Properties

Label 9800.2.a.k.1.1
Level $9800$
Weight $2$
Character 9800.1
Self dual yes
Analytic conductor $78.253$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9800 = 2^{3} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(78.2533939809\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1400)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9800.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{3} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} +1.00000 q^{9} +4.00000 q^{11} +2.00000 q^{13} +3.00000 q^{17} +3.00000 q^{23} +4.00000 q^{27} -6.00000 q^{29} -9.00000 q^{31} -8.00000 q^{33} -4.00000 q^{39} -5.00000 q^{41} -6.00000 q^{43} -9.00000 q^{47} -6.00000 q^{51} -6.00000 q^{53} -8.00000 q^{59} -8.00000 q^{61} +14.0000 q^{67} -6.00000 q^{69} +11.0000 q^{71} +2.00000 q^{73} +9.00000 q^{79} -11.0000 q^{81} +6.00000 q^{83} +12.0000 q^{87} -11.0000 q^{89} +18.0000 q^{93} +11.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −9.00000 −1.61645 −0.808224 0.588875i \(-0.799571\pi\)
−0.808224 + 0.588875i \(0.799571\pi\)
\(32\) 0 0
\(33\) −8.00000 −1.39262
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 14.0000 1.71037 0.855186 0.518321i \(-0.173443\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 11.0000 1.30546 0.652730 0.757591i \(-0.273624\pi\)
0.652730 + 0.757591i \(0.273624\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.00000 1.01258 0.506290 0.862364i \(-0.331017\pi\)
0.506290 + 0.862364i \(0.331017\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 12.0000 1.28654
\(88\) 0 0
\(89\) −11.0000 −1.16600 −0.582999 0.812473i \(-0.698121\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 18.0000 1.86651
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.0000 1.11688 0.558440 0.829545i \(-0.311400\pi\)
0.558440 + 0.829545i \(0.311400\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) −15.0000 −1.47799 −0.738997 0.673709i \(-0.764700\pi\)
−0.738997 + 0.673709i \(0.764700\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 10.0000 0.901670
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.0000 1.45241 0.726204 0.687479i \(-0.241283\pi\)
0.726204 + 0.687479i \(0.241283\pi\)
\(138\) 0 0
\(139\) 6.00000 0.508913 0.254457 0.967084i \(-0.418103\pi\)
0.254457 + 0.967084i \(0.418103\pi\)
\(140\) 0 0
\(141\) 18.0000 1.51587
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 16.0000 1.20263
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 16.0000 1.18275
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.0000 −0.940647 −0.470323 0.882494i \(-0.655863\pi\)
−0.470323 + 0.882494i \(0.655863\pi\)
\(192\) 0 0
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −21.0000 −1.48865 −0.744325 0.667817i \(-0.767229\pi\)
−0.744325 + 0.667817i \(0.767229\pi\)
\(200\) 0 0
\(201\) −28.0000 −1.97497
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.00000 0.208514
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) −22.0000 −1.50742
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) −11.0000 −0.736614 −0.368307 0.929704i \(-0.620063\pi\)
−0.368307 + 0.929704i \(0.620063\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.0000 1.46019 0.730096 0.683345i \(-0.239475\pi\)
0.730096 + 0.683345i \(0.239475\pi\)
\(228\) 0 0
\(229\) 8.00000 0.528655 0.264327 0.964433i \(-0.414850\pi\)
0.264327 + 0.964433i \(0.414850\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −18.0000 −1.16923
\(238\) 0 0
\(239\) 11.0000 0.711531 0.355765 0.934575i \(-0.384220\pi\)
0.355765 + 0.934575i \(0.384220\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −3.00000 −0.184988 −0.0924940 0.995713i \(-0.529484\pi\)
−0.0924940 + 0.995713i \(0.529484\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 22.0000 1.34638
\(268\) 0 0
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) −7.00000 −0.425220 −0.212610 0.977137i \(-0.568196\pi\)
−0.212610 + 0.977137i \(0.568196\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) −9.00000 −0.538816
\(280\) 0 0
\(281\) −13.0000 −0.775515 −0.387757 0.921761i \(-0.626750\pi\)
−0.387757 + 0.921761i \(0.626750\pi\)
\(282\) 0 0
\(283\) −2.00000 −0.118888 −0.0594438 0.998232i \(-0.518933\pi\)
−0.0594438 + 0.998232i \(0.518933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −22.0000 −1.28966
\(292\) 0 0
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 16.0000 0.928414
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −16.0000 −0.919176
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 24.0000 1.36975 0.684876 0.728659i \(-0.259856\pi\)
0.684876 + 0.728659i \(0.259856\pi\)
\(308\) 0 0
\(309\) 30.0000 1.70664
\(310\) 0 0
\(311\) −1.00000 −0.0567048 −0.0283524 0.999598i \(-0.509026\pi\)
−0.0283524 + 0.999598i \(0.509026\pi\)
\(312\) 0 0
\(313\) 31.0000 1.75222 0.876112 0.482108i \(-0.160129\pi\)
0.876112 + 0.482108i \(0.160129\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) −16.0000 −0.893033
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 28.0000 1.54840
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.00000 −0.109930 −0.0549650 0.998488i \(-0.517505\pi\)
−0.0549650 + 0.998488i \(0.517505\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) −30.0000 −1.62938
\(340\) 0 0
\(341\) −36.0000 −1.94951
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.00000 0.107366 0.0536828 0.998558i \(-0.482904\pi\)
0.0536828 + 0.998558i \(0.482904\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 8.00000 0.427008
\(352\) 0 0
\(353\) −15.0000 −0.798369 −0.399185 0.916871i \(-0.630707\pi\)
−0.399185 + 0.916871i \(0.630707\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) 0 0
\(369\) −5.00000 −0.260290
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) −21.0000 −1.07305 −0.536525 0.843884i \(-0.680263\pi\)
−0.536525 + 0.843884i \(0.680263\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.00000 −0.304997
\(388\) 0 0
\(389\) 34.0000 1.72387 0.861934 0.507020i \(-0.169253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 38.0000 1.90717 0.953583 0.301131i \(-0.0973643\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −18.0000 −0.896644
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 31.0000 1.53285 0.766426 0.642333i \(-0.222033\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) −34.0000 −1.67710
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 0 0
\(423\) −9.00000 −0.437595
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −16.0000 −0.772487
\(430\) 0 0
\(431\) −31.0000 −1.49322 −0.746609 0.665263i \(-0.768319\pi\)
−0.746609 + 0.665263i \(0.768319\pi\)
\(432\) 0 0
\(433\) −21.0000 −1.00920 −0.504598 0.863355i \(-0.668359\pi\)
−0.504598 + 0.863355i \(0.668359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −35.0000 −1.67046 −0.835229 0.549902i \(-0.814665\pi\)
−0.835229 + 0.549902i \(0.814665\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 40.0000 1.89194
\(448\) 0 0
\(449\) −27.0000 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(450\) 0 0
\(451\) −20.0000 −0.941763
\(452\) 0 0
\(453\) −40.0000 −1.87936
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 12.0000 0.560112
\(460\) 0 0
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 20.0000 0.921551
\(472\) 0 0
\(473\) −24.0000 −1.10352
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −9.00000 −0.411220 −0.205610 0.978634i \(-0.565918\pi\)
−0.205610 + 0.978634i \(0.565918\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 23.0000 1.04223 0.521115 0.853487i \(-0.325516\pi\)
0.521115 + 0.853487i \(0.325516\pi\)
\(488\) 0 0
\(489\) 48.0000 2.17064
\(490\) 0 0
\(491\) 30.0000 1.35388 0.676941 0.736038i \(-0.263305\pi\)
0.676941 + 0.736038i \(0.263305\pi\)
\(492\) 0 0
\(493\) −18.0000 −0.810679
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 38.0000 1.70111 0.850557 0.525883i \(-0.176265\pi\)
0.850557 + 0.525883i \(0.176265\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 18.0000 0.799408
\(508\) 0 0
\(509\) −12.0000 −0.531891 −0.265945 0.963988i \(-0.585684\pi\)
−0.265945 + 0.963988i \(0.585684\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) 32.0000 1.40464
\(520\) 0 0
\(521\) −45.0000 −1.97149 −0.985743 0.168259i \(-0.946186\pi\)
−0.985743 + 0.168259i \(0.946186\pi\)
\(522\) 0 0
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −27.0000 −1.17614
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) −10.0000 −0.433148
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −8.00000 −0.345225
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) −16.0000 −0.686626
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −40.0000 −1.71028 −0.855138 0.518400i \(-0.826528\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) 0 0
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.0000 −1.52537 −0.762684 0.646771i \(-0.776119\pi\)
−0.762684 + 0.646771i \(0.776119\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) 26.0000 1.09577 0.547885 0.836554i \(-0.315433\pi\)
0.547885 + 0.836554i \(0.315433\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.0000 −0.461144 −0.230572 0.973055i \(-0.574060\pi\)
−0.230572 + 0.973055i \(0.574060\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 26.0000 1.08617
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) 0 0
\(579\) −10.0000 −0.415586
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 36.0000 1.48084
\(592\) 0 0
\(593\) 13.0000 0.533846 0.266923 0.963718i \(-0.413993\pi\)
0.266923 + 0.963718i \(0.413993\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 42.0000 1.71895
\(598\) 0 0
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 14.0000 0.570124
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.0000 −0.728202
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.0000 −0.684394 −0.342197 0.939628i \(-0.611171\pi\)
−0.342197 + 0.939628i \(0.611171\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) 12.0000 0.481543
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −15.0000 −0.597141 −0.298570 0.954388i \(-0.596510\pi\)
−0.298570 + 0.954388i \(0.596510\pi\)
\(632\) 0 0
\(633\) −44.0000 −1.74884
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 11.0000 0.435153
\(640\) 0 0
\(641\) −35.0000 −1.38242 −0.691208 0.722655i \(-0.742921\pi\)
−0.691208 + 0.722655i \(0.742921\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) 14.0000 0.545363 0.272681 0.962104i \(-0.412090\pi\)
0.272681 + 0.962104i \(0.412090\pi\)
\(660\) 0 0
\(661\) −44.0000 −1.71140 −0.855701 0.517471i \(-0.826874\pi\)
−0.855701 + 0.517471i \(0.826874\pi\)
\(662\) 0 0
\(663\) −12.0000 −0.466041
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) 0 0
\(669\) 22.0000 0.850569
\(670\) 0 0
\(671\) −32.0000 −1.23535
\(672\) 0 0
\(673\) −43.0000 −1.65753 −0.828764 0.559598i \(-0.810955\pi\)
−0.828764 + 0.559598i \(0.810955\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −44.0000 −1.68608
\(682\) 0 0
\(683\) −14.0000 −0.535695 −0.267848 0.963461i \(-0.586312\pi\)
−0.267848 + 0.963461i \(0.586312\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −16.0000 −0.610438
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 22.0000 0.836919 0.418460 0.908235i \(-0.362570\pi\)
0.418460 + 0.908235i \(0.362570\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −15.0000 −0.568166
\(698\) 0 0
\(699\) 44.0000 1.66423
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.00000 −0.300446 −0.150223 0.988652i \(-0.547999\pi\)
−0.150223 + 0.988652i \(0.547999\pi\)
\(710\) 0 0
\(711\) 9.00000 0.337526
\(712\) 0 0
\(713\) −27.0000 −1.01116
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −22.0000 −0.821605
\(718\) 0 0
\(719\) −29.0000 −1.08152 −0.540759 0.841178i \(-0.681863\pi\)
−0.540759 + 0.841178i \(0.681863\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 36.0000 1.33885
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −29.0000 −1.07555 −0.537775 0.843088i \(-0.680735\pi\)
−0.537775 + 0.843088i \(0.680735\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −18.0000 −0.665754
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 56.0000 2.06279
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −27.0000 −0.990534 −0.495267 0.868741i \(-0.664930\pi\)
−0.495267 + 0.868741i \(0.664930\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) −32.0000 −1.16614
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) −24.0000 −0.871145
\(760\) 0 0
\(761\) 43.0000 1.55875 0.779374 0.626559i \(-0.215537\pi\)
0.779374 + 0.626559i \(0.215537\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 36.0000 1.29651
\(772\) 0 0
\(773\) 20.0000 0.719350 0.359675 0.933078i \(-0.382888\pi\)
0.359675 + 0.933078i \(0.382888\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 44.0000 1.57444
\(782\) 0 0
\(783\) −24.0000 −0.857690
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −8.00000 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(788\) 0 0
\(789\) 6.00000 0.213606
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −16.0000 −0.568177
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 0 0
\(799\) −27.0000 −0.955191
\(800\) 0 0
\(801\) −11.0000 −0.388666
\(802\) 0 0
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.00000 −0.140807
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) 10.0000 0.351147 0.175574 0.984466i \(-0.443822\pi\)
0.175574 + 0.984466i \(0.443822\pi\)
\(812\) 0 0
\(813\) 14.0000 0.491001
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.0000 0.698005 0.349002 0.937122i \(-0.386521\pi\)
0.349002 + 0.937122i \(0.386521\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.0000 0.486828 0.243414 0.969923i \(-0.421733\pi\)
0.243414 + 0.969923i \(0.421733\pi\)
\(828\) 0 0
\(829\) 32.0000 1.11141 0.555703 0.831381i \(-0.312449\pi\)
0.555703 + 0.831381i \(0.312449\pi\)
\(830\) 0 0
\(831\) −16.0000 −0.555034
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −36.0000 −1.24434
\(838\) 0 0
\(839\) 29.0000 1.00119 0.500596 0.865681i \(-0.333114\pi\)
0.500596 + 0.865681i \(0.333114\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 26.0000 0.895488
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 38.0000 1.30110 0.650548 0.759465i \(-0.274539\pi\)
0.650548 + 0.759465i \(0.274539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.00000 −0.238283 −0.119141 0.992877i \(-0.538014\pi\)
−0.119141 + 0.992877i \(0.538014\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 16.0000 0.543388
\(868\) 0 0
\(869\) 36.0000 1.22122
\(870\) 0 0
\(871\) 28.0000 0.948744
\(872\) 0 0
\(873\) 11.0000 0.372294
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.00000 −0.135070 −0.0675352 0.997717i \(-0.521513\pi\)
−0.0675352 + 0.997717i \(0.521513\pi\)
\(878\) 0 0
\(879\) 28.0000 0.944417
\(880\) 0 0
\(881\) 37.0000 1.24656 0.623281 0.781998i \(-0.285799\pi\)
0.623281 + 0.781998i \(0.285799\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.0000 0.671534 0.335767 0.941945i \(-0.391004\pi\)
0.335767 + 0.941945i \(0.391004\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −44.0000 −1.47406
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −12.0000 −0.400668
\(898\) 0 0
\(899\) 54.0000 1.80100
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) 47.0000 1.55718 0.778590 0.627533i \(-0.215935\pi\)
0.778590 + 0.627533i \(0.215935\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 7.00000 0.230909 0.115454 0.993313i \(-0.463168\pi\)
0.115454 + 0.993313i \(0.463168\pi\)
\(920\) 0 0
\(921\) −48.0000 −1.58165
\(922\) 0 0
\(923\) 22.0000 0.724139
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −15.0000 −0.492665
\(928\) 0 0
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.00000 0.0654771
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −62.0000 −2.02329
\(940\) 0 0
\(941\) 26.0000 0.847576 0.423788 0.905761i \(-0.360700\pi\)
0.423788 + 0.905761i \(0.360700\pi\)
\(942\) 0 0
\(943\) −15.0000 −0.488467
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 24.0000 0.778253
\(952\) 0 0
\(953\) −10.0000 −0.323932 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 48.0000 1.55162
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 50.0000 1.61290
\(962\) 0 0
\(963\) 8.00000 0.257796
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22.0000 −0.706014 −0.353007 0.935621i \(-0.614841\pi\)
−0.353007 + 0.935621i \(0.614841\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.00000 −0.0959785 −0.0479893 0.998848i \(-0.515281\pi\)
−0.0479893 + 0.998848i \(0.515281\pi\)
\(978\) 0 0
\(979\) −44.0000 −1.40625
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 0 0
\(983\) −48.0000 −1.53096 −0.765481 0.643458i \(-0.777499\pi\)
−0.765481 + 0.643458i \(0.777499\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −18.0000 −0.572367
\(990\) 0 0
\(991\) −31.0000 −0.984747 −0.492374 0.870384i \(-0.663871\pi\)
−0.492374 + 0.870384i \(0.663871\pi\)
\(992\) 0 0
\(993\) 4.00000 0.126936
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −44.0000 −1.39349 −0.696747 0.717317i \(-0.745370\pi\)
−0.696747 + 0.717317i \(0.745370\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9800.2.a.k.1.1 1
5.4 even 2 9800.2.a.bl.1.1 1
7.3 odd 6 1400.2.q.b.401.1 2
7.5 odd 6 1400.2.q.b.1201.1 yes 2
7.6 odd 2 9800.2.a.bm.1.1 1
35.3 even 12 1400.2.bh.d.849.2 4
35.12 even 12 1400.2.bh.d.249.2 4
35.17 even 12 1400.2.bh.d.849.1 4
35.19 odd 6 1400.2.q.f.1201.1 yes 2
35.24 odd 6 1400.2.q.f.401.1 yes 2
35.33 even 12 1400.2.bh.d.249.1 4
35.34 odd 2 9800.2.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1400.2.q.b.401.1 2 7.3 odd 6
1400.2.q.b.1201.1 yes 2 7.5 odd 6
1400.2.q.f.401.1 yes 2 35.24 odd 6
1400.2.q.f.1201.1 yes 2 35.19 odd 6
1400.2.bh.d.249.1 4 35.33 even 12
1400.2.bh.d.249.2 4 35.12 even 12
1400.2.bh.d.849.1 4 35.17 even 12
1400.2.bh.d.849.2 4 35.3 even 12
9800.2.a.j.1.1 1 35.34 odd 2
9800.2.a.k.1.1 1 1.1 even 1 trivial
9800.2.a.bl.1.1 1 5.4 even 2
9800.2.a.bm.1.1 1 7.6 odd 2