Properties

Label 9800.2.a.bg
Level $9800$
Weight $2$
Character orbit 9800.a
Self dual yes
Analytic conductor $78.253$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9800 = 2^{3} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(78.2533939809\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{3} + q^{9} + O(q^{10}) \) \( q + 2q^{3} + q^{9} - 3q^{11} - 2q^{13} + 4q^{17} - 3q^{23} - 4q^{27} + q^{29} - 2q^{31} - 6q^{33} + 7q^{37} - 4q^{39} + 2q^{41} - q^{43} - 12q^{47} + 8q^{51} + 6q^{53} + 6q^{59} + 6q^{61} - 7q^{67} - 6q^{69} - 3q^{71} - 2q^{73} - 5q^{79} - 11q^{81} - 6q^{83} + 2q^{87} - 18q^{89} - 4q^{93} - 18q^{97} - 3q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 0 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9800.2.a.bg yes 1
5.b even 2 1 9800.2.a.f yes 1
7.b odd 2 1 9800.2.a.e 1
35.c odd 2 1 9800.2.a.bh yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9800.2.a.e 1 7.b odd 2 1
9800.2.a.f yes 1 5.b even 2 1
9800.2.a.bg yes 1 1.a even 1 1 trivial
9800.2.a.bh yes 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9800))\):

\( T_{3} - 2 \)
\( T_{11} + 3 \)
\( T_{13} + 2 \)
\( T_{19} \)
\( T_{23} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -2 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( 3 + T \)
$13$ \( 2 + T \)
$17$ \( -4 + T \)
$19$ \( T \)
$23$ \( 3 + T \)
$29$ \( -1 + T \)
$31$ \( 2 + T \)
$37$ \( -7 + T \)
$41$ \( -2 + T \)
$43$ \( 1 + T \)
$47$ \( 12 + T \)
$53$ \( -6 + T \)
$59$ \( -6 + T \)
$61$ \( -6 + T \)
$67$ \( 7 + T \)
$71$ \( 3 + T \)
$73$ \( 2 + T \)
$79$ \( 5 + T \)
$83$ \( 6 + T \)
$89$ \( 18 + T \)
$97$ \( 18 + T \)
show more
show less