Properties

Label 9801.2.a.cm.1.8
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 22 x^{16} + 42 x^{15} + 198 x^{14} - 357 x^{13} - 944 x^{12} + 1579 x^{11} + \cdots - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.664320\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.664320 q^{2} -1.55868 q^{4} +1.11662 q^{5} -3.90454 q^{7} +2.36410 q^{8} -0.741796 q^{10} +2.67800 q^{13} +2.59387 q^{14} +1.54683 q^{16} +5.54657 q^{17} -5.13234 q^{19} -1.74046 q^{20} +2.11438 q^{23} -3.75315 q^{25} -1.77905 q^{26} +6.08592 q^{28} +1.08304 q^{29} -0.430163 q^{31} -5.75580 q^{32} -3.68470 q^{34} -4.35990 q^{35} -8.70580 q^{37} +3.40952 q^{38} +2.63981 q^{40} -2.91908 q^{41} -2.23257 q^{43} -1.40462 q^{46} +12.8355 q^{47} +8.24545 q^{49} +2.49330 q^{50} -4.17415 q^{52} +5.64118 q^{53} -9.23074 q^{56} -0.719486 q^{58} -2.37537 q^{59} -4.08445 q^{61} +0.285766 q^{62} +0.730027 q^{64} +2.99032 q^{65} -9.75169 q^{67} -8.64532 q^{68} +2.89637 q^{70} +6.31707 q^{71} -11.6727 q^{73} +5.78344 q^{74} +7.99967 q^{76} +4.51471 q^{79} +1.72723 q^{80} +1.93920 q^{82} +0.482004 q^{83} +6.19343 q^{85} +1.48314 q^{86} +16.0830 q^{89} -10.4564 q^{91} -3.29563 q^{92} -8.52687 q^{94} -5.73089 q^{95} +8.01565 q^{97} -5.47762 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 12 q^{4} - q^{5} + q^{7} - 6 q^{8} - 2 q^{10} + 3 q^{13} - 8 q^{16} - 20 q^{17} - 3 q^{19} - 5 q^{20} - 10 q^{23} + 7 q^{25} + 2 q^{26} + 19 q^{28} - 21 q^{29} + 6 q^{31} - 9 q^{32} - 4 q^{34}+ \cdots - 82 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.664320 −0.469746 −0.234873 0.972026i \(-0.575467\pi\)
−0.234873 + 0.972026i \(0.575467\pi\)
\(3\) 0 0
\(4\) −1.55868 −0.779339
\(5\) 1.11662 0.499369 0.249685 0.968327i \(-0.419673\pi\)
0.249685 + 0.968327i \(0.419673\pi\)
\(6\) 0 0
\(7\) −3.90454 −1.47578 −0.737889 0.674922i \(-0.764177\pi\)
−0.737889 + 0.674922i \(0.764177\pi\)
\(8\) 2.36410 0.835837
\(9\) 0 0
\(10\) −0.741796 −0.234576
\(11\) 0 0
\(12\) 0 0
\(13\) 2.67800 0.742745 0.371372 0.928484i \(-0.378887\pi\)
0.371372 + 0.928484i \(0.378887\pi\)
\(14\) 2.59387 0.693240
\(15\) 0 0
\(16\) 1.54683 0.386709
\(17\) 5.54657 1.34524 0.672620 0.739988i \(-0.265169\pi\)
0.672620 + 0.739988i \(0.265169\pi\)
\(18\) 0 0
\(19\) −5.13234 −1.17744 −0.588720 0.808337i \(-0.700368\pi\)
−0.588720 + 0.808337i \(0.700368\pi\)
\(20\) −1.74046 −0.389178
\(21\) 0 0
\(22\) 0 0
\(23\) 2.11438 0.440878 0.220439 0.975401i \(-0.429251\pi\)
0.220439 + 0.975401i \(0.429251\pi\)
\(24\) 0 0
\(25\) −3.75315 −0.750630
\(26\) −1.77905 −0.348901
\(27\) 0 0
\(28\) 6.08592 1.15013
\(29\) 1.08304 0.201116 0.100558 0.994931i \(-0.467937\pi\)
0.100558 + 0.994931i \(0.467937\pi\)
\(30\) 0 0
\(31\) −0.430163 −0.0772595 −0.0386297 0.999254i \(-0.512299\pi\)
−0.0386297 + 0.999254i \(0.512299\pi\)
\(32\) −5.75580 −1.01749
\(33\) 0 0
\(34\) −3.68470 −0.631921
\(35\) −4.35990 −0.736958
\(36\) 0 0
\(37\) −8.70580 −1.43122 −0.715612 0.698498i \(-0.753852\pi\)
−0.715612 + 0.698498i \(0.753852\pi\)
\(38\) 3.40952 0.553097
\(39\) 0 0
\(40\) 2.63981 0.417391
\(41\) −2.91908 −0.455883 −0.227942 0.973675i \(-0.573200\pi\)
−0.227942 + 0.973675i \(0.573200\pi\)
\(42\) 0 0
\(43\) −2.23257 −0.340463 −0.170232 0.985404i \(-0.554452\pi\)
−0.170232 + 0.985404i \(0.554452\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.40462 −0.207101
\(47\) 12.8355 1.87225 0.936123 0.351673i \(-0.114387\pi\)
0.936123 + 0.351673i \(0.114387\pi\)
\(48\) 0 0
\(49\) 8.24545 1.17792
\(50\) 2.49330 0.352605
\(51\) 0 0
\(52\) −4.17415 −0.578850
\(53\) 5.64118 0.774876 0.387438 0.921896i \(-0.373360\pi\)
0.387438 + 0.921896i \(0.373360\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −9.23074 −1.23351
\(57\) 0 0
\(58\) −0.719486 −0.0944732
\(59\) −2.37537 −0.309247 −0.154623 0.987973i \(-0.549416\pi\)
−0.154623 + 0.987973i \(0.549416\pi\)
\(60\) 0 0
\(61\) −4.08445 −0.522961 −0.261480 0.965209i \(-0.584211\pi\)
−0.261480 + 0.965209i \(0.584211\pi\)
\(62\) 0.285766 0.0362923
\(63\) 0 0
\(64\) 0.730027 0.0912533
\(65\) 2.99032 0.370904
\(66\) 0 0
\(67\) −9.75169 −1.19136 −0.595679 0.803223i \(-0.703117\pi\)
−0.595679 + 0.803223i \(0.703117\pi\)
\(68\) −8.64532 −1.04840
\(69\) 0 0
\(70\) 2.89637 0.346183
\(71\) 6.31707 0.749699 0.374849 0.927086i \(-0.377694\pi\)
0.374849 + 0.927086i \(0.377694\pi\)
\(72\) 0 0
\(73\) −11.6727 −1.36618 −0.683091 0.730333i \(-0.739365\pi\)
−0.683091 + 0.730333i \(0.739365\pi\)
\(74\) 5.78344 0.672311
\(75\) 0 0
\(76\) 7.99967 0.917625
\(77\) 0 0
\(78\) 0 0
\(79\) 4.51471 0.507944 0.253972 0.967212i \(-0.418263\pi\)
0.253972 + 0.967212i \(0.418263\pi\)
\(80\) 1.72723 0.193110
\(81\) 0 0
\(82\) 1.93920 0.214149
\(83\) 0.482004 0.0529068 0.0264534 0.999650i \(-0.491579\pi\)
0.0264534 + 0.999650i \(0.491579\pi\)
\(84\) 0 0
\(85\) 6.19343 0.671772
\(86\) 1.48314 0.159931
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0830 1.70480 0.852399 0.522891i \(-0.175147\pi\)
0.852399 + 0.522891i \(0.175147\pi\)
\(90\) 0 0
\(91\) −10.4564 −1.09613
\(92\) −3.29563 −0.343594
\(93\) 0 0
\(94\) −8.52687 −0.879479
\(95\) −5.73089 −0.587977
\(96\) 0 0
\(97\) 8.01565 0.813866 0.406933 0.913458i \(-0.366598\pi\)
0.406933 + 0.913458i \(0.366598\pi\)
\(98\) −5.47762 −0.553323
\(99\) 0 0
\(100\) 5.84996 0.584996
\(101\) 1.76131 0.175257 0.0876287 0.996153i \(-0.472071\pi\)
0.0876287 + 0.996153i \(0.472071\pi\)
\(102\) 0 0
\(103\) 2.68767 0.264824 0.132412 0.991195i \(-0.457728\pi\)
0.132412 + 0.991195i \(0.457728\pi\)
\(104\) 6.33108 0.620813
\(105\) 0 0
\(106\) −3.74755 −0.363995
\(107\) −10.2764 −0.993456 −0.496728 0.867906i \(-0.665465\pi\)
−0.496728 + 0.867906i \(0.665465\pi\)
\(108\) 0 0
\(109\) 2.36284 0.226319 0.113160 0.993577i \(-0.463903\pi\)
0.113160 + 0.993577i \(0.463903\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −6.03968 −0.570696
\(113\) 1.53243 0.144159 0.0720796 0.997399i \(-0.477036\pi\)
0.0720796 + 0.997399i \(0.477036\pi\)
\(114\) 0 0
\(115\) 2.36096 0.220161
\(116\) −1.68811 −0.156737
\(117\) 0 0
\(118\) 1.57801 0.145267
\(119\) −21.6568 −1.98528
\(120\) 0 0
\(121\) 0 0
\(122\) 2.71339 0.245658
\(123\) 0 0
\(124\) 0.670485 0.0602113
\(125\) −9.77397 −0.874211
\(126\) 0 0
\(127\) −7.65133 −0.678946 −0.339473 0.940616i \(-0.610249\pi\)
−0.339473 + 0.940616i \(0.610249\pi\)
\(128\) 11.0266 0.974625
\(129\) 0 0
\(130\) −1.98653 −0.174230
\(131\) −5.35912 −0.468229 −0.234114 0.972209i \(-0.575219\pi\)
−0.234114 + 0.972209i \(0.575219\pi\)
\(132\) 0 0
\(133\) 20.0394 1.73764
\(134\) 6.47825 0.559635
\(135\) 0 0
\(136\) 13.1127 1.12440
\(137\) 16.7312 1.42944 0.714721 0.699409i \(-0.246554\pi\)
0.714721 + 0.699409i \(0.246554\pi\)
\(138\) 0 0
\(139\) 13.7401 1.16542 0.582711 0.812680i \(-0.301992\pi\)
0.582711 + 0.812680i \(0.301992\pi\)
\(140\) 6.79569 0.574340
\(141\) 0 0
\(142\) −4.19656 −0.352168
\(143\) 0 0
\(144\) 0 0
\(145\) 1.20935 0.100431
\(146\) 7.75440 0.641758
\(147\) 0 0
\(148\) 13.5695 1.11541
\(149\) 5.55966 0.455465 0.227732 0.973724i \(-0.426869\pi\)
0.227732 + 0.973724i \(0.426869\pi\)
\(150\) 0 0
\(151\) −0.163908 −0.0133386 −0.00666930 0.999978i \(-0.502123\pi\)
−0.00666930 + 0.999978i \(0.502123\pi\)
\(152\) −12.1334 −0.984147
\(153\) 0 0
\(154\) 0 0
\(155\) −0.480329 −0.0385810
\(156\) 0 0
\(157\) 23.8530 1.90368 0.951839 0.306598i \(-0.0991909\pi\)
0.951839 + 0.306598i \(0.0991909\pi\)
\(158\) −2.99921 −0.238605
\(159\) 0 0
\(160\) −6.42706 −0.508104
\(161\) −8.25568 −0.650638
\(162\) 0 0
\(163\) −4.19602 −0.328658 −0.164329 0.986406i \(-0.552546\pi\)
−0.164329 + 0.986406i \(0.552546\pi\)
\(164\) 4.54990 0.355288
\(165\) 0 0
\(166\) −0.320205 −0.0248527
\(167\) 15.8404 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(168\) 0 0
\(169\) −5.82829 −0.448330
\(170\) −4.11442 −0.315562
\(171\) 0 0
\(172\) 3.47985 0.265336
\(173\) −2.60289 −0.197894 −0.0989470 0.995093i \(-0.531547\pi\)
−0.0989470 + 0.995093i \(0.531547\pi\)
\(174\) 0 0
\(175\) 14.6543 1.10776
\(176\) 0 0
\(177\) 0 0
\(178\) −10.6843 −0.800822
\(179\) 7.58802 0.567155 0.283578 0.958949i \(-0.408479\pi\)
0.283578 + 0.958949i \(0.408479\pi\)
\(180\) 0 0
\(181\) −2.40019 −0.178405 −0.0892023 0.996014i \(-0.528432\pi\)
−0.0892023 + 0.996014i \(0.528432\pi\)
\(182\) 6.94639 0.514901
\(183\) 0 0
\(184\) 4.99861 0.368502
\(185\) −9.72109 −0.714709
\(186\) 0 0
\(187\) 0 0
\(188\) −20.0064 −1.45911
\(189\) 0 0
\(190\) 3.80715 0.276200
\(191\) −16.5182 −1.19522 −0.597609 0.801788i \(-0.703882\pi\)
−0.597609 + 0.801788i \(0.703882\pi\)
\(192\) 0 0
\(193\) −8.13496 −0.585567 −0.292784 0.956179i \(-0.594582\pi\)
−0.292784 + 0.956179i \(0.594582\pi\)
\(194\) −5.32496 −0.382310
\(195\) 0 0
\(196\) −12.8520 −0.918000
\(197\) −22.9072 −1.63207 −0.816035 0.578003i \(-0.803832\pi\)
−0.816035 + 0.578003i \(0.803832\pi\)
\(198\) 0 0
\(199\) 9.27177 0.657259 0.328629 0.944459i \(-0.393413\pi\)
0.328629 + 0.944459i \(0.393413\pi\)
\(200\) −8.87284 −0.627404
\(201\) 0 0
\(202\) −1.17008 −0.0823264
\(203\) −4.22878 −0.296802
\(204\) 0 0
\(205\) −3.25951 −0.227654
\(206\) −1.78547 −0.124400
\(207\) 0 0
\(208\) 4.14243 0.287226
\(209\) 0 0
\(210\) 0 0
\(211\) 4.21058 0.289868 0.144934 0.989441i \(-0.453703\pi\)
0.144934 + 0.989441i \(0.453703\pi\)
\(212\) −8.79279 −0.603891
\(213\) 0 0
\(214\) 6.82681 0.466671
\(215\) −2.49294 −0.170017
\(216\) 0 0
\(217\) 1.67959 0.114018
\(218\) −1.56968 −0.106312
\(219\) 0 0
\(220\) 0 0
\(221\) 14.8537 0.999170
\(222\) 0 0
\(223\) −6.85906 −0.459317 −0.229658 0.973271i \(-0.573761\pi\)
−0.229658 + 0.973271i \(0.573761\pi\)
\(224\) 22.4738 1.50159
\(225\) 0 0
\(226\) −1.01803 −0.0677181
\(227\) 28.1299 1.86705 0.933524 0.358515i \(-0.116717\pi\)
0.933524 + 0.358515i \(0.116717\pi\)
\(228\) 0 0
\(229\) −14.0347 −0.927439 −0.463719 0.885982i \(-0.653485\pi\)
−0.463719 + 0.885982i \(0.653485\pi\)
\(230\) −1.56844 −0.103420
\(231\) 0 0
\(232\) 2.56042 0.168100
\(233\) −14.5096 −0.950557 −0.475278 0.879835i \(-0.657653\pi\)
−0.475278 + 0.879835i \(0.657653\pi\)
\(234\) 0 0
\(235\) 14.3324 0.934942
\(236\) 3.70244 0.241008
\(237\) 0 0
\(238\) 14.3871 0.932575
\(239\) −25.1481 −1.62670 −0.813349 0.581777i \(-0.802358\pi\)
−0.813349 + 0.581777i \(0.802358\pi\)
\(240\) 0 0
\(241\) 17.7422 1.14288 0.571438 0.820645i \(-0.306386\pi\)
0.571438 + 0.820645i \(0.306386\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 6.36635 0.407564
\(245\) 9.20706 0.588217
\(246\) 0 0
\(247\) −13.7444 −0.874537
\(248\) −1.01695 −0.0645763
\(249\) 0 0
\(250\) 6.49305 0.410657
\(251\) −21.8775 −1.38090 −0.690448 0.723382i \(-0.742586\pi\)
−0.690448 + 0.723382i \(0.742586\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 5.08294 0.318932
\(255\) 0 0
\(256\) −8.78527 −0.549079
\(257\) 5.16372 0.322104 0.161052 0.986946i \(-0.448511\pi\)
0.161052 + 0.986946i \(0.448511\pi\)
\(258\) 0 0
\(259\) 33.9921 2.11217
\(260\) −4.66095 −0.289060
\(261\) 0 0
\(262\) 3.56017 0.219948
\(263\) −27.8981 −1.72027 −0.860135 0.510066i \(-0.829621\pi\)
−0.860135 + 0.510066i \(0.829621\pi\)
\(264\) 0 0
\(265\) 6.29908 0.386949
\(266\) −13.3126 −0.816249
\(267\) 0 0
\(268\) 15.1997 0.928472
\(269\) 3.01959 0.184108 0.0920538 0.995754i \(-0.470657\pi\)
0.0920538 + 0.995754i \(0.470657\pi\)
\(270\) 0 0
\(271\) −25.3748 −1.54141 −0.770705 0.637192i \(-0.780096\pi\)
−0.770705 + 0.637192i \(0.780096\pi\)
\(272\) 8.57962 0.520216
\(273\) 0 0
\(274\) −11.1149 −0.671474
\(275\) 0 0
\(276\) 0 0
\(277\) −10.5644 −0.634752 −0.317376 0.948300i \(-0.602802\pi\)
−0.317376 + 0.948300i \(0.602802\pi\)
\(278\) −9.12784 −0.547451
\(279\) 0 0
\(280\) −10.3073 −0.615976
\(281\) −22.5705 −1.34644 −0.673222 0.739440i \(-0.735090\pi\)
−0.673222 + 0.739440i \(0.735090\pi\)
\(282\) 0 0
\(283\) −5.87723 −0.349365 −0.174683 0.984625i \(-0.555890\pi\)
−0.174683 + 0.984625i \(0.555890\pi\)
\(284\) −9.84628 −0.584269
\(285\) 0 0
\(286\) 0 0
\(287\) 11.3977 0.672782
\(288\) 0 0
\(289\) 13.7644 0.809672
\(290\) −0.803395 −0.0471770
\(291\) 0 0
\(292\) 18.1939 1.06472
\(293\) 7.09411 0.414442 0.207221 0.978294i \(-0.433558\pi\)
0.207221 + 0.978294i \(0.433558\pi\)
\(294\) 0 0
\(295\) −2.65239 −0.154428
\(296\) −20.5814 −1.19627
\(297\) 0 0
\(298\) −3.69339 −0.213953
\(299\) 5.66231 0.327460
\(300\) 0 0
\(301\) 8.71715 0.502448
\(302\) 0.108887 0.00626575
\(303\) 0 0
\(304\) −7.93888 −0.455326
\(305\) −4.56080 −0.261150
\(306\) 0 0
\(307\) −18.5370 −1.05796 −0.528981 0.848633i \(-0.677426\pi\)
−0.528981 + 0.848633i \(0.677426\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.319093 0.0181232
\(311\) 6.87624 0.389916 0.194958 0.980812i \(-0.437543\pi\)
0.194958 + 0.980812i \(0.437543\pi\)
\(312\) 0 0
\(313\) −25.3258 −1.43150 −0.715749 0.698357i \(-0.753915\pi\)
−0.715749 + 0.698357i \(0.753915\pi\)
\(314\) −15.8460 −0.894244
\(315\) 0 0
\(316\) −7.03698 −0.395861
\(317\) 10.9793 0.616657 0.308328 0.951280i \(-0.400230\pi\)
0.308328 + 0.951280i \(0.400230\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.815165 0.0455691
\(321\) 0 0
\(322\) 5.48442 0.305635
\(323\) −28.4669 −1.58394
\(324\) 0 0
\(325\) −10.0510 −0.557527
\(326\) 2.78751 0.154386
\(327\) 0 0
\(328\) −6.90100 −0.381044
\(329\) −50.1166 −2.76302
\(330\) 0 0
\(331\) −3.71025 −0.203934 −0.101967 0.994788i \(-0.532514\pi\)
−0.101967 + 0.994788i \(0.532514\pi\)
\(332\) −0.751289 −0.0412323
\(333\) 0 0
\(334\) −10.5231 −0.575798
\(335\) −10.8890 −0.594928
\(336\) 0 0
\(337\) −32.1952 −1.75378 −0.876891 0.480689i \(-0.840386\pi\)
−0.876891 + 0.480689i \(0.840386\pi\)
\(338\) 3.87185 0.210601
\(339\) 0 0
\(340\) −9.65356 −0.523538
\(341\) 0 0
\(342\) 0 0
\(343\) −4.86291 −0.262572
\(344\) −5.27802 −0.284572
\(345\) 0 0
\(346\) 1.72915 0.0929598
\(347\) −21.5225 −1.15539 −0.577694 0.816254i \(-0.696047\pi\)
−0.577694 + 0.816254i \(0.696047\pi\)
\(348\) 0 0
\(349\) −16.8200 −0.900352 −0.450176 0.892940i \(-0.648639\pi\)
−0.450176 + 0.892940i \(0.648639\pi\)
\(350\) −9.73518 −0.520367
\(351\) 0 0
\(352\) 0 0
\(353\) 3.13085 0.166639 0.0833193 0.996523i \(-0.473448\pi\)
0.0833193 + 0.996523i \(0.473448\pi\)
\(354\) 0 0
\(355\) 7.05379 0.374376
\(356\) −25.0683 −1.32862
\(357\) 0 0
\(358\) −5.04088 −0.266419
\(359\) 8.48869 0.448016 0.224008 0.974587i \(-0.428086\pi\)
0.224008 + 0.974587i \(0.428086\pi\)
\(360\) 0 0
\(361\) 7.34092 0.386364
\(362\) 1.59449 0.0838048
\(363\) 0 0
\(364\) 16.2981 0.854254
\(365\) −13.0340 −0.682230
\(366\) 0 0
\(367\) −11.0110 −0.574768 −0.287384 0.957815i \(-0.592786\pi\)
−0.287384 + 0.957815i \(0.592786\pi\)
\(368\) 3.27059 0.170491
\(369\) 0 0
\(370\) 6.45792 0.335731
\(371\) −22.0262 −1.14355
\(372\) 0 0
\(373\) 11.0068 0.569912 0.284956 0.958541i \(-0.408021\pi\)
0.284956 + 0.958541i \(0.408021\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 30.3444 1.56489
\(377\) 2.90039 0.149378
\(378\) 0 0
\(379\) 25.3868 1.30403 0.652017 0.758204i \(-0.273923\pi\)
0.652017 + 0.758204i \(0.273923\pi\)
\(380\) 8.93262 0.458234
\(381\) 0 0
\(382\) 10.9734 0.561448
\(383\) −12.1147 −0.619034 −0.309517 0.950894i \(-0.600167\pi\)
−0.309517 + 0.950894i \(0.600167\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.40422 0.275068
\(387\) 0 0
\(388\) −12.4938 −0.634278
\(389\) 14.3511 0.727629 0.363814 0.931471i \(-0.381474\pi\)
0.363814 + 0.931471i \(0.381474\pi\)
\(390\) 0 0
\(391\) 11.7275 0.593087
\(392\) 19.4931 0.984550
\(393\) 0 0
\(394\) 15.2177 0.766657
\(395\) 5.04123 0.253652
\(396\) 0 0
\(397\) −5.03882 −0.252891 −0.126446 0.991974i \(-0.540357\pi\)
−0.126446 + 0.991974i \(0.540357\pi\)
\(398\) −6.15943 −0.308744
\(399\) 0 0
\(400\) −5.80551 −0.290275
\(401\) −18.2002 −0.908874 −0.454437 0.890779i \(-0.650159\pi\)
−0.454437 + 0.890779i \(0.650159\pi\)
\(402\) 0 0
\(403\) −1.15198 −0.0573841
\(404\) −2.74532 −0.136585
\(405\) 0 0
\(406\) 2.80926 0.139421
\(407\) 0 0
\(408\) 0 0
\(409\) 16.4305 0.812434 0.406217 0.913777i \(-0.366848\pi\)
0.406217 + 0.913777i \(0.366848\pi\)
\(410\) 2.16536 0.106939
\(411\) 0 0
\(412\) −4.18921 −0.206387
\(413\) 9.27473 0.456380
\(414\) 0 0
\(415\) 0.538216 0.0264200
\(416\) −15.4141 −0.755736
\(417\) 0 0
\(418\) 0 0
\(419\) −17.4065 −0.850362 −0.425181 0.905108i \(-0.639790\pi\)
−0.425181 + 0.905108i \(0.639790\pi\)
\(420\) 0 0
\(421\) 4.54865 0.221687 0.110844 0.993838i \(-0.464645\pi\)
0.110844 + 0.993838i \(0.464645\pi\)
\(422\) −2.79717 −0.136164
\(423\) 0 0
\(424\) 13.3363 0.647670
\(425\) −20.8171 −1.00978
\(426\) 0 0
\(427\) 15.9479 0.771774
\(428\) 16.0176 0.774239
\(429\) 0 0
\(430\) 1.65611 0.0798647
\(431\) 12.4848 0.601372 0.300686 0.953723i \(-0.402784\pi\)
0.300686 + 0.953723i \(0.402784\pi\)
\(432\) 0 0
\(433\) 28.6862 1.37857 0.689284 0.724491i \(-0.257925\pi\)
0.689284 + 0.724491i \(0.257925\pi\)
\(434\) −1.11578 −0.0535594
\(435\) 0 0
\(436\) −3.68291 −0.176379
\(437\) −10.8517 −0.519108
\(438\) 0 0
\(439\) −4.10807 −0.196068 −0.0980338 0.995183i \(-0.531255\pi\)
−0.0980338 + 0.995183i \(0.531255\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9.86764 −0.469356
\(443\) −21.2297 −1.00865 −0.504327 0.863513i \(-0.668259\pi\)
−0.504327 + 0.863513i \(0.668259\pi\)
\(444\) 0 0
\(445\) 17.9587 0.851324
\(446\) 4.55661 0.215762
\(447\) 0 0
\(448\) −2.85042 −0.134670
\(449\) 25.8949 1.22205 0.611027 0.791610i \(-0.290757\pi\)
0.611027 + 0.791610i \(0.290757\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −2.38857 −0.112349
\(453\) 0 0
\(454\) −18.6873 −0.877037
\(455\) −11.6758 −0.547372
\(456\) 0 0
\(457\) −10.3039 −0.481994 −0.240997 0.970526i \(-0.577474\pi\)
−0.240997 + 0.970526i \(0.577474\pi\)
\(458\) 9.32354 0.435660
\(459\) 0 0
\(460\) −3.67998 −0.171580
\(461\) −25.4532 −1.18548 −0.592738 0.805395i \(-0.701953\pi\)
−0.592738 + 0.805395i \(0.701953\pi\)
\(462\) 0 0
\(463\) −39.8554 −1.85224 −0.926119 0.377231i \(-0.876876\pi\)
−0.926119 + 0.377231i \(0.876876\pi\)
\(464\) 1.67528 0.0777732
\(465\) 0 0
\(466\) 9.63904 0.446520
\(467\) −17.3769 −0.804108 −0.402054 0.915616i \(-0.631704\pi\)
−0.402054 + 0.915616i \(0.631704\pi\)
\(468\) 0 0
\(469\) 38.0759 1.75818
\(470\) −9.52130 −0.439185
\(471\) 0 0
\(472\) −5.61562 −0.258480
\(473\) 0 0
\(474\) 0 0
\(475\) 19.2625 0.883822
\(476\) 33.7560 1.54720
\(477\) 0 0
\(478\) 16.7064 0.764134
\(479\) −21.8960 −1.00045 −0.500226 0.865895i \(-0.666750\pi\)
−0.500226 + 0.865895i \(0.666750\pi\)
\(480\) 0 0
\(481\) −23.3142 −1.06303
\(482\) −11.7865 −0.536861
\(483\) 0 0
\(484\) 0 0
\(485\) 8.95046 0.406420
\(486\) 0 0
\(487\) 3.27116 0.148230 0.0741152 0.997250i \(-0.476387\pi\)
0.0741152 + 0.997250i \(0.476387\pi\)
\(488\) −9.65607 −0.437110
\(489\) 0 0
\(490\) −6.11644 −0.276313
\(491\) −7.22390 −0.326010 −0.163005 0.986625i \(-0.552119\pi\)
−0.163005 + 0.986625i \(0.552119\pi\)
\(492\) 0 0
\(493\) 6.00716 0.270549
\(494\) 9.13071 0.410810
\(495\) 0 0
\(496\) −0.665390 −0.0298769
\(497\) −24.6653 −1.10639
\(498\) 0 0
\(499\) 14.8345 0.664084 0.332042 0.943265i \(-0.392262\pi\)
0.332042 + 0.943265i \(0.392262\pi\)
\(500\) 15.2345 0.681307
\(501\) 0 0
\(502\) 14.5337 0.648669
\(503\) −32.9813 −1.47057 −0.735283 0.677760i \(-0.762951\pi\)
−0.735283 + 0.677760i \(0.762951\pi\)
\(504\) 0 0
\(505\) 1.96673 0.0875181
\(506\) 0 0
\(507\) 0 0
\(508\) 11.9260 0.529129
\(509\) 38.6694 1.71399 0.856995 0.515325i \(-0.172329\pi\)
0.856995 + 0.515325i \(0.172329\pi\)
\(510\) 0 0
\(511\) 45.5764 2.01618
\(512\) −16.2170 −0.716698
\(513\) 0 0
\(514\) −3.43036 −0.151307
\(515\) 3.00111 0.132245
\(516\) 0 0
\(517\) 0 0
\(518\) −22.5817 −0.992182
\(519\) 0 0
\(520\) 7.06943 0.310015
\(521\) −17.4844 −0.766005 −0.383002 0.923747i \(-0.625110\pi\)
−0.383002 + 0.923747i \(0.625110\pi\)
\(522\) 0 0
\(523\) 14.4881 0.633522 0.316761 0.948505i \(-0.397405\pi\)
0.316761 + 0.948505i \(0.397405\pi\)
\(524\) 8.35314 0.364909
\(525\) 0 0
\(526\) 18.5333 0.808089
\(527\) −2.38593 −0.103933
\(528\) 0 0
\(529\) −18.5294 −0.805626
\(530\) −4.18461 −0.181768
\(531\) 0 0
\(532\) −31.2350 −1.35421
\(533\) −7.81730 −0.338605
\(534\) 0 0
\(535\) −11.4749 −0.496101
\(536\) −23.0540 −0.995781
\(537\) 0 0
\(538\) −2.00597 −0.0864837
\(539\) 0 0
\(540\) 0 0
\(541\) 33.0983 1.42301 0.711503 0.702683i \(-0.248015\pi\)
0.711503 + 0.702683i \(0.248015\pi\)
\(542\) 16.8570 0.724071
\(543\) 0 0
\(544\) −31.9249 −1.36877
\(545\) 2.63840 0.113017
\(546\) 0 0
\(547\) 9.21414 0.393968 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(548\) −26.0786 −1.11402
\(549\) 0 0
\(550\) 0 0
\(551\) −5.55853 −0.236802
\(552\) 0 0
\(553\) −17.6279 −0.749613
\(554\) 7.01814 0.298172
\(555\) 0 0
\(556\) −21.4164 −0.908258
\(557\) 37.0518 1.56994 0.784968 0.619536i \(-0.212679\pi\)
0.784968 + 0.619536i \(0.212679\pi\)
\(558\) 0 0
\(559\) −5.97883 −0.252877
\(560\) −6.74405 −0.284988
\(561\) 0 0
\(562\) 14.9941 0.632486
\(563\) −26.9941 −1.13766 −0.568832 0.822454i \(-0.692605\pi\)
−0.568832 + 0.822454i \(0.692605\pi\)
\(564\) 0 0
\(565\) 1.71115 0.0719886
\(566\) 3.90436 0.164113
\(567\) 0 0
\(568\) 14.9342 0.626625
\(569\) −27.4757 −1.15184 −0.575921 0.817505i \(-0.695356\pi\)
−0.575921 + 0.817505i \(0.695356\pi\)
\(570\) 0 0
\(571\) −39.0103 −1.63253 −0.816266 0.577676i \(-0.803960\pi\)
−0.816266 + 0.577676i \(0.803960\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −7.57170 −0.316036
\(575\) −7.93558 −0.330937
\(576\) 0 0
\(577\) −29.1659 −1.21419 −0.607096 0.794629i \(-0.707666\pi\)
−0.607096 + 0.794629i \(0.707666\pi\)
\(578\) −9.14399 −0.380340
\(579\) 0 0
\(580\) −1.88499 −0.0782698
\(581\) −1.88200 −0.0780787
\(582\) 0 0
\(583\) 0 0
\(584\) −27.5954 −1.14191
\(585\) 0 0
\(586\) −4.71276 −0.194682
\(587\) −5.08793 −0.210001 −0.105001 0.994472i \(-0.533484\pi\)
−0.105001 + 0.994472i \(0.533484\pi\)
\(588\) 0 0
\(589\) 2.20774 0.0909684
\(590\) 1.76204 0.0725420
\(591\) 0 0
\(592\) −13.4664 −0.553467
\(593\) 3.46422 0.142258 0.0711292 0.997467i \(-0.477340\pi\)
0.0711292 + 0.997467i \(0.477340\pi\)
\(594\) 0 0
\(595\) −24.1825 −0.991386
\(596\) −8.66572 −0.354962
\(597\) 0 0
\(598\) −3.76159 −0.153823
\(599\) 24.8748 1.01636 0.508179 0.861251i \(-0.330319\pi\)
0.508179 + 0.861251i \(0.330319\pi\)
\(600\) 0 0
\(601\) 11.0681 0.451478 0.225739 0.974188i \(-0.427520\pi\)
0.225739 + 0.974188i \(0.427520\pi\)
\(602\) −5.79098 −0.236023
\(603\) 0 0
\(604\) 0.255479 0.0103953
\(605\) 0 0
\(606\) 0 0
\(607\) −27.9610 −1.13490 −0.567451 0.823407i \(-0.692070\pi\)
−0.567451 + 0.823407i \(0.692070\pi\)
\(608\) 29.5407 1.19803
\(609\) 0 0
\(610\) 3.02983 0.122674
\(611\) 34.3734 1.39060
\(612\) 0 0
\(613\) 10.9923 0.443974 0.221987 0.975050i \(-0.428746\pi\)
0.221987 + 0.975050i \(0.428746\pi\)
\(614\) 12.3145 0.496973
\(615\) 0 0
\(616\) 0 0
\(617\) 18.6262 0.749864 0.374932 0.927052i \(-0.377666\pi\)
0.374932 + 0.927052i \(0.377666\pi\)
\(618\) 0 0
\(619\) 2.68848 0.108059 0.0540296 0.998539i \(-0.482793\pi\)
0.0540296 + 0.998539i \(0.482793\pi\)
\(620\) 0.748679 0.0300677
\(621\) 0 0
\(622\) −4.56803 −0.183161
\(623\) −62.7969 −2.51591
\(624\) 0 0
\(625\) 7.85192 0.314077
\(626\) 16.8244 0.672440
\(627\) 0 0
\(628\) −37.1792 −1.48361
\(629\) −48.2873 −1.92534
\(630\) 0 0
\(631\) −39.2289 −1.56168 −0.780839 0.624732i \(-0.785208\pi\)
−0.780839 + 0.624732i \(0.785208\pi\)
\(632\) 10.6732 0.424558
\(633\) 0 0
\(634\) −7.29375 −0.289672
\(635\) −8.54365 −0.339045
\(636\) 0 0
\(637\) 22.0813 0.874895
\(638\) 0 0
\(639\) 0 0
\(640\) 12.3126 0.486698
\(641\) 25.7490 1.01702 0.508511 0.861055i \(-0.330196\pi\)
0.508511 + 0.861055i \(0.330196\pi\)
\(642\) 0 0
\(643\) −13.3321 −0.525765 −0.262883 0.964828i \(-0.584673\pi\)
−0.262883 + 0.964828i \(0.584673\pi\)
\(644\) 12.8679 0.507068
\(645\) 0 0
\(646\) 18.9111 0.744049
\(647\) 23.8506 0.937663 0.468832 0.883288i \(-0.344675\pi\)
0.468832 + 0.883288i \(0.344675\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 6.67706 0.261896
\(651\) 0 0
\(652\) 6.54025 0.256136
\(653\) 12.7249 0.497965 0.248983 0.968508i \(-0.419904\pi\)
0.248983 + 0.968508i \(0.419904\pi\)
\(654\) 0 0
\(655\) −5.98412 −0.233819
\(656\) −4.51533 −0.176294
\(657\) 0 0
\(658\) 33.2935 1.29792
\(659\) −27.2527 −1.06161 −0.530806 0.847493i \(-0.678111\pi\)
−0.530806 + 0.847493i \(0.678111\pi\)
\(660\) 0 0
\(661\) 43.6440 1.69755 0.848777 0.528751i \(-0.177339\pi\)
0.848777 + 0.528751i \(0.177339\pi\)
\(662\) 2.46480 0.0957971
\(663\) 0 0
\(664\) 1.13951 0.0442214
\(665\) 22.3765 0.867724
\(666\) 0 0
\(667\) 2.28996 0.0886675
\(668\) −24.6901 −0.955288
\(669\) 0 0
\(670\) 7.23376 0.279465
\(671\) 0 0
\(672\) 0 0
\(673\) −26.6867 −1.02870 −0.514348 0.857582i \(-0.671966\pi\)
−0.514348 + 0.857582i \(0.671966\pi\)
\(674\) 21.3879 0.823831
\(675\) 0 0
\(676\) 9.08443 0.349401
\(677\) 27.0831 1.04089 0.520443 0.853896i \(-0.325767\pi\)
0.520443 + 0.853896i \(0.325767\pi\)
\(678\) 0 0
\(679\) −31.2975 −1.20109
\(680\) 14.6419 0.561491
\(681\) 0 0
\(682\) 0 0
\(683\) −16.7343 −0.640322 −0.320161 0.947363i \(-0.603737\pi\)
−0.320161 + 0.947363i \(0.603737\pi\)
\(684\) 0 0
\(685\) 18.6824 0.713820
\(686\) 3.23053 0.123342
\(687\) 0 0
\(688\) −3.45341 −0.131660
\(689\) 15.1071 0.575535
\(690\) 0 0
\(691\) −37.5196 −1.42731 −0.713656 0.700497i \(-0.752962\pi\)
−0.713656 + 0.700497i \(0.752962\pi\)
\(692\) 4.05707 0.154226
\(693\) 0 0
\(694\) 14.2978 0.542738
\(695\) 15.3425 0.581975
\(696\) 0 0
\(697\) −16.1909 −0.613272
\(698\) 11.1738 0.422936
\(699\) 0 0
\(700\) −22.8414 −0.863324
\(701\) 10.2007 0.385275 0.192637 0.981270i \(-0.438296\pi\)
0.192637 + 0.981270i \(0.438296\pi\)
\(702\) 0 0
\(703\) 44.6811 1.68518
\(704\) 0 0
\(705\) 0 0
\(706\) −2.07989 −0.0782777
\(707\) −6.87713 −0.258641
\(708\) 0 0
\(709\) −14.4977 −0.544472 −0.272236 0.962231i \(-0.587763\pi\)
−0.272236 + 0.962231i \(0.587763\pi\)
\(710\) −4.68598 −0.175862
\(711\) 0 0
\(712\) 38.0220 1.42493
\(713\) −0.909526 −0.0340620
\(714\) 0 0
\(715\) 0 0
\(716\) −11.8273 −0.442006
\(717\) 0 0
\(718\) −5.63921 −0.210454
\(719\) 19.2266 0.717032 0.358516 0.933524i \(-0.383283\pi\)
0.358516 + 0.933524i \(0.383283\pi\)
\(720\) 0 0
\(721\) −10.4941 −0.390821
\(722\) −4.87672 −0.181493
\(723\) 0 0
\(724\) 3.74112 0.139038
\(725\) −4.06482 −0.150964
\(726\) 0 0
\(727\) 0.726827 0.0269565 0.0134783 0.999909i \(-0.495710\pi\)
0.0134783 + 0.999909i \(0.495710\pi\)
\(728\) −24.7200 −0.916183
\(729\) 0 0
\(730\) 8.65874 0.320474
\(731\) −12.3831 −0.458005
\(732\) 0 0
\(733\) −1.87589 −0.0692875 −0.0346438 0.999400i \(-0.511030\pi\)
−0.0346438 + 0.999400i \(0.511030\pi\)
\(734\) 7.31481 0.269995
\(735\) 0 0
\(736\) −12.1699 −0.448590
\(737\) 0 0
\(738\) 0 0
\(739\) −52.5826 −1.93428 −0.967140 0.254243i \(-0.918174\pi\)
−0.967140 + 0.254243i \(0.918174\pi\)
\(740\) 15.1521 0.557001
\(741\) 0 0
\(742\) 14.6325 0.537175
\(743\) −33.3328 −1.22286 −0.611431 0.791298i \(-0.709406\pi\)
−0.611431 + 0.791298i \(0.709406\pi\)
\(744\) 0 0
\(745\) 6.20804 0.227445
\(746\) −7.31206 −0.267714
\(747\) 0 0
\(748\) 0 0
\(749\) 40.1246 1.46612
\(750\) 0 0
\(751\) −23.3641 −0.852567 −0.426284 0.904590i \(-0.640177\pi\)
−0.426284 + 0.904590i \(0.640177\pi\)
\(752\) 19.8543 0.724014
\(753\) 0 0
\(754\) −1.92679 −0.0701694
\(755\) −0.183023 −0.00666089
\(756\) 0 0
\(757\) −33.8030 −1.22859 −0.614296 0.789076i \(-0.710560\pi\)
−0.614296 + 0.789076i \(0.710560\pi\)
\(758\) −16.8650 −0.612564
\(759\) 0 0
\(760\) −13.5484 −0.491453
\(761\) 20.1119 0.729056 0.364528 0.931192i \(-0.381230\pi\)
0.364528 + 0.931192i \(0.381230\pi\)
\(762\) 0 0
\(763\) −9.22582 −0.333997
\(764\) 25.7466 0.931480
\(765\) 0 0
\(766\) 8.04807 0.290788
\(767\) −6.36125 −0.229691
\(768\) 0 0
\(769\) 0.626999 0.0226102 0.0113051 0.999936i \(-0.496401\pi\)
0.0113051 + 0.999936i \(0.496401\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 12.6798 0.456356
\(773\) 28.7378 1.03363 0.516813 0.856098i \(-0.327118\pi\)
0.516813 + 0.856098i \(0.327118\pi\)
\(774\) 0 0
\(775\) 1.61447 0.0579933
\(776\) 18.9498 0.680259
\(777\) 0 0
\(778\) −9.53372 −0.341800
\(779\) 14.9817 0.536775
\(780\) 0 0
\(781\) 0 0
\(782\) −7.79085 −0.278600
\(783\) 0 0
\(784\) 12.7543 0.455512
\(785\) 26.6348 0.950638
\(786\) 0 0
\(787\) −14.1029 −0.502716 −0.251358 0.967894i \(-0.580877\pi\)
−0.251358 + 0.967894i \(0.580877\pi\)
\(788\) 35.7049 1.27194
\(789\) 0 0
\(790\) −3.34899 −0.119152
\(791\) −5.98345 −0.212747
\(792\) 0 0
\(793\) −10.9382 −0.388426
\(794\) 3.34739 0.118795
\(795\) 0 0
\(796\) −14.4517 −0.512227
\(797\) 26.1547 0.926447 0.463223 0.886242i \(-0.346693\pi\)
0.463223 + 0.886242i \(0.346693\pi\)
\(798\) 0 0
\(799\) 71.1928 2.51862
\(800\) 21.6024 0.763760
\(801\) 0 0
\(802\) 12.0908 0.426939
\(803\) 0 0
\(804\) 0 0
\(805\) −9.21848 −0.324909
\(806\) 0.765282 0.0269559
\(807\) 0 0
\(808\) 4.16393 0.146487
\(809\) 15.8533 0.557374 0.278687 0.960382i \(-0.410101\pi\)
0.278687 + 0.960382i \(0.410101\pi\)
\(810\) 0 0
\(811\) −36.3264 −1.27559 −0.637796 0.770206i \(-0.720154\pi\)
−0.637796 + 0.770206i \(0.720154\pi\)
\(812\) 6.59131 0.231309
\(813\) 0 0
\(814\) 0 0
\(815\) −4.68538 −0.164122
\(816\) 0 0
\(817\) 11.4583 0.400875
\(818\) −10.9151 −0.381637
\(819\) 0 0
\(820\) 5.08053 0.177420
\(821\) −16.3567 −0.570854 −0.285427 0.958400i \(-0.592135\pi\)
−0.285427 + 0.958400i \(0.592135\pi\)
\(822\) 0 0
\(823\) −26.1745 −0.912386 −0.456193 0.889881i \(-0.650787\pi\)
−0.456193 + 0.889881i \(0.650787\pi\)
\(824\) 6.35392 0.221349
\(825\) 0 0
\(826\) −6.16139 −0.214382
\(827\) 5.53930 0.192620 0.0963101 0.995351i \(-0.469296\pi\)
0.0963101 + 0.995351i \(0.469296\pi\)
\(828\) 0 0
\(829\) 18.5033 0.642647 0.321324 0.946969i \(-0.395872\pi\)
0.321324 + 0.946969i \(0.395872\pi\)
\(830\) −0.357548 −0.0124107
\(831\) 0 0
\(832\) 1.95501 0.0677779
\(833\) 45.7339 1.58459
\(834\) 0 0
\(835\) 17.6878 0.612110
\(836\) 0 0
\(837\) 0 0
\(838\) 11.5635 0.399454
\(839\) −17.9653 −0.620231 −0.310115 0.950699i \(-0.600368\pi\)
−0.310115 + 0.950699i \(0.600368\pi\)
\(840\) 0 0
\(841\) −27.8270 −0.959553
\(842\) −3.02176 −0.104137
\(843\) 0 0
\(844\) −6.56293 −0.225906
\(845\) −6.50801 −0.223882
\(846\) 0 0
\(847\) 0 0
\(848\) 8.72598 0.299651
\(849\) 0 0
\(850\) 13.8292 0.474339
\(851\) −18.4073 −0.630996
\(852\) 0 0
\(853\) 27.9131 0.955726 0.477863 0.878434i \(-0.341412\pi\)
0.477863 + 0.878434i \(0.341412\pi\)
\(854\) −10.5945 −0.362537
\(855\) 0 0
\(856\) −24.2944 −0.830367
\(857\) −8.49967 −0.290343 −0.145172 0.989406i \(-0.546373\pi\)
−0.145172 + 0.989406i \(0.546373\pi\)
\(858\) 0 0
\(859\) 27.8517 0.950289 0.475145 0.879908i \(-0.342396\pi\)
0.475145 + 0.879908i \(0.342396\pi\)
\(860\) 3.88569 0.132501
\(861\) 0 0
\(862\) −8.29391 −0.282492
\(863\) 13.5940 0.462745 0.231372 0.972865i \(-0.425678\pi\)
0.231372 + 0.972865i \(0.425678\pi\)
\(864\) 0 0
\(865\) −2.90645 −0.0988221
\(866\) −19.0568 −0.647576
\(867\) 0 0
\(868\) −2.61794 −0.0888586
\(869\) 0 0
\(870\) 0 0
\(871\) −26.1151 −0.884875
\(872\) 5.58600 0.189166
\(873\) 0 0
\(874\) 7.20901 0.243848
\(875\) 38.1629 1.29014
\(876\) 0 0
\(877\) 36.1780 1.22164 0.610822 0.791768i \(-0.290839\pi\)
0.610822 + 0.791768i \(0.290839\pi\)
\(878\) 2.72908 0.0921019
\(879\) 0 0
\(880\) 0 0
\(881\) 26.6423 0.897601 0.448800 0.893632i \(-0.351851\pi\)
0.448800 + 0.893632i \(0.351851\pi\)
\(882\) 0 0
\(883\) −20.4764 −0.689087 −0.344544 0.938770i \(-0.611966\pi\)
−0.344544 + 0.938770i \(0.611966\pi\)
\(884\) −23.1522 −0.778693
\(885\) 0 0
\(886\) 14.1033 0.473810
\(887\) −32.0012 −1.07449 −0.537247 0.843425i \(-0.680536\pi\)
−0.537247 + 0.843425i \(0.680536\pi\)
\(888\) 0 0
\(889\) 29.8749 1.00197
\(890\) −11.9303 −0.399906
\(891\) 0 0
\(892\) 10.6911 0.357963
\(893\) −65.8760 −2.20446
\(894\) 0 0
\(895\) 8.47296 0.283220
\(896\) −43.0539 −1.43833
\(897\) 0 0
\(898\) −17.2025 −0.574055
\(899\) −0.465884 −0.0155381
\(900\) 0 0
\(901\) 31.2892 1.04239
\(902\) 0 0
\(903\) 0 0
\(904\) 3.62283 0.120493
\(905\) −2.68011 −0.0890897
\(906\) 0 0
\(907\) −49.0503 −1.62869 −0.814344 0.580383i \(-0.802903\pi\)
−0.814344 + 0.580383i \(0.802903\pi\)
\(908\) −43.8455 −1.45506
\(909\) 0 0
\(910\) 7.75650 0.257125
\(911\) −23.3813 −0.774656 −0.387328 0.921942i \(-0.626602\pi\)
−0.387328 + 0.921942i \(0.626602\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 6.84506 0.226415
\(915\) 0 0
\(916\) 21.8756 0.722789
\(917\) 20.9249 0.691001
\(918\) 0 0
\(919\) −7.59931 −0.250678 −0.125339 0.992114i \(-0.540002\pi\)
−0.125339 + 0.992114i \(0.540002\pi\)
\(920\) 5.58156 0.184019
\(921\) 0 0
\(922\) 16.9091 0.556872
\(923\) 16.9171 0.556835
\(924\) 0 0
\(925\) 32.6742 1.07432
\(926\) 26.4768 0.870081
\(927\) 0 0
\(928\) −6.23377 −0.204633
\(929\) −14.8767 −0.488090 −0.244045 0.969764i \(-0.578475\pi\)
−0.244045 + 0.969764i \(0.578475\pi\)
\(930\) 0 0
\(931\) −42.3185 −1.38693
\(932\) 22.6158 0.740806
\(933\) 0 0
\(934\) 11.5438 0.377726
\(935\) 0 0
\(936\) 0 0
\(937\) 17.8231 0.582257 0.291128 0.956684i \(-0.405969\pi\)
0.291128 + 0.956684i \(0.405969\pi\)
\(938\) −25.2946 −0.825897
\(939\) 0 0
\(940\) −22.3396 −0.728637
\(941\) 42.6591 1.39065 0.695324 0.718697i \(-0.255261\pi\)
0.695324 + 0.718697i \(0.255261\pi\)
\(942\) 0 0
\(943\) −6.17203 −0.200989
\(944\) −3.67430 −0.119588
\(945\) 0 0
\(946\) 0 0
\(947\) 6.89340 0.224006 0.112003 0.993708i \(-0.464273\pi\)
0.112003 + 0.993708i \(0.464273\pi\)
\(948\) 0 0
\(949\) −31.2595 −1.01473
\(950\) −12.7964 −0.415171
\(951\) 0 0
\(952\) −51.1989 −1.65937
\(953\) −23.6805 −0.767085 −0.383543 0.923523i \(-0.625296\pi\)
−0.383543 + 0.923523i \(0.625296\pi\)
\(954\) 0 0
\(955\) −18.4446 −0.596855
\(956\) 39.1978 1.26775
\(957\) 0 0
\(958\) 14.5459 0.469958
\(959\) −65.3277 −2.10954
\(960\) 0 0
\(961\) −30.8150 −0.994031
\(962\) 15.4881 0.499356
\(963\) 0 0
\(964\) −27.6544 −0.890688
\(965\) −9.08369 −0.292414
\(966\) 0 0
\(967\) −31.1399 −1.00139 −0.500696 0.865623i \(-0.666923\pi\)
−0.500696 + 0.865623i \(0.666923\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −5.94598 −0.190914
\(971\) 13.3548 0.428577 0.214288 0.976770i \(-0.431257\pi\)
0.214288 + 0.976770i \(0.431257\pi\)
\(972\) 0 0
\(973\) −53.6488 −1.71990
\(974\) −2.17310 −0.0696306
\(975\) 0 0
\(976\) −6.31797 −0.202233
\(977\) −8.91593 −0.285246 −0.142623 0.989777i \(-0.545554\pi\)
−0.142623 + 0.989777i \(0.545554\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −14.3508 −0.458421
\(981\) 0 0
\(982\) 4.79899 0.153142
\(983\) −16.8585 −0.537704 −0.268852 0.963181i \(-0.586644\pi\)
−0.268852 + 0.963181i \(0.586644\pi\)
\(984\) 0 0
\(985\) −25.5787 −0.815005
\(986\) −3.99068 −0.127089
\(987\) 0 0
\(988\) 21.4231 0.681561
\(989\) −4.72049 −0.150103
\(990\) 0 0
\(991\) −33.5356 −1.06529 −0.532647 0.846338i \(-0.678803\pi\)
−0.532647 + 0.846338i \(0.678803\pi\)
\(992\) 2.47593 0.0786108
\(993\) 0 0
\(994\) 16.3856 0.519721
\(995\) 10.3531 0.328215
\(996\) 0 0
\(997\) −3.24367 −0.102728 −0.0513641 0.998680i \(-0.516357\pi\)
−0.0513641 + 0.998680i \(0.516357\pi\)
\(998\) −9.85487 −0.311950
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.cm.1.8 18
3.2 odd 2 9801.2.a.cp.1.11 18
9.4 even 3 1089.2.e.p.727.11 36
9.7 even 3 1089.2.e.p.364.11 36
11.5 even 5 891.2.f.f.487.6 36
11.9 even 5 891.2.f.f.730.6 36
11.10 odd 2 9801.2.a.co.1.11 18
33.5 odd 10 891.2.f.e.487.4 36
33.20 odd 10 891.2.f.e.730.4 36
33.32 even 2 9801.2.a.cn.1.8 18
99.5 odd 30 297.2.n.b.289.4 72
99.16 even 15 99.2.m.b.58.4 yes 72
99.20 odd 30 297.2.n.b.37.4 72
99.31 even 15 99.2.m.b.70.4 yes 72
99.38 odd 30 297.2.n.b.91.6 72
99.43 odd 6 1089.2.e.o.364.8 36
99.49 even 15 99.2.m.b.25.6 yes 72
99.76 odd 6 1089.2.e.o.727.8 36
99.86 odd 30 297.2.n.b.235.6 72
99.97 even 15 99.2.m.b.4.6 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.6 72 99.97 even 15
99.2.m.b.25.6 yes 72 99.49 even 15
99.2.m.b.58.4 yes 72 99.16 even 15
99.2.m.b.70.4 yes 72 99.31 even 15
297.2.n.b.37.4 72 99.20 odd 30
297.2.n.b.91.6 72 99.38 odd 30
297.2.n.b.235.6 72 99.86 odd 30
297.2.n.b.289.4 72 99.5 odd 30
891.2.f.e.487.4 36 33.5 odd 10
891.2.f.e.730.4 36 33.20 odd 10
891.2.f.f.487.6 36 11.5 even 5
891.2.f.f.730.6 36 11.9 even 5
1089.2.e.o.364.8 36 99.43 odd 6
1089.2.e.o.727.8 36 99.76 odd 6
1089.2.e.p.364.11 36 9.7 even 3
1089.2.e.p.727.11 36 9.4 even 3
9801.2.a.cm.1.8 18 1.1 even 1 trivial
9801.2.a.cn.1.8 18 33.32 even 2
9801.2.a.co.1.11 18 11.10 odd 2
9801.2.a.cp.1.11 18 3.2 odd 2