Newspace parameters
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(157.176143417\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) |
Defining polynomial: |
\( x^{3} - 499x - 210 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 140) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - 499x - 210 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - \nu - 333 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + \beta _1 + 333 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −24.5458 | 0 | −25.0000 | 0 | 0 | 0 | 359.498 | 0 | |||||||||||||||||||||||||||
1.2 | 0 | −1.57901 | 0 | −25.0000 | 0 | 0 | 0 | −240.507 | 0 | ||||||||||||||||||||||||||||
1.3 | 0 | 20.1248 | 0 | −25.0000 | 0 | 0 | 0 | 162.009 | 0 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(5\) | \(1\) |
\(7\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 980.6.a.h | 3 | |
7.b | odd | 2 | 1 | 140.6.a.d | ✓ | 3 | |
28.d | even | 2 | 1 | 560.6.a.t | 3 | ||
35.c | odd | 2 | 1 | 700.6.a.i | 3 | ||
35.f | even | 4 | 2 | 700.6.e.g | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
140.6.a.d | ✓ | 3 | 7.b | odd | 2 | 1 | |
560.6.a.t | 3 | 28.d | even | 2 | 1 | ||
700.6.a.i | 3 | 35.c | odd | 2 | 1 | ||
700.6.e.g | 6 | 35.f | even | 4 | 2 | ||
980.6.a.h | 3 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{3} + 6T_{3}^{2} - 487T_{3} - 780 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(980))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} \)
$3$
\( T^{3} + 6 T^{2} - 487 T - 780 \)
$5$
\( (T + 25)^{3} \)
$7$
\( T^{3} \)
$11$
\( T^{3} + 14 T^{2} - 147231 T + 12436740 \)
$13$
\( T^{3} - 4 T^{2} - 425371 T + 6140734 \)
$17$
\( T^{3} + 44 T^{2} + \cdots - 279119070 \)
$19$
\( T^{3} + 2328 T^{2} + \cdots - 11429521264 \)
$23$
\( T^{3} - 3676 T^{2} + \cdots + 2083660704 \)
$29$
\( T^{3} - 4092 T^{2} + \cdots + 17580868722 \)
$31$
\( T^{3} + 5888 T^{2} + \cdots - 211802104832 \)
$37$
\( T^{3} - 11378 T^{2} + \cdots - 47286923800 \)
$41$
\( T^{3} + 11450 T^{2} + \cdots - 478579953600 \)
$43$
\( T^{3} - 18544 T^{2} + \cdots + 750561676176 \)
$47$
\( T^{3} + 21754 T^{2} + \cdots + 173657376144 \)
$53$
\( T^{3} - 7494 T^{2} + \cdots + 743911257600 \)
$59$
\( T^{3} + 12388 T^{2} + \cdots - 41176040028480 \)
$61$
\( T^{3} + 27182 T^{2} + \cdots + 169955356480 \)
$67$
\( T^{3} + 7676 T^{2} + \cdots - 15170685707520 \)
$71$
\( T^{3} + \cdots + 113425504819200 \)
$73$
\( T^{3} + 230 T^{2} + \cdots + 11043630664360 \)
$79$
\( T^{3} + \cdots - 274092525845520 \)
$83$
\( T^{3} - 86100 T^{2} + \cdots + 40289422939200 \)
$89$
\( T^{3} + \cdots + 305457269205600 \)
$97$
\( T^{3} - 176188 T^{2} + \cdots + 41652594334882 \)
show more
show less