(121\) 0 0
\(122\) 2.45441 0.222212
\(123\) 0 0
\(124\) 9.33364 0.838186
\(125\) 7.21271 0.645125
\(126\) 0 0
\(127\) −2.45040 −0.217438 −0.108719 0.994073i \(-0.534675\pi\)
−0.108719 + 0.994073i \(0.534675\pi\)
\(128\) −8.21980 −0.726535
\(129\) 0 0
\(130\) 2.97444 0.260876
\(131\) 3.99737 0.349252 0.174626 0.984635i \(-0.444128\pi\)
0.174626 + 0.984635i \(0.444128\pi\)
\(132\) 0 0
\(133\) 6.60815 0.572999
\(134\) −0.496319 −0.0428754
\(135\) 0 0
\(136\) 4.82743 0.413949
\(137\) −1.08926 −0.0930615 −0.0465307 0.998917i \(-0.514817\pi\)
−0.0465307 + 0.998917i \(0.514817\pi\)
\(138\) 0 0
\(139\) −2.88493 −0.244696 −0.122348 0.992487i \(-0.539042\pi\)
−0.122348 + 0.992487i \(0.539042\pi\)
\(140\) 21.1700 1.78919
\(141\) 0 0
\(142\) 1.63714 0.137386
\(143\) 0 0
\(144\) 0 0
\(145\) −9.62506 −0.799318
\(146\) 1.15389 0.0954965
\(147\) 0 0
\(148\) −14.8593 −1.22142
\(149\) 20.1748 1.65279 0.826393 0.563094i \(-0.190389\pi\)
0.826393 + 0.563094i \(0.190389\pi\)
\(150\) 0 0
\(151\) 11.0784 0.901544 0.450772 0.892639i \(-0.351149\pi\)
0.450772 + 0.892639i \(0.351149\pi\)
\(152\) −1.81276 −0.147035
\(153\) 0 0
\(154\) 0 0
\(155\) 13.1769 1.05839
\(156\) 0 0
\(157\) 0.332784 0.0265591 0.0132795 0.999912i \(-0.495773\pi\)
0.0132795 + 0.999912i \(0.495773\pi\)
\(158\) 1.22048 0.0970959
\(159\) 0 0
\(160\) −8.77138 −0.693438
\(161\) 7.59365 0.598464
\(162\) 0 0
\(163\) 13.3380 1.04472 0.522358 0.852726i \(-0.325053\pi\)
0.522358 + 0.852726i \(0.325053\pi\)
\(164\) −13.1855 −1.02962
\(165\) 0 0
\(166\) −1.85352 −0.143861
\(167\) −18.9152 −1.46370 −0.731849 0.681467i \(-0.761342\pi\)
−0.731849 + 0.681467i \(0.761342\pi\)
\(168\) 0 0
\(169\) 1.82986 0.140759
\(170\) 3.33689 0.255928
\(171\) 0 0
\(172\) 1.88989 0.144103
\(173\) −1.51409 −0.115114 −0.0575570 0.998342i \(-0.518331\pi\)
−0.0575570 + 0.998342i \(0.518331\pi\)
\(174\) 0 0
\(175\) 9.52036 0.719671
\(176\) 0 0
\(177\) 0 0
\(178\) −2.64117 −0.197964
\(179\) −13.1892 −0.985810 −0.492905 0.870083i \(-0.664065\pi\)
−0.492905 + 0.870083i \(0.664065\pi\)
\(180\) 0 0
\(181\) 2.79883 0.208035 0.104018 0.994575i \(-0.466830\pi\)
0.104018 + 0.994575i \(0.466830\pi\)
\(182\) −4.47290 −0.331554
\(183\) 0 0
\(184\) −2.08311 −0.153569
\(185\) −20.9778 −1.54232
\(186\) 0 0
\(187\) 0 0
\(188\) 11.2557 0.820907
\(189\) 0 0
\(190\) −1.25305 −0.0909055
\(191\) 16.7416 1.21138 0.605688 0.795702i \(-0.292898\pi\)
0.605688 + 0.795702i \(0.292898\pi\)
\(192\) 0 0
\(193\) 22.0394 1.58643 0.793214 0.608942i \(-0.208406\pi\)
0.793214 + 0.608942i \(0.208406\pi\)
\(194\) −2.11371 −0.151756
\(195\) 0 0
\(196\) −18.4042 −1.31459
\(197\) 18.2247 1.29845 0.649227 0.760595i \(-0.275093\pi\)
0.649227 + 0.760595i \(0.275093\pi\)
\(198\) 0 0
\(199\) −25.0958 −1.77899 −0.889497 0.456942i \(-0.848945\pi\)
−0.889497 + 0.456942i \(0.848945\pi\)
\(200\) −2.61165 −0.184672
\(201\) 0 0
\(202\) −3.91155 −0.275216
\(203\) 14.4740 1.01587
\(204\) 0 0
\(205\) −18.6148 −1.30011
\(206\) 1.44720 0.100831
\(207\) 0 0
\(208\) −13.5506 −0.939563
\(209\) 0 0
\(210\) 0 0
\(211\) −8.27002 −0.569332 −0.284666 0.958627i \(-0.591883\pi\)
−0.284666 + 0.958627i \(0.591883\pi\)
\(212\) −3.01585 −0.207129
\(213\) 0 0
\(214\) −0.792421 −0.0541688
\(215\) 2.66808 0.181961
\(216\) 0 0
\(217\) −19.8151 −1.34514
\(218\) 4.94940 0.335216
\(219\) 0 0
\(220\) 0 0
\(221\) 16.6369 1.11912
\(222\) 0 0
\(223\) −7.35208 −0.492332 −0.246166 0.969228i \(-0.579171\pi\)
−0.246166 + 0.969228i \(0.579171\pi\)
\(224\) 13.1902 0.881308
\(225\) 0 0
\(226\) −0.269081 −0.0178990
\(227\) −18.9412 −1.25717 −0.628586 0.777740i \(-0.716366\pi\)
−0.628586 + 0.777740i \(0.716366\pi\)
\(228\) 0 0
\(229\) −7.85945 −0.519367 −0.259683 0.965694i \(-0.583618\pi\)
−0.259683 + 0.965694i \(0.583618\pi\)
\(230\) −1.43992 −0.0949454
\(231\) 0 0
\(232\) −3.97054 −0.260678
\(233\) −6.56942 −0.430377 −0.215188 0.976573i \(-0.569037\pi\)
−0.215188 + 0.976573i \(0.569037\pi\)
\(234\) 0 0
\(235\) 15.8904 1.03657
\(236\) 21.8011 1.41913
\(237\) 0 0
\(238\) −5.01794 −0.325265
\(239\) −25.5463 −1.65245 −0.826226 0.563339i \(-0.809516\pi\)
−0.826226 + 0.563339i \(0.809516\pi\)
\(240\) 0 0
\(241\) 2.98198 0.192086 0.0960432 0.995377i \(-0.469381\pi\)
0.0960432 + 0.995377i \(0.469381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −16.5151 −1.05727
\(245\) −25.9823 −1.65995
\(246\) 0 0
\(247\) −6.24738 −0.397511
\(248\) 5.43573 0.345169
\(249\) 0 0
\(250\) 2.05669 0.130077
\(251\) −11.6685 −0.736510 −0.368255 0.929725i \(-0.620045\pi\)
−0.368255 + 0.929725i \(0.620045\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.698728 −0.0438421
\(255\) 0 0
\(256\) 9.88443 0.617777
\(257\) −20.7245 −1.29276 −0.646378 0.763017i \(-0.723717\pi\)
−0.646378 + 0.763017i \(0.723717\pi\)
\(258\) 0 0
\(259\) 31.5459 1.96017
\(260\) −20.0143 −1.24123
\(261\) 0 0
\(262\) 1.13984 0.0704198
\(263\) 9.08545 0.560233 0.280117 0.959966i \(-0.409627\pi\)
0.280117 + 0.959966i \(0.409627\pi\)
\(264\) 0 0
\(265\) −4.25766 −0.261546
\(266\) 1.88430 0.115534
\(267\) 0 0
\(268\) 3.33960 0.203999
\(269\) −7.94129 −0.484189 −0.242094 0.970253i \(-0.577834\pi\)
−0.242094 + 0.970253i \(0.577834\pi\)
\(270\) 0 0
\(271\) −3.72364 −0.226195 −0.113097 0.993584i \(-0.536077\pi\)
−0.113097 + 0.993584i \(0.536077\pi\)
\(272\) −15.2017 −0.921741
\(273\) 0 0
\(274\) −0.310600 −0.0187640
\(275\) 0 0
\(276\) 0 0
\(277\) 3.90064 0.234367 0.117183 0.993110i \(-0.462614\pi\)
0.117183 + 0.993110i \(0.462614\pi\)
\(278\) −0.822632 −0.0493382
\(279\) 0 0
\(280\) 12.3290 0.736799
\(281\) 0.0396231 0.00236371 0.00118186 0.999999i \(-0.499624\pi\)
0.00118186 + 0.999999i \(0.499624\pi\)
\(282\) 0 0
\(283\) −6.39387 −0.380076 −0.190038 0.981777i \(-0.560861\pi\)
−0.190038 + 0.981777i \(0.560861\pi\)
\(284\) −11.0159 −0.653673
\(285\) 0 0
\(286\) 0 0
\(287\) 27.9925 1.65235
\(288\) 0 0
\(289\) 1.66417 0.0978923
\(290\) −2.74457 −0.161167
\(291\) 0 0
\(292\) −7.76422 −0.454367
\(293\) −23.4074 −1.36748 −0.683738 0.729728i \(-0.739647\pi\)
−0.683738 + 0.729728i \(0.739647\pi\)
\(294\) 0 0
\(295\) 30.7780 1.79196
\(296\) −8.65375 −0.502989
\(297\) 0 0
\(298\) 5.75282 0.333252
\(299\) −7.17909 −0.415177
\(300\) 0 0
\(301\) −4.01220 −0.231259
\(302\) 3.15898 0.181779
\(303\) 0 0
\(304\) 5.70845 0.327402
\(305\) −23.3154 −1.33503
\(306\) 0 0
\(307\) −29.1494 −1.66365 −0.831823 0.555042i \(-0.812702\pi\)
−0.831823 + 0.555042i \(0.812702\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.75737 0.213404
\(311\) 19.7057 1.11741 0.558705 0.829367i \(-0.311299\pi\)
0.558705 + 0.829367i \(0.311299\pi\)
\(312\) 0 0
\(313\) 1.33838 0.0756495 0.0378248 0.999284i \(-0.487957\pi\)
0.0378248 + 0.999284i \(0.487957\pi\)
\(314\) 0.0948929 0.00535511
\(315\) 0 0
\(316\) −8.21228 −0.461977
\(317\) −4.00089 −0.224712 −0.112356 0.993668i \(-0.535840\pi\)
−0.112356 + 0.993668i \(0.535840\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 16.5616 0.925821
\(321\) 0 0
\(322\) 2.16532 0.120668
\(323\) −7.00864 −0.389971
\(324\) 0 0
\(325\) −9.00060 −0.499264
\(326\) 3.80332 0.210646
\(327\) 0 0
\(328\) −7.67899 −0.424001
\(329\) −23.8956 −1.31741
\(330\) 0 0
\(331\) 3.18033 0.174807 0.0874034 0.996173i \(-0.472143\pi\)
0.0874034 + 0.996173i \(0.472143\pi\)
\(332\) 12.4718 0.684481
\(333\) 0 0
\(334\) −5.39362 −0.295126
\(335\) 4.71472 0.257593
\(336\) 0 0
\(337\) 18.1978 0.991298 0.495649 0.868523i \(-0.334930\pi\)
0.495649 + 0.868523i \(0.334930\pi\)
\(338\) 0.521783 0.0283812
\(339\) 0 0
\(340\) −22.4531 −1.21769
\(341\) 0 0
\(342\) 0 0
\(343\) 10.5583 0.570096
\(344\) 1.10064 0.0593424
\(345\) 0 0
\(346\) −0.431740 −0.0232105
\(347\) −27.4141 −1.47167 −0.735833 0.677163i \(-0.763209\pi\)
−0.735833 + 0.677163i \(0.763209\pi\)
\(348\) 0 0
\(349\) −22.9055 −1.22610 −0.613052 0.790042i \(-0.710059\pi\)
−0.613052 + 0.790042i \(0.710059\pi\)
\(350\) 2.71471 0.145108
\(351\) 0 0
\(352\) 0 0
\(353\) 29.7047 1.58102 0.790511 0.612448i \(-0.209815\pi\)
0.790511 + 0.612448i \(0.209815\pi\)
\(354\) 0 0
\(355\) −15.5518 −0.825405
\(356\) 17.7717 0.941900
\(357\) 0 0
\(358\) −3.76089 −0.198769
\(359\) −36.8574 −1.94526 −0.972631 0.232356i \(-0.925356\pi\)
−0.972631 + 0.232356i \(0.925356\pi\)
\(360\) 0 0
\(361\) −16.3682 −0.861482
\(362\) 0.798082 0.0419462
\(363\) 0 0
\(364\) 30.0970 1.57751
\(365\) −10.9612 −0.573737
\(366\) 0 0
\(367\) −24.8606 −1.29771 −0.648857 0.760910i \(-0.724753\pi\)
−0.648857 + 0.760910i \(0.724753\pi\)
\(368\) 6.55978 0.341952
\(369\) 0 0
\(370\) −5.98177 −0.310978
\(371\) 6.40257 0.332405
\(372\) 0 0
\(373\) −18.2790 −0.946453 −0.473227 0.880941i \(-0.656911\pi\)
−0.473227 + 0.880941i \(0.656911\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.55511 0.338054
\(377\) −13.6838 −0.704750
\(378\) 0 0
\(379\) −31.4593 −1.61595 −0.807977 0.589213i \(-0.799438\pi\)
−0.807977 + 0.589213i \(0.799438\pi\)
\(380\) 8.43142 0.432523
\(381\) 0 0
\(382\) 4.77383 0.244250
\(383\) 12.4318 0.635234 0.317617 0.948219i \(-0.397117\pi\)
0.317617 + 0.948219i \(0.397117\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.28449 0.319872
\(387\) 0 0
\(388\) 14.2226 0.722045
\(389\) −7.31968 −0.371123 −0.185561 0.982633i \(-0.559410\pi\)
−0.185561 + 0.982633i \(0.559410\pi\)
\(390\) 0 0
\(391\) −8.05388 −0.407302
\(392\) −10.7182 −0.541353
\(393\) 0 0
\(394\) 5.19673 0.261808
\(395\) −11.5938 −0.583346
\(396\) 0 0
\(397\) 34.2087 1.71688 0.858442 0.512911i \(-0.171433\pi\)
0.858442 + 0.512911i \(0.171433\pi\)
\(398\) −7.15602 −0.358699
\(399\) 0 0
\(400\) 8.22417 0.411208
\(401\) −7.47577 −0.373322 −0.186661 0.982424i \(-0.559767\pi\)
−0.186661 + 0.982424i \(0.559767\pi\)
\(402\) 0 0
\(403\) 18.7333 0.933173
\(404\) 26.3198 1.30946
\(405\) 0 0
\(406\) 4.12723 0.204831
\(407\) 0 0
\(408\) 0 0
\(409\) −2.41020 −0.119177 −0.0595883 0.998223i \(-0.518979\pi\)
−0.0595883 + 0.998223i \(0.518979\pi\)
\(410\) −5.30798 −0.262143
\(411\) 0 0
\(412\) −9.73783 −0.479748
\(413\) −46.2832 −2.27745
\(414\) 0 0
\(415\) 17.6073 0.864307
\(416\) −12.4701 −0.611397
\(417\) 0 0
\(418\) 0 0
\(419\) 11.2018 0.547242 0.273621 0.961838i \(-0.411779\pi\)
0.273621 + 0.961838i \(0.411779\pi\)
\(420\) 0 0
\(421\) −6.90486 −0.336522 −0.168261 0.985742i \(-0.553815\pi\)
−0.168261 + 0.985742i \(0.553815\pi\)
\(422\) −2.35818 −0.114795
\(423\) 0 0
\(424\) −1.75637 −0.0852969
\(425\) −10.0974 −0.489793
\(426\) 0 0
\(427\) 35.0611 1.69673
\(428\) 5.33200 0.257732
\(429\) 0 0
\(430\) 0.760798 0.0366890
\(431\) −29.1806 −1.40558 −0.702789 0.711398i \(-0.748062\pi\)
−0.702789 + 0.711398i \(0.748062\pi\)
\(432\) 0 0
\(433\) −36.5360 −1.75581 −0.877903 0.478838i \(-0.841058\pi\)
−0.877903 + 0.478838i \(0.841058\pi\)
\(434\) −5.65025 −0.271220
\(435\) 0 0
\(436\) −33.3033 −1.59494
\(437\) 3.02434 0.144674
\(438\) 0 0
\(439\) 21.4975 1.02602 0.513009 0.858383i \(-0.328531\pi\)
0.513009 + 0.858383i \(0.328531\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.74399 0.225649
\(443\) 33.4450 1.58902 0.794510 0.607251i \(-0.207728\pi\)
0.794510 + 0.607251i \(0.207728\pi\)
\(444\) 0 0
\(445\) 25.0895 1.18935
\(446\) −2.09643 −0.0992690
\(447\) 0 0
\(448\) −24.9050 −1.17665
\(449\) −39.5333 −1.86569 −0.932846 0.360276i \(-0.882682\pi\)
−0.932846 + 0.360276i \(0.882682\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.81058 0.0851625
\(453\) 0 0
\(454\) −5.40105 −0.253484
\(455\) 42.4898 1.99195
\(456\) 0 0
\(457\) −37.5123 −1.75475 −0.877376 0.479803i \(-0.840708\pi\)
−0.877376 + 0.479803i \(0.840708\pi\)
\(458\) −2.24111 −0.104720
\(459\) 0 0
\(460\) 9.68884 0.451745
\(461\) 19.3653 0.901932 0.450966 0.892541i \(-0.351080\pi\)
0.450966 + 0.892541i \(0.351080\pi\)
\(462\) 0 0
\(463\) −14.3493 −0.666867 −0.333434 0.942774i \(-0.608207\pi\)
−0.333434 + 0.942774i \(0.608207\pi\)
\(464\) 12.5033 0.580453
\(465\) 0 0
\(466\) −1.87326 −0.0867770
\(467\) 22.3209 1.03289 0.516445 0.856320i \(-0.327255\pi\)
0.516445 + 0.856320i \(0.327255\pi\)
\(468\) 0 0
\(469\) −7.08990 −0.327381
\(470\) 4.53112 0.209005
\(471\) 0 0
\(472\) 12.6965 0.584406
\(473\) 0 0
\(474\) 0 0
\(475\) 3.79169 0.173975
\(476\) 33.7644 1.54759
\(477\) 0 0
\(478\) −7.28448 −0.333184
\(479\) −23.2616 −1.06285 −0.531426 0.847105i \(-0.678343\pi\)
−0.531426 + 0.847105i \(0.678343\pi\)
\(480\) 0 0
\(481\) −29.8237 −1.35984
\(482\) 0.850308 0.0387305
\(483\) 0 0
\(484\) 0 0
\(485\) 20.0790 0.911740
\(486\) 0 0
\(487\) 0.270802 0.0122712 0.00613559 0.999981i \(-0.498047\pi\)
0.00613559 + 0.999981i \(0.498047\pi\)
\(488\) −9.61807 −0.435389
\(489\) 0 0
\(490\) −7.40882 −0.334696
\(491\) −4.20656 −0.189839 −0.0949196 0.995485i \(-0.530259\pi\)
−0.0949196 + 0.995485i \(0.530259\pi\)
\(492\) 0 0
\(493\) −15.3512 −0.691382
\(494\) −1.78143 −0.0801504
\(495\) 0 0
\(496\) −17.1173 −0.768589
\(497\) 23.3865 1.04903
\(498\) 0 0
\(499\) −15.3642 −0.687798 −0.343899 0.939007i \(-0.611748\pi\)
−0.343899 + 0.939007i \(0.611748\pi\)
\(500\) −13.8390 −0.618897
\(501\) 0 0
\(502\) −3.32726 −0.148503
\(503\) 3.91570 0.174592 0.0872961 0.996182i \(-0.472177\pi\)
0.0872961 + 0.996182i \(0.472177\pi\)
\(504\) 0 0
\(505\) 37.1573 1.65348
\(506\) 0 0
\(507\) 0 0
\(508\) 4.70156 0.208598
\(509\) −28.5494 −1.26543 −0.632715 0.774385i \(-0.718059\pi\)
−0.632715 + 0.774385i \(0.718059\pi\)
\(510\) 0 0
\(511\) 16.4833 0.729176
\(512\) 19.2581 0.851097
\(513\) 0 0
\(514\) −5.90954 −0.260659
\(515\) −13.7475 −0.605787
\(516\) 0 0
\(517\) 0 0
\(518\) 8.99526 0.395229
\(519\) 0 0
\(520\) −11.6559 −0.511146
\(521\) 14.2748 0.625388 0.312694 0.949854i \(-0.398768\pi\)
0.312694 + 0.949854i \(0.398768\pi\)
\(522\) 0 0
\(523\) 33.1573 1.44987 0.724934 0.688818i \(-0.241870\pi\)
0.724934 + 0.688818i \(0.241870\pi\)
\(524\) −7.66972 −0.335053
\(525\) 0 0
\(526\) 2.59070 0.112960
\(527\) 21.0160 0.915472
\(528\) 0 0
\(529\) −19.5246 −0.848897
\(530\) −1.21406 −0.0527356
\(531\) 0 0
\(532\) −12.6790 −0.549704
\(533\) −26.4643 −1.14630
\(534\) 0 0
\(535\) 7.52751 0.325443
\(536\) 1.94492 0.0840077
\(537\) 0 0
\(538\) −2.26444 −0.0976271
\(539\) 0 0
\(540\) 0 0
\(541\) 28.4609 1.22363 0.611815 0.791001i \(-0.290440\pi\)
0.611815 + 0.791001i \(0.290440\pi\)
\(542\) −1.06179 −0.0456077
\(543\) 0 0
\(544\) −13.9896 −0.599800
\(545\) −47.0163 −2.01396
\(546\) 0 0
\(547\) 30.7466 1.31463 0.657316 0.753615i \(-0.271692\pi\)
0.657316 + 0.753615i \(0.271692\pi\)
\(548\) 2.08995 0.0892781
\(549\) 0 0
\(550\) 0 0
\(551\) 5.76457 0.245579
\(552\) 0 0
\(553\) 17.4345 0.741389
\(554\) 1.11226 0.0472554
\(555\) 0 0
\(556\) 5.53528 0.234748
\(557\) −7.29459 −0.309082 −0.154541 0.987986i \(-0.549390\pi\)
−0.154541 + 0.987986i \(0.549390\pi\)
\(558\) 0 0
\(559\) 3.79316 0.160433
\(560\) −38.8245 −1.64063
\(561\) 0 0
\(562\) 0.0112985 0.000476597 0
\(563\) −36.5734 −1.54139 −0.770693 0.637206i \(-0.780090\pi\)
−0.770693 + 0.637206i \(0.780090\pi\)
\(564\) 0 0
\(565\) 2.55611 0.107536
\(566\) −1.82320 −0.0766349
\(567\) 0 0
\(568\) −6.41545 −0.269186
\(569\) 0.151484 0.00635053 0.00317527 0.999995i \(-0.498989\pi\)
0.00317527 + 0.999995i \(0.498989\pi\)
\(570\) 0 0
\(571\) −43.2254 −1.80893 −0.904463 0.426552i \(-0.859728\pi\)
−0.904463 + 0.426552i \(0.859728\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 7.98203 0.333163
\(575\) 4.35716 0.181706
\(576\) 0 0
\(577\) 29.1251 1.21250 0.606248 0.795276i \(-0.292674\pi\)
0.606248 + 0.795276i \(0.292674\pi\)
\(578\) 0.474535 0.0197381
\(579\) 0 0
\(580\) 18.4675 0.766822
\(581\) −26.4774 −1.09847
\(582\) 0 0
\(583\) 0 0
\(584\) −4.52173 −0.187111
\(585\) 0 0
\(586\) −6.67459 −0.275725
\(587\) 22.6949 0.936718 0.468359 0.883538i \(-0.344845\pi\)
0.468359 + 0.883538i \(0.344845\pi\)
\(588\) 0 0
\(589\) −7.89180 −0.325176
\(590\) 8.77629 0.361314
\(591\) 0 0
\(592\) 27.2509 1.12001
\(593\) −22.9308 −0.941656 −0.470828 0.882225i \(-0.656045\pi\)
−0.470828 + 0.882225i \(0.656045\pi\)
\(594\) 0 0
\(595\) 47.6673 1.95417
\(596\) −38.7092 −1.58559
\(597\) 0 0
\(598\) −2.04710 −0.0837123
\(599\) 12.5007 0.510764 0.255382 0.966840i \(-0.417799\pi\)
0.255382 + 0.966840i \(0.417799\pi\)
\(600\) 0 0
\(601\) −22.4788 −0.916930 −0.458465 0.888712i \(-0.651601\pi\)
−0.458465 + 0.888712i \(0.651601\pi\)
\(602\) −1.14407 −0.0466289
\(603\) 0 0
\(604\) −21.2559 −0.864892
\(605\) 0 0
\(606\) 0 0
\(607\) −26.7047 −1.08391 −0.541956 0.840407i \(-0.682316\pi\)
−0.541956 + 0.840407i \(0.682316\pi\)
\(608\) 5.25329 0.213049
\(609\) 0 0
\(610\) −6.64834 −0.269183
\(611\) 22.5911 0.913936
\(612\) 0 0
\(613\) 43.4844 1.75632 0.878160 0.478367i \(-0.158771\pi\)
0.878160 + 0.478367i \(0.158771\pi\)
\(614\) −8.31191 −0.335441
\(615\) 0 0
\(616\) 0 0
\(617\) −41.4255 −1.66773 −0.833864 0.551969i \(-0.813877\pi\)
−0.833864 + 0.551969i \(0.813877\pi\)
\(618\) 0 0
\(619\) 8.91175 0.358194 0.179097 0.983831i \(-0.442682\pi\)
0.179097 + 0.983831i \(0.442682\pi\)
\(620\) −25.2824 −1.01536
\(621\) 0 0
\(622\) 5.61906 0.225304
\(623\) −37.7290 −1.51158
\(624\) 0 0
\(625\) −31.2235 −1.24894
\(626\) 0.381636 0.0152532
\(627\) 0 0
\(628\) −0.638510 −0.0254793
\(629\) −33.4578 −1.33405
\(630\) 0 0
\(631\) −5.67049 −0.225739 −0.112869 0.993610i \(-0.536004\pi\)
−0.112869 + 0.993610i \(0.536004\pi\)
\(632\) −4.78267 −0.190244
\(633\) 0 0
\(634\) −1.14085 −0.0453089
\(635\) 6.63749 0.263401
\(636\) 0 0
\(637\) −36.9386 −1.46356
\(638\) 0 0
\(639\) 0 0
\(640\) 22.2653 0.880112
\(641\) −26.8182 −1.05926 −0.529628 0.848230i \(-0.677668\pi\)
−0.529628 + 0.848230i \(0.677668\pi\)
\(642\) 0 0
\(643\) 14.1385 0.557566 0.278783 0.960354i \(-0.410069\pi\)
0.278783 + 0.960354i \(0.410069\pi\)
\(644\) −14.5699 −0.574133
\(645\) 0 0
\(646\) −1.99850 −0.0786301
\(647\) 1.27403 0.0500875 0.0250437 0.999686i \(-0.492027\pi\)
0.0250437 + 0.999686i \(0.492027\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −2.56651 −0.100667
\(651\) 0 0
\(652\) −25.5916 −1.00224
\(653\) 4.82833 0.188947 0.0944736 0.995527i \(-0.469883\pi\)
0.0944736 + 0.995527i \(0.469883\pi\)
\(654\) 0 0
\(655\) −10.8278 −0.423078
\(656\) 24.1814 0.944124
\(657\) 0 0
\(658\) −6.81379 −0.265629
\(659\) −22.1777 −0.863921 −0.431961 0.901892i \(-0.642178\pi\)
−0.431961 + 0.901892i \(0.642178\pi\)
\(660\) 0 0
\(661\) −27.3975 −1.06564 −0.532820 0.846229i \(-0.678868\pi\)
−0.532820 + 0.846229i \(0.678868\pi\)
\(662\) 0.906866 0.0352464
\(663\) 0 0
\(664\) 7.26336 0.281873
\(665\) −17.8997 −0.694121
\(666\) 0 0
\(667\) 6.62427 0.256493
\(668\) 36.2923 1.40419
\(669\) 0 0
\(670\) 1.34440 0.0519385
\(671\) 0 0
\(672\) 0 0
\(673\) −35.2435 −1.35854 −0.679269 0.733889i \(-0.737703\pi\)
−0.679269 + 0.733889i \(0.737703\pi\)
\(674\) 5.18907 0.199876
\(675\) 0 0
\(676\) −3.51094 −0.135036
\(677\) −44.0500 −1.69298 −0.846489 0.532406i \(-0.821288\pi\)
−0.846489 + 0.532406i \(0.821288\pi\)
\(678\) 0 0
\(679\) −30.1943 −1.15875
\(680\) −13.0762 −0.501450
\(681\) 0 0
\(682\) 0 0
\(683\) −42.2845 −1.61797 −0.808985 0.587829i \(-0.799983\pi\)
−0.808985 + 0.587829i \(0.799983\pi\)
\(684\) 0 0
\(685\) 2.95051 0.112733
\(686\) 3.01069 0.114949
\(687\) 0 0
\(688\) −3.46594 −0.132138
\(689\) −6.05303 −0.230602
\(690\) 0 0
\(691\) −8.46688 −0.322095 −0.161048 0.986947i \(-0.551487\pi\)
−0.161048 + 0.986947i \(0.551487\pi\)
\(692\) 2.90507 0.110434
\(693\) 0 0
\(694\) −7.81709 −0.296733
\(695\) 7.81450 0.296421
\(696\) 0 0
\(697\) −29.6891 −1.12455
\(698\) −6.53147 −0.247220
\(699\) 0 0
\(700\) −18.2666 −0.690413
\(701\) 43.5518 1.64493 0.822465 0.568816i \(-0.192599\pi\)
0.822465 + 0.568816i \(0.192599\pi\)
\(702\) 0 0
\(703\) 12.5638 0.473854
\(704\) 0 0
\(705\) 0 0
\(706\) 8.47025 0.318782
\(707\) −55.8764 −2.10145
\(708\) 0 0
\(709\) −6.02729 −0.226360 −0.113180 0.993575i \(-0.536104\pi\)
−0.113180 + 0.993575i \(0.536104\pi\)
\(710\) −4.43458 −0.166427
\(711\) 0 0
\(712\) 10.3499 0.387880
\(713\) −9.06874 −0.339627
\(714\) 0 0
\(715\) 0 0
\(716\) 25.3061 0.945732
\(717\) 0 0
\(718\) −10.5098 −0.392224
\(719\) −40.4066 −1.50691 −0.753457 0.657498i \(-0.771615\pi\)
−0.753457 + 0.657498i \(0.771615\pi\)
\(720\) 0 0
\(721\) 20.6732 0.769909
\(722\) −4.66735 −0.173701
\(723\) 0 0
\(724\) −5.37009 −0.199578
\(725\) 8.30501 0.308441
\(726\) 0 0
\(727\) 18.7206 0.694310 0.347155 0.937808i \(-0.387148\pi\)
0.347155 + 0.937808i \(0.387148\pi\)
\(728\) 17.5279 0.649628
\(729\) 0 0
\(730\) −3.12558 −0.115683
\(731\) 4.25536 0.157390
\(732\) 0 0
\(733\) −0.564191 −0.0208389 −0.0104194 0.999946i \(-0.503317\pi\)
−0.0104194 + 0.999946i \(0.503317\pi\)
\(734\) −7.08897 −0.261659
\(735\) 0 0
\(736\) 6.03673 0.222517
\(737\) 0 0
\(738\) 0 0
\(739\) −1.94812 −0.0716629 −0.0358315 0.999358i \(-0.511408\pi\)
−0.0358315 + 0.999358i \(0.511408\pi\)
\(740\) 40.2498 1.47961
\(741\) 0 0
\(742\) 1.82568 0.0670229
\(743\) −27.2627 −1.00017 −0.500086 0.865976i \(-0.666698\pi\)
−0.500086 + 0.865976i \(0.666698\pi\)
\(744\) 0 0
\(745\) −54.6482 −2.00216
\(746\) −5.21224 −0.190834
\(747\) 0 0
\(748\) 0 0
\(749\) −11.3197 −0.413613
\(750\) 0 0
\(751\) 30.3063 1.10589 0.552946 0.833217i \(-0.313504\pi\)
0.552946 + 0.833217i \(0.313504\pi\)
\(752\) −20.6422 −0.752745
\(753\) 0 0
\(754\) −3.90191 −0.142099
\(755\) −30.0083 −1.09211
\(756\) 0 0
\(757\) 11.1070 0.403689 0.201845 0.979418i \(-0.435306\pi\)
0.201845 + 0.979418i \(0.435306\pi\)
\(758\) −8.97056 −0.325826
\(759\) 0 0
\(760\) 4.91030 0.178115
\(761\) −33.3410 −1.20861 −0.604304 0.796754i \(-0.706549\pi\)
−0.604304 + 0.796754i \(0.706549\pi\)
\(762\) 0 0
\(763\) 70.7020 2.55959
\(764\) −32.1219 −1.16213
\(765\) 0 0
\(766\) 3.54490 0.128082
\(767\) 43.7565 1.57995
\(768\) 0 0
\(769\) 51.9401 1.87301 0.936504 0.350656i \(-0.114041\pi\)
0.936504 + 0.350656i \(0.114041\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −42.2867 −1.52193
\(773\) 7.72276 0.277768 0.138884 0.990309i \(-0.455648\pi\)
0.138884 + 0.990309i \(0.455648\pi\)
\(774\) 0 0
\(775\) −11.3697 −0.408412
\(776\) 8.28299 0.297342
\(777\) 0 0
\(778\) −2.08720 −0.0748296
\(779\) 11.1486 0.399441
\(780\) 0 0
\(781\) 0 0
\(782\) −2.29655 −0.0821244
\(783\) 0 0
\(784\) 33.7521 1.20543
\(785\) −0.901424 −0.0321732
\(786\) 0 0
\(787\) 19.7063 0.702454 0.351227 0.936290i \(-0.385764\pi\)
0.351227 + 0.936290i \(0.385764\pi\)
\(788\) −34.9675 −1.24567
\(789\) 0 0
\(790\) −3.30595 −0.117620
\(791\) −3.84382 −0.136670
\(792\) 0 0
\(793\) −33.1470 −1.17709
\(794\) 9.75455 0.346176
\(795\) 0 0
\(796\) 48.1510 1.70667
\(797\) −14.0258 −0.496818 −0.248409 0.968655i \(-0.579908\pi\)
−0.248409 + 0.968655i \(0.579908\pi\)
\(798\) 0 0
\(799\) 25.3438 0.896600
\(800\) 7.56841 0.267584
\(801\) 0 0
\(802\) −2.13170 −0.0752731
\(803\) 0 0
\(804\) 0 0
\(805\) −20.5692 −0.724968
\(806\) 5.34178 0.188156
\(807\) 0 0
\(808\) 15.3282 0.539243
\(809\) −20.9298 −0.735854 −0.367927 0.929855i \(-0.619932\pi\)
−0.367927 + 0.929855i \(0.619932\pi\)
\(810\) 0 0
\(811\) −1.94293 −0.0682255 −0.0341127 0.999418i \(-0.510861\pi\)
−0.0341127 + 0.999418i \(0.510861\pi\)
\(812\) −27.7711 −0.974573
\(813\) 0 0
\(814\) 0 0
\(815\) −36.1292 −1.26555
\(816\) 0 0
\(817\) −1.59795 −0.0559050
\(818\) −0.687264 −0.0240296
\(819\) 0 0
\(820\) 35.7161 1.24726
\(821\) 10.8418 0.378380 0.189190 0.981940i \(-0.439414\pi\)
0.189190 + 0.981940i \(0.439414\pi\)
\(822\) 0 0
\(823\) 47.6678 1.66160 0.830798 0.556575i \(-0.187885\pi\)
0.830798 + 0.556575i \(0.187885\pi\)
\(824\) −5.67112 −0.197563
\(825\) 0 0
\(826\) −13.1976 −0.459203
\(827\) 37.4150 1.30105 0.650524 0.759486i \(-0.274549\pi\)
0.650524 + 0.759486i \(0.274549\pi\)
\(828\) 0 0
\(829\) 10.7069 0.371866 0.185933 0.982562i \(-0.440469\pi\)
0.185933 + 0.982562i \(0.440469\pi\)
\(830\) 5.02068 0.174271
\(831\) 0 0
\(832\) 23.5453 0.816287
\(833\) −41.4397 −1.43580
\(834\) 0 0
\(835\) 51.2361 1.77310
\(836\) 0 0
\(837\) 0 0
\(838\) 3.19416 0.110341
\(839\) −15.3615 −0.530338 −0.265169 0.964202i \(-0.585428\pi\)
−0.265169 + 0.964202i \(0.585428\pi\)
\(840\) 0 0
\(841\) −16.3737 −0.564612
\(842\) −1.96891 −0.0678531
\(843\) 0 0
\(844\) 15.8676 0.546186
\(845\) −4.95661 −0.170513
\(846\) 0 0
\(847\) 0 0
\(848\) 5.53087 0.189931
\(849\) 0 0
\(850\) −2.87924 −0.0987572
\(851\) 14.4375 0.494913
\(852\) 0 0
\(853\) −41.4642 −1.41971 −0.709854 0.704349i \(-0.751239\pi\)
−0.709854 + 0.704349i \(0.751239\pi\)
\(854\) 9.99763 0.342112
\(855\) 0 0
\(856\) 3.10525 0.106135
\(857\) 18.4055 0.628719 0.314359 0.949304i \(-0.398210\pi\)
0.314359 + 0.949304i \(0.398210\pi\)
\(858\) 0 0
\(859\) −15.0485 −0.513449 −0.256725 0.966485i \(-0.582643\pi\)
−0.256725 + 0.966485i \(0.582643\pi\)
\(860\) −5.11922 −0.174564
\(861\) 0 0
\(862\) −8.32079 −0.283407
\(863\) 14.4298 0.491196 0.245598 0.969372i \(-0.421016\pi\)
0.245598 + 0.969372i \(0.421016\pi\)
\(864\) 0 0
\(865\) 4.10126 0.139447
\(866\) −10.4182 −0.354024
\(867\) 0 0
\(868\) 38.0191 1.29045
\(869\) 0 0
\(870\) 0 0
\(871\) 6.70283 0.227117
\(872\) −19.3952 −0.656803
\(873\) 0 0
\(874\) 0.862385 0.0291706
\(875\) 29.3798 0.993218
\(876\) 0 0
\(877\) 24.0754 0.812967 0.406484 0.913658i \(-0.366755\pi\)
0.406484 + 0.913658i \(0.366755\pi\)
\(878\) 6.12996 0.206876
\(879\) 0 0
\(880\) 0 0
\(881\) 10.0956 0.340129 0.170064 0.985433i \(-0.445602\pi\)
0.170064 + 0.985433i \(0.445602\pi\)
\(882\) 0 0
\(883\) 50.7198 1.70686 0.853429 0.521209i \(-0.174519\pi\)
0.853429 + 0.521209i \(0.174519\pi\)
\(884\) −31.9211 −1.07362
\(885\) 0 0
\(886\) 9.53679 0.320395
\(887\) −2.57271 −0.0863831 −0.0431915 0.999067i \(-0.513753\pi\)
−0.0431915 + 0.999067i \(0.513753\pi\)
\(888\) 0 0
\(889\) −9.98131 −0.334762
\(890\) 7.15422 0.239810
\(891\) 0 0
\(892\) 14.1064 0.472316
\(893\) −9.51694 −0.318472
\(894\) 0 0
\(895\) 35.7261 1.19419
\(896\) −33.4820 −1.11856
\(897\) 0 0
\(898\) −11.2729 −0.376180
\(899\) −17.2856 −0.576506
\(900\) 0 0
\(901\) −6.79061 −0.226228
\(902\) 0 0
\(903\) 0 0
\(904\) 1.05445 0.0350704
\(905\) −7.58129 −0.252010
\(906\) 0 0
\(907\) 10.2949 0.341835 0.170918 0.985285i \(-0.445327\pi\)
0.170918 + 0.985285i \(0.445327\pi\)
\(908\) 36.3423 1.20606
\(909\) 0 0
\(910\) 12.1159 0.401638
\(911\) 15.6025 0.516935 0.258468 0.966020i \(-0.416782\pi\)
0.258468 + 0.966020i \(0.416782\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −10.6966 −0.353811
\(915\) 0 0
\(916\) 15.0798 0.498252
\(917\) 16.2826 0.537700
\(918\) 0 0
\(919\) −11.2124 −0.369864 −0.184932 0.982751i \(-0.559206\pi\)
−0.184932 + 0.982751i \(0.559206\pi\)
\(920\) 5.64259 0.186031
\(921\) 0 0
\(922\) 5.52198 0.181857
\(923\) −22.1097 −0.727751
\(924\) 0 0
\(925\) 18.1007 0.595148
\(926\) −4.09167 −0.134461
\(927\) 0 0
\(928\) 11.5064 0.377715
\(929\) −23.5275 −0.771912 −0.385956 0.922517i \(-0.626128\pi\)
−0.385956 + 0.922517i \(0.626128\pi\)
\(930\) 0 0
\(931\) 15.5611 0.509996
\(932\) 12.6047 0.412880
\(933\) 0 0
\(934\) 6.36478 0.208262
\(935\) 0 0
\(936\) 0 0
\(937\) −18.6555 −0.609448 −0.304724 0.952441i \(-0.598564\pi\)
−0.304724 + 0.952441i \(0.598564\pi\)
\(938\) −2.02167 −0.0660100
\(939\) 0 0
\(940\) −30.4887 −0.994432
\(941\) −32.4926 −1.05923 −0.529615 0.848238i \(-0.677663\pi\)
−0.529615 + 0.848238i \(0.677663\pi\)
\(942\) 0 0
\(943\) 12.8113 0.417193
\(944\) −39.9818 −1.30130
\(945\) 0 0
\(946\) 0 0
\(947\) 3.84273 0.124872 0.0624360 0.998049i \(-0.480113\pi\)
0.0624360 + 0.998049i \(0.480113\pi\)
\(948\) 0 0
\(949\) −15.5834 −0.505858
\(950\) 1.08119 0.0350786
\(951\) 0 0
\(952\) 19.6637 0.637306
\(953\) 19.0891 0.618358 0.309179 0.951004i \(-0.399946\pi\)
0.309179 + 0.951004i \(0.399946\pi\)
\(954\) 0 0
\(955\) −45.3484 −1.46744
\(956\) 49.0154 1.58527
\(957\) 0 0
\(958\) −6.63302 −0.214303
\(959\) −4.43691 −0.143275
\(960\) 0 0
\(961\) −7.33576 −0.236638
\(962\) −8.50417 −0.274186
\(963\) 0 0
\(964\) −5.72150 −0.184277
\(965\) −59.6988 −1.92177
\(966\) 0 0
\(967\) −26.5627 −0.854198 −0.427099 0.904205i \(-0.640464\pi\)
−0.427099 + 0.904205i \(0.640464\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 5.72549 0.183834
\(971\) 51.1079 1.64013 0.820066 0.572269i \(-0.193937\pi\)
0.820066 + 0.572269i \(0.193937\pi\)
\(972\) 0 0
\(973\) −11.7513 −0.376728
\(974\) 0.0772186 0.00247424
\(975\) 0 0
\(976\) 30.2876 0.969482
\(977\) 21.1746 0.677435 0.338717 0.940888i \(-0.390007\pi\)
0.338717 + 0.940888i \(0.390007\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 49.8521 1.59247
\(981\) 0 0
\(982\) −1.19949 −0.0382774
\(983\) −50.8354 −1.62140 −0.810699 0.585463i \(-0.800913\pi\)
−0.810699 + 0.585463i \(0.800913\pi\)
\(984\) 0 0
\(985\) −49.3658 −1.57292
\(986\) −4.37736 −0.139404
\(987\) 0 0
\(988\) 11.9868 0.381351
\(989\) −1.83625 −0.0583895
\(990\) 0 0
\(991\) −13.1480 −0.417662 −0.208831 0.977952i \(-0.566966\pi\)
−0.208831 + 0.977952i \(0.566966\pi\)
\(992\) −15.7524 −0.500140
\(993\) 0 0
\(994\) 6.66862 0.211516
\(995\) 67.9778 2.15504
\(996\) 0 0
\(997\) 37.2087 1.17841 0.589205 0.807983i \(-0.299441\pi\)
0.589205 + 0.807983i \(0.299441\pi\)
\(998\) −4.38109 −0.138681
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.cn.1.10 18
3.2 odd 2 9801.2.a.co.1.9 18
9.2 odd 6 1089.2.e.o.364.10 36
9.5 odd 6 1089.2.e.o.727.10 36
11.7 odd 10 891.2.f.e.82.5 36
11.8 odd 10 891.2.f.e.163.5 36
11.10 odd 2 9801.2.a.cp.1.9 18
33.8 even 10 891.2.f.f.163.5 36
33.29 even 10 891.2.f.f.82.5 36
33.32 even 2 9801.2.a.cm.1.10 18
99.7 odd 30 297.2.n.b.280.5 72
99.29 even 30 99.2.m.b.49.5 yes 72
99.32 even 6 1089.2.e.p.727.9 36
99.40 odd 30 297.2.n.b.181.5 72
99.41 even 30 99.2.m.b.97.5 yes 72
99.52 odd 30 297.2.n.b.64.5 72
99.65 even 6 1089.2.e.p.364.9 36
99.74 even 30 99.2.m.b.31.5 yes 72
99.85 odd 30 297.2.n.b.262.5 72
99.95 even 30 99.2.m.b.16.5 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.5 72 99.95 even 30
99.2.m.b.31.5 yes 72 99.74 even 30
99.2.m.b.49.5 yes 72 99.29 even 30
99.2.m.b.97.5 yes 72 99.41 even 30
297.2.n.b.64.5 72 99.52 odd 30
297.2.n.b.181.5 72 99.40 odd 30
297.2.n.b.262.5 72 99.85 odd 30
297.2.n.b.280.5 72 99.7 odd 30
891.2.f.e.82.5 36 11.7 odd 10
891.2.f.e.163.5 36 11.8 odd 10
891.2.f.f.82.5 36 33.29 even 10
891.2.f.f.163.5 36 33.8 even 10
1089.2.e.o.364.10 36 9.2 odd 6
1089.2.e.o.727.10 36 9.5 odd 6
1089.2.e.p.364.9 36 99.65 even 6
1089.2.e.p.727.9 36 99.32 even 6
9801.2.a.cm.1.10 18 33.32 even 2
9801.2.a.cn.1.10 18 1.1 even 1 trivial
9801.2.a.co.1.9 18 3.2 odd 2
9801.2.a.cp.1.9 18 11.10 odd 2